
 2000 Microchip Technology Inc. DS00694A-page 1

AN694

INTRODUCTION

This application note shows how to use the PIC16C774
microcontroller (MCU) in a ratiometric sensing applica-
tion. A block diagram of the application is shown in
Figure 1. The design takes advantage of the advanced
analog peripherals of the PIC16C774, including a
12-bit A/D converter and two on-chip voltage refer-
ences.

Other useful features of the microcontroller include a
9-bit addressable USART for serial communications
and Master Synchronous Serial Port (MSSP) that sup-
ports the I2C™ and SPI™ protocols.

FIGURE 1: BLOCK DIAGRAM FOR APPLICATION CIRCUIT

Authors: Steve Bowling
 Microchip Technology Inc.

EEPROM

RC6/TX

RC7/RX

RC4/SDA

RC3/SCL

RA2/VRL

RA0/AN0

RS-232

VDD

RA1/AN1TEMP
SENS.

PIC16C774

Instrumentation
Amp

2.048 V

Sensor

RA3/VRH4.096 V

LCD Display

6

RB4

RB5

Ratiometric Sensing Using the PIC16C774

AN694

DS00694A-page 2  2000 Microchip Technology Inc.

THEORY

Many types of sensors may be used in a ratiometric
sensing application, including those for measuring
force, acceleration, temperature, or position. A pres-
sure sensor has been used here due to its wide avail-
ability and low cost.

Pressure sensors are classified by how they measure
pressure. In general, there are three different types of
pressure measurements; absolute, gauge, and differ-
ential. An absolute pressure sensor has the rear of the
sensor diaphragm connected to a sealed cavity and is
referenced to a near perfect vacuum (0 psi). Because
of this, all measurements made with the sensor will
include the effects of the current atmospheric pressure.
In contrast, the rear cavity of the gauge pressure sen-
sor is vented to the atmosphere. Measurements made
with a gauge sensor are referenced to the current
ambient pressure conditions and the sensor will give a
reading of 0 psi when at rest. The differential pressure
sensor is a special variation of the gauge sensor. The
rear cavity of the differential pressure sensor is con-
nected to an inlet port so the pressure difference
between two points can be measured.

The pressure sensor chosen for this application is a
Lucas Novasensor type (NPC-1210-50G). This sensor
may be used for gauge pressure measurements up to
50 psi. The sensor is constructed using silicon
micro-machining techniques to implant piezoresistive
strain gauge elements in a Wheatstone bridge configu-
ration on a mechanical diaphragm. The resistance of
the piezoresistive elements changes when mechanical
stress is applied to the diaphragm. Pressure sensors
manufactured using silicon piezoresistive elements are

available from many manufacturers and are often
referred to as ‘solid-state’ or IC pressure sensors
because of the process used to manufacture them.

Piezoresistive elements are used in the pressure sen-
sor because of their high sensitivity to applied stress.
However, the elements are also very sensitive to varia-
tions in manufacturing process and temperature. An
uncompensated or ‘raw’ pressure sensor will have
large variations in its output offset and/or sensitivity.
The sensor may also exhibit offset and sensitivity vari-
ations that are a function of temperature. The offset
and sensitivity errors must be compensated using
hardware or software techniques. To simplify the
design process, internally compensated devices are
available that have a specified offset and span over a
given temperature range. The compensated sensor will
typically have requirements for the excitation source.
For example, many internally compensated sensors
must be driven with a constant current source to
achieve the offset, sensitivity and thermal accuracy
given in the specifications. It is always best to check the
sensor manufacturer’s literature for the specific sensor
requirements.

The piezoresistive elements of the pressure sensor are
connected to form a Wheatstone bridge measurement
circuit as shown in Figure 2. The four piezoresistive
elements are arranged on the diaphragm of the sensor
so two of the resistances will increase and the other
two will decrease for a given pressure input. An electri-
cal excitation (VEXC) must be applied to the bridge as
shown to produce an output voltage. The bridge pro-
duces an output voltage that is a function of the excita-
tion source and the variation in resistance of the
elements.

FIGURE 2: WHEATSTONE BRIDGE MEASUREMENT CIRCUIT

Excitation

Voltage

R(1+k)

R(1-k)R(1+k)

R(1-k)

V+

V-

 2000 Microchip Technology Inc. DS00694A-page 3

AN694

In general, a voltage source or current source may be
used to excite the bridge.

The variable k in Figure 2 is the change in resistance
normalized to a value of 1. Assuming the bridge excita-
tion source is a voltage, and applying the rules for volt-
age division, the differential output of the bridge is given
by:

EQUATION 1: DIFFERENTIAL OUTPUT

The factor, k, becomes the output sensitivity of the
bridge normalized to an excitation of 1 volt. Since the
output sensitivity of a Wheatstone bridge circuit is a
function of its excitation source, the source must be sta-
ble over time and temperature.

When an A/D converter is used to measure a bridge
sensor output, errors due to drift of the excitation
source can be eliminated by using the A/D converter
reference as the source of excitation for the sensor
bridge. This type of measurement is called ratiometric.
Figure 3 shows the basic schematic diagram for a rati-
ometric measurement.

The measurement result obtained with an A/D con-
verter is a comparison of input voltage to the A/D refer-
ence voltage. Specifically, the input voltage is divided
by the reference voltage to obtain the conversion result
and is given by:

EQUATION 2: CONVERSION RESULT

If the expression for the sensor output, VO, is substi-
tuted for VIN, the expression for the A/D result
becomes:

EQUATION 3: RATIOMETRIC A/D RESULT

This formula shows that the ratiometric measurement
result is only a function of the sensor gain and the
full-scale result of the A/D converter. The effects due to
drift of the excitation source have been eliminated.

FIGURE 3: RATIOMETRIC MEASUREMENT USING AN A/D CONVERTER

VO = V+ - V- =

R(1+k)

R(1+k) + R(1-k)

R(1+k) +

R(1-k)

R(1-k)
VEXC • ()()

This formula reduces to:

VO = VEXC • k

VIN
• FULL-SCALE()VREF

A/D RESULT =

k• VEXC • FULL-SCALE()
VREF

A/D RESULT =

A/D RESULT = k • FULL-SCALE

For a ratiometric measurement, VEXC = VREF;
therefore, the terms cