
AN703
Using the MCP320X 12-Bit Serial A/D Converter with 

Microchip PICmicro® Devices

00703a.book  Page 1  Monday, October 11, 1999  10:29 AM
OVERVIEW
The MCP320X devices comprise a family of 12-bit suc-
cessive approximation Analog to Digital (A/D) Convert-
ers. These devices provide from one to eight analog
inputs with both single ended and differential inputs.
Data is transferred to and from the MCP320X through
a simple SPI®-compatible 3-wire interface. This appli-
cation note discusses how to interface the MCP320X
devices to Microchip PICmicro® devices, using both
software and hardware SPI with examples shown in C
and Assembly languages. The programs in this appli-
cation note were developed using a PIC16C62A and
MCP3202 on a PICDEM-2 demonstration board. As a
matter of convenience, the CLK, DO, and DI pins of the
PIC16C62A are used for all examples, whether using
the hardware SPI peripheral or the software SPI imple-
mentation. The software SPI may be adapted to I/O
ports on any PICmicro device.

COMMUNICATION

Communication to the MCP3202 is accomplished via a
synchronous SPI-compatible scheme. This interface
consists of three lines; DOUT, DIN and CLK. Control
information is loaded into the MCP320X through the
DIN line and data is output on the DOUT line. The CLK
signal is generated by the PICmicro and is used as both
communication and conversion clock for the A/D Con-
verter. Data bits are latched in from DIN on the rising
edge of CLK and latched out to DOUT on the falling
edge. A fourth line, CS, is an active low signal used to
select the chip and enable it for conversion and com-
munication. See Figure 1 for a communication timing
diagram.

FIGURE 1: COMMUNICATION WITH MCP3202 USING LSB FIRST FORMAT

Author: Jake McKernan
Microchip Technology Inc.

Null
Bit

B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

CS

CLK

DOUT

HI-Z HI-Z

(MSB)

DIN

* After completing the data transfer, if further clocks are applied with CS low, the A/D Converter will output zeros indefinitely.

O
D

D/
SI

G
N

St
ar

t

SG
L/

D
IF

F

M
SB

F

Don’t Care

*

SPI is a registered trademark of Motorola
 1999 Microchip Technology Inc. DS00703A-page 1



AN703

00703a.book  Page 2  Monday, October 11, 1999  10:29 AM
A 4-bit configuration command is issued to the
MCP3202 to begin the conversion process. When com-
munication of the command word to the MCP3202
begins, the first ‘1’ bit seen by the MCP3202 on the DIN

line will be interpreted as a start bit. Leading 0’s may be
clocked into the device with no effect. The start bit is fol-
lowed by a mode selection bit, indicating whether the
conversion result will be single-ended or differential. A
mode select bit of '1' selects single-ended mode and '0'
selects differential mode. Next, the channel select bit is
clocked into the MCP3202, which sets the channel to
be converted. A '0' in this bit position selects Channel
0, while a '1' selects Channel 1. If differential mode was
selected, the channel select bit determines which
channel will be subtracted from the other. Table 1 illus-
trates how the A/D result will be affected by the channel
and mode selection bits. Finally, a data format bit is
clocked into the MCP3202. This bit selects whether the
result of the conversion will be shifted out in LSb for-
mat. A '0' in this bit position will cause the data to be
shifted out in MSb only format. If a '1', the data will first
be shifted out in MSb format, followed by the same data
in LSb format. Keep in mind that the data will always be
shifted out in MSb format, regardless of the state of the
data format bit.

The command word is followed by the clocking in of a
dummy bit, during which time the converter determines
whether the MSb should be a 0 or 1. The 12-bit A/D
result is then clocked out of the MCP3202 one bit at a
time. The LSb of the A/D result is common to both data
formats, i.e. the LSb is output only once while all other
result bits are output twice (once for MSb first format,
once for LSb first format). 0's will be clocked out of the
DOUT line if CLK pulses are issued after all data bits are
extracted from the converter.

IMPLEMENTATION

As previously mentioned, several code examples of
interfacing to the MCP3202 are shown in this applica-
tion note. All methods use essentially the same algo-
rithm of performing an A/D conversion, displaying the
result on PORTB, then waiting for a keypress. The
examples cover hardware and software SPI, relocat-
able and absolute assembly and C.

Written in absolute assembly, Appendix A shows the
use of the hardware SSP module in master SPI mode.
The SSP is set up to clock data in on the rising edge,
clock data out on the falling edge and drive the clock
high when idle, with a frequency of Fosc/64. All bits of
PORTB are configured as outputs and the port is
cleared. To begin the conversion process, the
MCP3202 is selected using the CS line and 0x01 is
loaded into the SSPBUF of the 16C62A. This shifts out
seven leading 0’s, followed by a start bit. The subrou-
tine WAIT_BF then monitors the BF flag in the SSP-
STAT register, which indicates when the 8-bit transfer is
complete. Next, a value of 0xE0 is loaded into the SSP-
BUF, the MSb’s being the three configuration informa-
tion bits, and the lower five bits being dummy
information to round out the byte. The configuration bits
in this example set the MCP3202 up for single-ended
conversion on channel 1, with the output in MSb first
format. During the transmission of the 5 LSb’s, the
MCP3202 will begin shifting out A/D result data. The
WAIT_BF subroutine is called after the SSPBUF is
loaded, waiting for the transmission to be complete.
Once the transmission is complete, the MSb’s of the
result are read from the SSPBUF, masked, and dis-
played on PORTB for examination by the user. Finally,
a dummy value of 0x00 is loaded into the SSPBUF to
retrieve the final eight LSb’s of the A/D result from the
MCP3202.

The WAIT_PRESS routine is then called, waiting for
the RA4 button of the PICDEM-2 board to be pressed
and released. Once the button has been pressed and
released, the remaining data is read from the SSPBUF
and displayed on the PORTB pins. This information is
displayed until the RA4 button is again pressed and
released (by calling the WAIT_PRESS subroutine),
after which the A/D process begins again.

Appendix B demonstrates the same functionality as the
program in Appendix A, but is written in the C language.
This allows portability between platforms (12-bit, 14-bit
or 16-bit cores), with a minimum of change to the
program.

Appendices C and D are used together to show a hard-
ware SPI implementation using relocatable assembly
code. The main file (MCP3202c.asm) is shown in
Appendix C and contains the main functionality of the
program, while the assembly file shown in Appendix D
(waitfcn.asm) contains the auxiliary functions (i.e. wait-
ing for SPI transmission to complete and for RA4 press
and release). The linker script (16c62a.lkr) shown in
Appendix D controls where the relocatable segments

CONFIG
 BITS

CHANNEL
SELECTION

GND

SGL/ 
DIFF

ODD/ 
SIGN

0 1

SINGLE 
ENDED MODE

1 0 + -

1 1 + -

PSEUDO-
DIFFERENTIAL

 MODE

0 0 IN+ IN-

0 1 IN- IN+

TABLE 1: CONFIGURATION BITS FOR 
THE MCP3202
DS00703A-page 2  1999 Microchip Technology Inc.



AN703

00703a.book  Page 3  Monday, October 11, 1999  10:29 AM
are placed in the 16C62A program memory and
defines the processor’s available RAM space for the
linker. Please consult the MPASM User’s Guide for
more details on how to write relocatable code.

Appendix E illustrates communication to the MCP3202
using firmware SPI rather than the hardware periph-
eral. The same I/O pins are used to generate the clock
and data signals as with the hardware peripheral, for
convenience. Program initialization occurs as with the
previous examples, except that the hardware periph-
eral is excluded and replaced with initialization of
PORTC bits. Three registers are initialized to be used
as input and output buffers, and there are two new sub-
routines added to communicate to the MCP3202. The
first routine called will be OUT_CONTROL, which
issues the control word to the MCP3202. The control
word to be sent is loaded into the OUTBUF register
before the subroutine is called. Each of the four bits is
then shifted out and clocked into the A/D Converter
using the DOUT and CLK lines of PORTC, respectively.
Once all bits are shifted out, the subroutine returns to
the calling function. To retrieve the data from the A/D
Converter, a second subroutine is implemented. The
IN_DATA subroutine toggles the CLK line and reads the
DIN line, shifting each new bit into the INBUFL and
INBUFH registers. All 12 bits of the result are read by
this subroutine which will return to the calling function
once the transfer is complete. As with the previous
examples, the MSb’s are displayed on PORTB, while
the program waits for RA4 to toggle. The LSb’s are then
displayed, the program waits for RA4 to toggle again,
and the process repeats again.

Appendix F is a variation on Appendix E, demonstrat-
ing the use of relocatable assembly to implement a
software SPI. The same subroutines are used for this
example, but are declared as external. The wait func-
tions and linker script (waitfcn.asm, 16c62a.lkr) files
shown in Appendix C are used in this example. The
ser_io.asm file shown in Appendix G contains the
OUT_CONTROL and IN_DATA subroutines used in
this example.

The final example, shown in Appendix H, illustrates the
firmware SPI implementation in the C language. Two
functions are added to this implementation,
Output_Control and Input_Data. As with the previous
example, the Output_Control shifts the 4-bit command
out to the MCP3202 one bit at a time and Input_Data
reads all 12 bits of the result. The data is then displayed
on PORTB, waiting for input on RA4 before continuing
on. In this program, the A/D result data may be
accessed in one of two ways; as a 16-bit value or as two
8-bit values. When reading the value in from the
MCP3202 using the Input_Data function, the A/D result
is treated as a 16-bit value. During the display portion
of the program, the result is accessed 8-bits at a time
for display on PORTB.

SCHEMATIC

The code for this application note was developed on a
PICDEM-2 demonstration board. An equivalent circuit
of the board as used in this application note is shown in
Appendix I. A full schematic of the PICDEM-2 board
can be found in the PICDEM-2 User’s Guide, available
with the kit or from the Microchip web site
(www.microchip.com).

The SPI communication lines CLK, DOUT and DIN are
connected to RC3, RC4 and RC5, respectively. The CS
signal is generated using RC2 as a general purpose
output pin. PORTB is used entirely as an output port for
display of A/D result data. All LED’s are driven through
470Ω current limiting resistors. RA4 is connected to a
momentary contact switch and pullup resistor for allow-
ing the user to cycle through the A/D result data on
PORTB.

Channel 1 of the A/D Converter is used throughout the
application note, and must have an analog voltage
applied to it to get meaningful results from the
MCP3202. This was done using a 0-5v power supply
output fed directly into pin three of the MCP3202.

The PIC16C62A uses the RC oscillator configuration
as the main clock, operating at an approximate fre-
quency of 4MHz. An RC network is also provided on
the MCLR line to help ensure that the device is reset
correctly on application of power.

CONCLUSION

The example code shown in this application note gives
a firm grasp of how to interface the MCP3202 A/D Con-
verter to PICmicro devices. The code has the potential
to be adapted to any Microchip PICmicro device, an
exercise left up to the user. Implementations in multiple
languages and styles also gives the developer flexibility
in successfully writing code and libraries to use this
device in end-user applications.
 1999 Microchip Technology Inc. DS00703A-page 3



AN703

00703a.book  Page 4  Monday, October 11, 1999  10:29 AM
APPENDIX A: HARDWARE SPI, ABSOLUTE ASSEMBLY
;*********************************************************************************
;*
;*     This program demonstrates communication with the MCP3202 A/D converter
;*     using absolute assembly code.  This code was written for the midrange
;*     PICmicro devices (using a PICDEM-2 board and the 16C62A) and uses the SSP
;*     module in SPI mode for communication to the MCP3202.
;*
;*     Filename: mcp3202a.asm
;*
;*     (C) 1998 Microchip Technology, Inc.
;*     All Rights Reserved
;*
;*********************************************************************************

   list p=16c62a

   include “p16c62a.inc”

ADCS   equ    0x02                 ;chip select line for A/D

   ORG 0x0000

   clrf PCLATH                 ;reset PCLATH for Page0 operation
   clrf STATUS                 ;reset STATUS for Bank 0 operation
   clrf FSR                    ;clear FSR
   goto START                  ;begin main program

   ORG 0x0004
_ISR
   goto _ISR                   ;stay here if interrupt occurs

WAIT_BF
      bsf STATUS,RP0              ;select Bank0
      btfss SSPSTAT,BF            ;check for BF set
      goto WAIT_BF                ;continue to wait
      bcf STATUS,RP0              ;select Bank1
      return                      ;return to caller
       
       
WAIT_PRESS
      btfsc PORTA,4               ;check for button press
      goto WAIT_PRESS
       
WAIT_RLS       
      btfss PORTA,4               ;check for button release
      goto WAIT_RLS
      return                      ;return to caller

START
      movlw 0x32                  ;set up SSP to clock data out on falling edge
      movwf SSPCON                ;clock data in on rising edge, clock idle high
       
      clrf PORTB                  ;clear PortB outputs

   bsf STATUS,RP0              ;select Bank1
   movlw 0x10
DS00703A-page 4  1999 Microchip Technology Inc.



AN703

00703a.book  Page 5  Monday, October 11, 1999  10:29 AM
   movwf TRISC                 ;set up Port C for SPI master

   clrf TRISB                  ;configure PortB as outputs

   bcf STATUS,RP0              ;select Bank0
   bsf PORTC,ADCS              ;deselect A/D device

BEGIN_AD
      bcf PORTC,ADCS              ;select A/D device
      movlw 0x01
      movwf SSPBUF                ;output start bit
       
      call WAIT_BF                ;wait for transfer complete

      movlw 0xE0                  ;output 3 command and 5 dummy bits
      movwf SSPBUF                ;shift out command and receive 4 MSb’s
      call WAIT_BF                ;wait for transfer complete
       
      movf SSPBUF,W               ;read result (MSB’s of conversion)
      andlw 0x0F                  ;mask out MSb’s
      movwf PORTB                 ;display on PortB
       
      movlw 0x00                  ;load dummy value
      movwf SSPBUF                ;shift remaining bits
      call WAIT_BF                ;wait for transfer complete

      call WAIT_PRESS             ;wait for button press/release before advancing
       
      movf SSPBUF,W               ;read result (LSb’s)
      movwf PORTB                 ;display on PortB
       
      bsf PORTC,ADCS              ;de-select A/D converter
       
      call WAIT_PRESS             ;wait for button press/release before advancing
       
HERE
      goto BEGIN_AD               ;play it again, Sam
       
       
      END
 1999 Microchip Technology Inc. DS00703A-page 5



AN703

00703a.book  Page 6  Monday, October 11, 1999  10:29 AM
APPENDIX B: HARDWARE SPI, C LANGUAGE
/*************************************************************************
*
*  This program is written to demonstrate interfacing the MCP3202 A/D
*  converter to Microchip PICmicro devices.  The code demonstrates
*  how to implement hardware SPI to communicate with the converter,
*  and is written in C for the HiTech PICC C compiler.  By modifying the
*  #include statement to “#include<16c62a.h>” the code may be compiled
*  using MPLAB-C 1.21.
*
*  Filename: mcp3202b.c
*
*  (C) 1998 Microchip Technology, Inc.
*  All Rights Reserved
*
*************************************************************************/

#include<pic1662.h>       /* modify this statement for use with the MPLAB-C compiler */

#define ADCS 0x04        /* I/O bit position for CS line */
#define BUSY 0x01        /* Bit0 of SSPSTAT, indicated when SPI xmission complete */
#define BUTTON 0x10      /* I/0 bit position for RA4 line */

void Wait_for_Press()
{
   while(PORTA & BUTTON)
   {
      /* wait for button press */
   }
   
   while(!(PORTA & BUTTON))
   {
      /* wait for button release */
   }
}

void main(void)
{
   TRISB = 0x00;
   PORTB = 0x00;         /* reset PortB outputs */
      
   SSPCON = 0x32;        /* set up SSP to clock data out on falling edge */
   TRISC = 0x10;         /* clock data in on rising edge, clock idle high */
   
   PORTC |= ADCS;        /* de-select A/D device */
   
   while(1)
   {
      PORTC &= ~ADCS;    /* select A/D device */
      
      SSPBUF = 0x01;     /* output start bit */
      
      while(!(SSPSTAT & BUSY))
      {
                         /* wait for transfer complete */
      }
DS00703A-page 6  1999 Microchip Technology Inc.



AN703

00703a.book  Page 7  Monday, October 11, 1999  10:29 AM
      
      SSPBUF = 0xE0;   /* output 3 command, 5 dummy bits */
      
      while(!(SSPSTAT & BUSY))
      {
                       /* wait for transfer complete */
      }
      
      PORTB = SSPBUF & 0x0F;      /* mask and output conversion MSb’s */

      SSPBUF = 0x00;       /* output dummy word */
      
      while(!(SSPSTAT & BUSY))
      {
                           /* wait for transfer complete */
      }

      PORTC |= ADCS;       /* de-select A/D device */

      Wait_for_Press();    /* wait for button press/release */

      PORTB = SSPBUF;      /* output LSb’s */

      Wait_for_Press();    /* wait for button press/release */
   }
}

 1999 Microchip Technology Inc. DS00703A-page 7



AN703

00703a.book  Page 8  Monday, October 11, 1999  10:29 AM
APPENDIX C: HARDWARE SPI, RELOCATABLE ASSEMBLY
;*********************************************************************************
;*
;*     This program demonstrates communication with the MCP3202 A/D converter
;*     using relocatable assembly code.  This code was written for the midrange
;*     PICmicro devices (using a PICDEM-2 board and the 16C62A) and uses the SSP
;*     module in SPI mode for communication to the MCP3202.
;*
;*     The two subroutines WAIT_BF and WAIT_PRESS are external functions, compiled
;*     and linked separately from the WAITFCN.ASM file.  These subroutines wait
;*     for the SPI transmission to complete and for RA4 to be pushed and released,
;*     respectively.
;*
;*     Filename: mcp3202c.asm
;*
;*     (C) 1998 Microchip Technology, Inc.
;*     All Rights Reserved
;*
;*********************************************************************************

list p=16C62a

#include “p16c62a.inc”

ADCSequ0x02                        ;CS line for MCP3202 (RC6)

EXTERN WAIT_BF                     ;define wait function call symbols
EXTERN WAIT_PRESS                  

RESETCODE                          ;select reset code section

clrf PCLATH                        ;reset PCLATH on powerup
clrf STATUS                        ;reset STATUS on powerup
clrf FSR                           ;reset FSR on powerup
goto START                         ;go start and initialize program

INTCODE                            ;select interrupt code section
_ISR
goto _ISR                          ;stay here if interrupt occurs

START                              ;initialization
movlw 0x32                         
movwf SSPCON                       ;setup SSP for operation

clrf PORTB                         ;reset LED output port

bsf STATUS,RP0                     ;select Bank1
movlw 0x10
movwf TRISC                        ;configure PORTC for operation

clrf TRISB                         ;configure PORTB as outputs

bcf STATUS,RP0                     ;select Bank0
bsf PORTC,ADCS                     ;deselect A/D converter

BEGIN_AD                           ;start A/D conversion
bcf PORTC,ADCS                     ;select A/D converter
movlw 0x01                         ;load start bit
DS00703A-page 8  1999 Microchip Technology Inc.



AN703

00703a.book  Page 9  Monday, October 11, 1999  10:29 AM
movwf SSPBUF                       ;output start bit to A/D

call WAIT_BF                       ;wait for transmission complete

movlw 0xE0                         ;load 3 command and 5 dummy bits
movwf SSPBUF                       ;output on SPI port

call WAIT_BF                       ;wait for transmission complete

movf SSPBUF,W                      ;read A/D result MSb’s
   andlw 0x0F                      ;mask off garbage bits
movwf PORTB                        ;output MSb’s on PORTB LED’s

movlw 0x00                         ;load dummy data
movwf SSPBUF                       ;output on SPI (shifts in LSb’s)
call WAIT_BF                       ;wait for transmission complete

call WAIT_PRESS                    ;wait for button press/release

movf SSPBUF,W                      ;read A/D result LSb’s
movwf PORTB                        ;output LSb’s on PORTB LED’s

bsf PORTC,ADCS                     ;deselect A/D converter

call WAIT_PRESS                    ;wait for button press/release

HERE
goto BEGIN_AD                      ;repeat process

END
 1999 Microchip Technology Inc. DS00703A-page 9



AN703

00703a.book  Page 10  Monday, October 11, 1999  10:29 AM
APPENDIX D: WAIT FUNCTIONS AND LINKER SCRIPT FOR APPENDIX C
;*************************************************************************
;*
;*     Wait functions for MCP3202 A/D converter demonstration.  These
;*     functions wait for SPI communication and RA4 button press/release
;*     on the PICDEM-2 board.  This file is to be assembled and linked
;*     with mcp3202c.ASM or mcp3202e.ASM for proper usage.
;*
;*     Filename: waitfcn.asm
;*
;*     (C) 1998 Microchip Technology, Inc.
;*     All Rights Reserved
;*
;*************************************************************************

       list p=16C62a
       #include “p16c62a.inc”
       CODE                             ;select code section
       
WAIT_BF                                 ;wait for SPI transmission complete
       GLOBAL WAIT_BF                   ;declare WAIT_BF visible to outside world
       bsf STATUS,RP0                   ;select Bank1
       btfss SSPSTAT,BF                 ;check for transmission complete (BF set)
       goto WAIT_BF                     ;not finished, continue waiting
       bcf STATUS,RP0                   ;select Bank0
       return                           ;return to calling function
       
WAIT_PRESS                              ;wait for RA4 press/release
       GLOBAL WAIT_PRESS                  ;declare WAIT_PRESS visible to outside world
       
       btfsc PORTA,4                    ;check for button press
       goto WAIT_PRESS                  ;not pressed, check again
       
WAIT_RLS                                ;button now pressed
       btfss PORTA,4                    ;check for button release
       goto WAIT_RLS                    ;not released, check again
       return                            ;button now released, return to calling func
       
       END

//*************************************************************************
//*
//*      16C62A Linker Script to be used with MCP3202C.ASM and WAITFCN.ASM
//*      to link the corresponding object files.
//*
//*      Filename: 16c62a.lkr
//*
//*      (C) 1998 Microchip Technology, Inc.
//*      All Right Reserved
//*
//*************************************************************************

CODEPAGE NAME=reset_vector START=0x00 END=0x03
CODEPAGE NAME=interrupt_vector START=0x04 END=0x7FF
DATABANK   NAME=gpr0     START=0x20     END=0x7F
DATABANK   NAME=gpr1     START=0xA0     END=0xBF
DATABANK   NAME=sfr0     START=0x0      END=0x1F     PROTECTED
DATABANK   NAME=sfr1     START=0x80     END=0x9F     PROTECTED
SECTION NAME=RESET ROM=reset_vector
SECTION NAME=INT ROM=interrupt_vector
DS00703A-page 10  1999 Microchip Technology Inc.



AN703

00703a.book  Page 11  Monday, October 11, 1999  10:29 AM
APPENDIX E: FIRMWARE SPI, ABSOLUTE ASSEMBLY
;*********************************************************************************
;*
;*     This program demonstrates communication with the MCP3202 A/D converter
;*     using absolute assembly code.  This code was written for the midrange
;*     PICmicro devices (using a PICDEM-2 board and the 16C62A) and uses firmware
;*     to implement the SPI module for communication to the MCP3202.
;*
;*     Filename: mcp3202d.asm
;*
;*     (C) 1998 Microchip Technology, Inc.
;*     All Rights Reserved
;*
;*********************************************************************************
list p=16c62a

include “p16c62a.inc”

ADCS   equ    0x02                 ;chip select line for A/D converter
DOUT   equ    0x05                 ;serial data out to A/D converter
DIN    equ    0x04                 ;serial data in from A/D converter
CLK    equ    0x03                 ;serial data clock to A/D converter

       CBLOCK 0x20
OUTBUF
INBUFH
INBUFL
COUNT
       ENDC

ORG 0x0000

clrf PCLATH                 ;reset PCLATH for Page0 operation
clrf STATUS                 ;reset STATUS for Bank 0 operation
clrf FSR                    ;clear FSR
goto START                  ;begin main program

ORG 0x0004
_ISR
goto _ISR                   ;stay here if interrupt occurs

OUT_CONTROL
       movwf OUTBUF         ;load control word into buffer
       swapf OUTBUF         ;rotate control word into position
       
       movlw 0x04
       movwf COUNT          ;init bit counter
       
BIT_OUT
       rlf OUTBUF           ;rotate bit into carry
       bcf PORTC,DOUT       ;pre-clear data out
       btfsc STATUS,C       ;check if bit should be set
       bsf PORTC,DOUT       ;set data out
       
       bsf PORTC,CLK        ;generate clock pulse
       nop
       bcf PORTC,CLK
       
       decfsz COUNT         ;decrement bit counter
       goto BIT_OUT         ;output next bit
 1999 Microchip Technology Inc. DS00703A-page 11



AN703

00703a.book  Page 12  Monday, October 11, 1999  10:29 AM
       return                  ;finished, return to caller

       
IN_DATA
       clrf INBUFH
       clrf INBUFL             ;reset input buffer
       
       movlw 0x0D
       movwf COUNT             ;init bit counter
       
BIT_IN
       bsf PORTC,CLK           ;set clock to latch bit
       bcf STATUS,C            ;pre-clear carry
       btfsc PORTC,DIN         ;check for high or low bit
       bsf STATUS,C            ;set carry bit
       
       rlf INBUFL
       rlf INBUFH              ;rotate bit into position
       
       bcf PORTC,CLK           ;drop clock for next bit
       
       decfsz COUNT            ;decrement bit counter
       goto BIT_IN             ;get next bit
       return                  ;return to caller
       

WAIT_PRESS
       btfsc PORTA,0x04        ;check for button press
       goto WAIT_PRESS
       
WAIT_RLS       
       btfss PORTA,0x04        ;check for button release
       goto WAIT_RLS
       return                  ;return to caller

START
       clrf PORTB              ;clear PortB outputs
       
       movlw 0x40
       movwf PORTC             ;initialize PortC: ADCS high, DO, CLK low

bsf STATUS,RP0                 ;select Bank1
movlw 0x10
movwf TRISC                    ;set up Port C for SPI master

clrf TRISB                     ;configure PortB as outputs

bcf STATUS,RP0                 ;select Bank0

clrf OUTBUF                    ;reset output buffer
clrf INBUFH                    ;reset input buffer
clrf INBUFL

BEGIN_AD
       bcf PORTC,ADCS          ;select A/D converter
       
       movlw 0x0F              ;load control word
       call OUT_CONTROL        ;output control word
DS00703A-page 12  1999 Microchip Technology Inc.



AN703

00703a.book  Page 13  Monday, October 11, 1999  10:29 AM
       call IN_DATA                ;read data from A/D converter
              
       bsf PORTC,ADCS              ;de-select A/D converter
       
       movlw 0x0F                  ;load MSB mask
       andwf INBUFH,W              ;mask out MSB’s and put result in W
       movwf PORTB                 ;output MSB’s
       
       call WAIT_PRESS             ;wait for button press
       
       movf INBUFL,W               ;load LSB’s into W
       movwf PORTB                 ;output LSB’s
       
       call WAIT_PRESS             ;wait for button press
       goto BEGIN_AD               ;play it again, Sam
       
       
       END
 1999 Microchip Technology Inc. DS00703A-page 13



AN703

00703a.book  Page 14  Monday, October 11, 1999  10:29 AM
APPENDIX F: FIRMWARE SPI, RELOCATABLE ASSEMBLY
;*********************************************************************************
;*
;*     This program demonstrates communication with the MCP3202 A/D converter
;*     using relocatable assembly code.  This code was written for the midrange
;*     PICmicro devices (using a PICDEM-2 board and the 16C62A) and uses the SSP
;*     module in SPI mode for communication to the MCP3202.
;*
;*     The subroutine WAIT_PRESS is an external function, compiled and linked
;*     separately from the WAITFCN.ASM file.  This subroutine waits for RA4 to be
;*     pushed and released.
;*     The subroutines OUT_CONTROL and IN_DATA are also external functions, but
;*     compiled and linked from the SER_IO.ASM file.  INBUFH and INBUFL are data
;*     bytes that are used by the IN_DATA routine to return the A/D conversion
;*     result to the calling function.
;*
;*     Filename: mcp3202e.asm
;*
;*     (C) 1998 Microchip Technology, Inc.
;*     All Rights Reserved
;*
;*********************************************************************************
list p=16c62a

include “p16c62a.inc”

       EXTERN WAIT_PRESS
       EXTERN OUT_CONTROL
       EXTERN IN_DATA
       
       EXTERN INBUFH
       EXTERN INBUFL

ADCS   equ    0x02          ;chip select line for A/D converter

RESET  CODE
clrf PCLATH                 ;reset PCLATH for Page0 operation
clrf STATUS                 ;reset STATUS for Bank 0 operation
clrf FSR                    ;clear FSR
goto START                  ;begin main program

INT    CODE
_ISR
goto _ISR                   ;stay here if interrupt occurs

START
       clrf PORTB           ;clear PortB outputs
       
       movlw 0x40
       movwf PORTC          ;initialize PortC: ADCS high, DO, CLK low

bsf STATUS,RP0              ;select Bank1
movlw 0x10
movwf TRISC                 ;set up Port C for SPI master

clrf TRISB                  ;configure PortB as outputs

bcf STATUS,RP0              ;select Bank0
DS00703A-page 14  1999 Microchip Technology Inc.



AN703

00703a.book  Page 15  Monday, October 11, 1999  10:29 AM
BEGIN_AD
       bcf PORTC,ADCS              ;select A/D converter
       
       movlw 0x0F                  ;load control word
       call OUT_CONTROL            ;output control word

       call IN_DATA                ;read data from A/D converter
              
       bsf PORTC,ADCS              ;de-select A/D converter
       
       movlw 0x0F                  ;load MSB mask
       andwf INBUFH,W              ;mask out MSB’s and put result in W
       movwf PORTB                 ;output MSB’s
       
       call WAIT_PRESS             ;wait for button press
       
       movf INBUFL,W               ;load LSB’s into W
       movwf PORTB                 ;output LSB’s
       
       call WAIT_PRESS             ;wait for button press
       goto BEGIN_AD               ;play it again, Sam
       
       
       END
 1999 Microchip Technology Inc. DS00703A-page 15



AN703

00703a.book  Page 16  Monday, October 11, 1999  10:29 AM
APPENDIX G: RELOCATABLE ASSEMBLY FIRMWARE SPI FUNCTIONS FOR 
APPENDIX F

;*************************************************************************
;*
;*     Serial functions for MCP3202 A/D converter demonstration.  These
;*     functions perform SPI communication.  This file is to be assembled
;*     and linked with mcp3202e.ASM for proper usage.
;*
;*     Filename: ser_io.asm
;*
;*     (C) 1998 Microchip Technology, Inc.
;*     All Rights Reserved
;*
;*************************************************************************
list p=16c62a

#include “p16c62a.inc”

DOUT   equ    0x05                 ;serial data out to A/D converter
DIN    equ    0x04                 ;serial data in from A/D converter
CLK    equ    0x03                 ;serial data clock to A/D converter

UDATA 0x20
OUTBUF res 1
INBUFH res 1
INBUFL res 1
COUNT  res 1

       GLOBAL INBUFH
       GLOBAL INBUFL
       
CODE

OUT_CONTROL
GLOBAL OUT_CONTROL
       movwf OUTBUF                ;load control word into buffer
       rlf OUTBUF
       rlf OUTBUF
       rlf OUTBUF
       rlf OUTBUF                  ;rotate control word into position
       
       movlw 0x04
       movwf COUNT                 ;init bit counter
       
BIT_OUT
       rlf OUTBUF                  ;rotate bit into carry
       bcf PORTC,DOUT              ;pre-clear data out
       btfsc STATUS,C              ;check if bit should be set
       bsf PORTC,DOUT              ;set data out
       
       bsf PORTC,CLK               ;generate clock pulse
       nop
       bcf PORTC,CLK
       
       decfsz COUNT                ;decrement bit counter
       goto BIT_OUT                ;output next bit
       return                      ;finished, return to caller
       
DS00703A-page 16  1999 Microchip Technology Inc.



AN703

00703a.book  Page 17  Monday, October 11, 1999  10:29 AM
IN_DATA
GLOBAL IN_DATA
       clrf INBUFH
       clrf INBUFL                 ;reset input buffer
       
       movlw 0x0D
       movwf COUNT                 ;init bit counter
       
BIT_IN
       bsf PORTC,CLK               ;set clock to latch bit
       bcf STATUS,C                ;pre-clear carry
       btfsc PORTC,DIN             ;check for high or low bit
       bsf STATUS,C                ;set carry bit
       
       rlf INBUFL
       rlf INBUFH                  ;rotate bit into position
       
       bcf PORTC,CLK               ;drop clock for next bit
       
       decfsz COUNT                ;decrement bit counter
       goto BIT_IN                 ;get next bit
       return                      ;return to caller

       END
 1999 Microchip Technology Inc. DS00703A-page 17



AN703

00703a.book  Page 18  Monday, October 11, 1999  10:29 AM
APPENDIX H: FIRMWARE SPI, C LANGUAGE
/*************************************************************************
*
*  This program is written to demonstrate interfacing the MCP3202 A/D
*  converter to Microchip PICmicro devices.  The code demonstrates
*  how to implement software SPI to communicate with the converter,
*  and is written in C for the HiTech C compiler, PICC.  Changing the
*  #include directive to “#include<16c62a.h>” will allow the use of the
*  MPLAB-C v1.21 C compiler to compile this file.
*
*  Filename: mcp3202f.c
*
*  (C) 1998 Microchip Technology, Inc.
*  All Rights Reserved
*
*************************************************************************/

#include <pic1662.h>    /* modify this statement for use with the MPLAB-C compiler */

#define ADCS 0x04       /* I/O bit position for CS line */
#define BUSY 0x01       /* Bit0 of SSPSTAT, indicated when SPI xmission complete */
#define BUTTON 0x10     /* I/0 bit position for RA4 line */

#define DOUT 0x20       /* data out to MCP3202 */
#define DIN 0x10        /* data in from MCP3202 */
#define CLK 0x08        /* clock out to MCP3202 */

/* Function Prototypes */

void Wait_for_Press(void);
void Output_Control(char TempChar);
int Input_Data(void);

void Wait_for_Press()
{
   while(PORTA & BUTTON)
   {
      /* wait for button press */
   }
   
   while(!(PORTA & BUTTON))
   {
      /* wait for button release */
   }
}

void Output_Control(char TempChar)
{
   unsigned char Mask = 0x08;       /* mask to test for 0/1 */
   unsigned char Count;             /* gen purpose bit counter */
   
   for(Count = 0x00; Count < 0x04; Count++)  /* count 4 bits */
   {
      PORTC &= ~DOUT;               /* pre-clear data line */
      
DS00703A-page 18  1999 Microchip Technology Inc.



AN703

00703a.book  Page 19  Monday, October 11, 1999  10:29 AM
      if(TempChar & Mask)           /* check if bit should be high or low */
      {
         PORTC |= DOUT;             /* set data line */
      }
      
      PORTC |= CLK;                 /* send clock line high */
      
      Mask >>= 0x01;                /* rotate mask for next bit */
                                    /* also used to burn time for clock */     
      PORTC &= ~CLK;                /* send clock line low */
   }
}

int Input_Data(void)
{
   unsigned char Count;             /* gen purpose bit counter */
   unsigned int Mask = 0x8000;      /* mask to insert ‘1’ at bit position */
   unsigned int Result = 0x0000;    /* A/D result register */
   
   for(Count = 0x00; Count < 0x0D; Count++)  /* count 13 bits */
   {                                /* 12-bit result + 1 null bit */
      if(PORTC & DIN)               /* check if bit is high or low */
      {
         Result |= Mask;            /* bit high, set bit in result */
      }
      
      PORTC |= CLK;                 /* send clock line high */
      
      Mask >>= 0x01;                /* rotate mask for next bit */
                                    /* also used to burn time for clock */
      PORTC &= ~CLK;                /* send clock line low */
   }

   Result >>= 0x03;                 /* rotate bits into position */
   Result &= 0x0FFF;                /* mask out 12-bit result */
   
   return(Result);                  /* return result to caller */
}

   

void main(void)
{
   union DualAccess                    /* declare union to allow access to */
   {                                   /* variable as 8 or 16-bit */
      unsigned int By_16;              /* allows 16-bit access */
      
      struct Bytewise                  /* struct provides for 8-bit access */
      {
         unsigned char Lo;             /* LSB of variable */
         unsigned char Hi;             /* MSB of variable */
      } By_8;
   } ADresult;
   
   
TRISB = 0x00;
PORTB = 0x00;                       /* reset PortB outputs */
 1999 Microchip Technology Inc. DS00703A-page 19



AN703

00703a.book  Page 20  Monday, October 11, 1999  10:29 AM
PORTC = 0x40;                       /* init PortC (A/D de-selected) */
TRISC = 0x10;                       /* config PortC */

PORTC |= ADCS;                      /* de-select A/D converter */

while(1)
{
   PORTC &= ~ADCS;                  /* select A/D converter */
   
   Output_Control((char)0x0F);      /* output control word to A/D converter */
   
   ADresult.By_16 = Input_Data();   /* read result from converter */
   
   PORTC |= ADCS;                   /* de-select A/D converter */
   
   PORTB = ADresult.By_8.Hi;        /* display A/D MSb’s */
   
   Wait_for_Press();                /* wait for key press/release */
   
   PORTB = ADresult.By_8.Lo;        /* display A/D LSb’s */
   
   Wait_for_Press();                /* wait for key press/release */
   
}
}

DS00703A-page 20  1999 Microchip Technology Inc.



AN703

00703a.book  Page 21  Monday, October 11, 1999  10:29 AM
APPENDIX I: EQUIVALENT SCHEMATIC

A
n

al
og

 V
o

lt
ag

e

+5
v

C
S

  1

C
H

0
 2

C
H

1
 3

V S S

4

D
IN

  5

D
O

U
T

  6

C
L

K
  7

V C C

8

M
C

P
32

02

+
5v

+5
v

4.
7k

+
5v

4.
7k

S
1

+
5v

.1
u

f

M
C

L
R

  1

R
A

0
  2

R
A

1
  3

R
A

2
  4

R
A

3
  5

R
A

4
  6

R
A

5
  7

R
B

0
21

R
B

1
22

R
B

2
23

R
B

3
24

R
B

4
25

R
B

5
26

R
B

6
27

R
B

7
28

O
S

C
1

 1
3

O
S

C
2

 1
4

R
C

0
11

R
C

1
12

R
C

2
13

R
C

3
14

R
C

4
15

R
C

5
16

R
C

6
17

R
C

7
18

V D D

2 0

V S S

8

V S S 1

1 9

P
IC

16
C

62
A

L
E

D
R

E
D

47
0

4.
7k

20
p

f

 1999 Microchip Technology Inc. DS00703A-page 21



AN703

00703a.book  Page 22  Monday, October 11, 1999  10:29 AM
NOTES:
DS00703A-page 22  1999 Microchip Technology Inc.



AN703

00703a.book  Page 23  Monday, October 11, 1999  10:29 AM
NOTES:
 1999 Microchip Technology Inc. DS00703A-page 23



 2002 Microchip Technology Inc.

Information contained in this publication regarding device
applications and the like is intended through suggestion only
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
No representation or warranty is given and no liability is
assumed by Microchip Technology Incorporated with respect
to the accuracy or use of such information, or infringement of
patents or other intellectual property rights arising from such
use or otherwise. Use of Microchip’s products as critical com-
ponents in life support systems is not authorized except with
express written approval by Microchip. No licenses are con-
veyed, implicitly or otherwise, under any intellectual property
rights.

Trademarks

The Microchip name and logo, the Microchip logo, FilterLab,
KEELOQ, microID, MPLAB, PIC, PICmicro, PICMASTER,
PICSTART, PRO MATE, SEEVAL and The Embedded Control
Solutions Company are registered trademarks of Microchip Tech-
nology Incorporated in the U.S.A. and other countries.

dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB,
In-Circuit Serial Programming, ICSP, ICEPIC, microPort,
Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM,
MXDEV, PICC, PICDEM, PICDEM.net, rfPIC, Select Mode
and Total Endurance are trademarks of Microchip Technology
Incorporated in the U.S.A.

Serialized Quick Turn Programming (SQTP) is a service mark
of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2002, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

 Printed on recycled paper.

Microchip received QS-9000 quality system 
certification for its worldwide headquarters, 
design and wafer fabrication facilities in 
Chandler and Tempe, Arizona in July 1999. The 
Company’s quality system processes and 
procedures are QS-9000 compliant for its 
PICmicro® 8-bit MCUs, KEELOQ® code hopping 
devices, Serial EEPROMs and microperipheral 
products. In addition, Microchip’s quality 
system for the design and manufacture of 
development systems is ISO 9001 certified.

Note the following details of the code protection feature on PICmicro® MCUs.

• The PICmicro family meets the specifications contained in the Microchip Data Sheet.
• Microchip believes that its family of PICmicro microcontrollers is one of the most secure products of its kind on the market today, 

when used in the intended manner and under normal conditions.
• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowl-

edge, require using the PICmicro microcontroller in a manner outside the operating specifications contained in the data sheet. 
The person doing so may be engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.
• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not 

mean that we are guaranteeing the product as “unbreakable”.
• Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of 

our product.

If you have any further questions about this matter, please contact the local sales office nearest to you.



 2002 Microchip Technology Inc.

M
AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ  85224-6199
Tel:  480-792-7200  Fax:  480-792-7277
Technical Support: 480-792-7627
Web Address: http://www.microchip.com
Rocky Mountain
2355 West Chandler Blvd.
Chandler, AZ  85224-6199
Tel:  480-792-7966  Fax:  480-792-7456

Atlanta
500 Sugar Mill Road, Suite 200B
Atlanta, GA  30350
Tel: 770-640-0034  Fax: 770-640-0307
Boston
2 Lan Drive, Suite 120
Westford, MA  01886
Tel: 978-692-3848  Fax: 978-692-3821
Chicago
333 Pierce Road, Suite 180
Itasca, IL  60143
Tel: 630-285-0071 Fax: 630-285-0075
Dallas
4570 Westgrove Drive, Suite 160
Addison, TX 75001
Tel: 972-818-7423  Fax: 972-818-2924
Detroit
Tri-Atria Office Building 
32255 Northwestern Highway, Suite 190
Farmington Hills, MI  48334
Tel: 248-538-2250 Fax: 248-538-2260
Kokomo
2767 S. Albright Road 
Kokomo, Indiana  46902
Tel: 765-864-8360 Fax: 765-864-8387
Los Angeles
18201 Von Karman, Suite 1090
Irvine, CA  92612
Tel: 949-263-1888  Fax: 949-263-1338
New York
150 Motor Parkway, Suite 202
Hauppauge, NY  11788
Tel: 631-273-5305  Fax: 631-273-5335
San Jose
Microchip Technology Inc.
2107 North First Street, Suite 590
San Jose, CA  95131
Tel: 408-436-7950  Fax: 408-436-7955
Toronto
6285 Northam Drive, Suite 108
Mississauga, Ontario L4V 1X5, Canada
Tel: 905-673-0699  Fax:  905-673-6509

ASIA/PACIFIC
Australia
Microchip Technology Australia Pty Ltd
Suite 22, 41 Rawson Street
Epping 2121, NSW
Australia
Tel: 61-2-9868-6733 Fax: 61-2-9868-6755
China - Beijing
Microchip Technology Consulting (Shanghai)
Co., Ltd., Beijing Liaison Office
Unit 915
Bei Hai Wan Tai Bldg.
No. 6 Chaoyangmen Beidajie 
Beijing, 100027, No. China
Tel: 86-10-85282100 Fax: 86-10-85282104
China - Chengdu
Microchip Technology Consulting (Shanghai)
Co., Ltd., Chengdu Liaison Office
Rm. 2401, 24th Floor, 
Ming Xing Financial Tower
No. 88 TIDU Street
Chengdu 610016, China
Tel: 86-28-6766200  Fax: 86-28-6766599
China - Fuzhou
Microchip Technology Consulting (Shanghai)
Co., Ltd., Fuzhou Liaison Office
Unit 28F, World Trade Plaza
No. 71 Wusi Road
Fuzhou 350001, China
Tel: 86-591-7503506  Fax: 86-591-7503521
China - Shanghai
Microchip Technology Consulting (Shanghai)
Co., Ltd.
Room 701, Bldg. B
Far East International Plaza
No. 317 Xian Xia Road
Shanghai, 200051
Tel: 86-21-6275-5700  Fax: 86-21-6275-5060
China - Shenzhen
Microchip Technology Consulting (Shanghai)
Co., Ltd., Shenzhen Liaison Office
Rm. 1315, 13/F, Shenzhen Kerry Centre,
Renminnan Lu
Shenzhen 518001, China
Tel: 86-755-2350361  Fax: 86-755-2366086
Hong Kong
Microchip Technology Hongkong Ltd.
Unit 901-6, Tower 2, Metroplaza
223 Hing Fong Road
Kwai Fong, N.T., Hong Kong
Tel: 852-2401-1200  Fax: 852-2401-3431
India
Microchip Technology Inc.
India Liaison Office
Divyasree Chambers
1 Floor, Wing A (A3/A4)
No. 11, O’Shaugnessey Road
Bangalore, 560 025, India
Tel: 91-80-2290061 Fax: 91-80-2290062

Japan
Microchip Technology Japan K.K.
Benex S-1 6F
3-18-20, Shinyokohama
Kohoku-Ku, Yokohama-shi
Kanagawa, 222-0033, Japan
Tel: 81-45-471- 6166  Fax: 81-45-471-6122
Korea
Microchip Technology Korea
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea 135-882
Tel: 82-2-554-7200  Fax: 82-2-558-5934
Singapore
Microchip Technology Singapore Pte Ltd.
200 Middle Road
#07-02 Prime Centre
Singapore, 188980
Tel:  65-334-8870  Fax: 65-334-8850
Taiwan
Microchip Technology Taiwan
11F-3, No. 207
Tung Hua North Road
Taipei, 105, Taiwan
Tel: 886-2-2717-7175  Fax: 886-2-2545-0139

EUROPE
Denmark
Microchip Technology Nordic ApS
Regus Business Centre
Lautrup hoj 1-3
Ballerup DK-2750 Denmark
Tel: 45 4420 9895 Fax: 45 4420 9910
France
Microchip Technology SARL
Parc d’Activite du Moulin de Massy
43 Rue du Saule Trapu
Batiment A - ler Etage
91300 Massy, France
Tel: 33-1-69-53-63-20  Fax: 33-1-69-30-90-79
Germany
Microchip Technology GmbH
Gustav-Heinemann Ring 125
D-81739 Munich, Germany
Tel: 49-89-627-144 0  Fax: 49-89-627-144-44
Italy
Microchip Technology SRL
Centro Direzionale Colleoni 
Palazzo Taurus 1 V. Le Colleoni 1
20041 Agrate Brianza
Milan, Italy 
Tel: 39-039-65791-1  Fax: 39-039-6899883
United Kingdom
Arizona Microchip Technology Ltd.
505 Eskdale Road
Winnersh Triangle
Wokingham 
Berkshire, England RG41 5TU
Tel: 44 118 921 5869 Fax: 44-118 921-5820

01/18/02

WORLDWIDE SALES AND SERVICE


	OVERVIEW
	Communication
	FIGURE 1: Communication with mcp3202 using lsb first format
	TABLE 1: Configuration Bits for the mcp3202

	Implementation
	Schematic
	Conclusion
	WORLDWIDE SALES AND SERVICE

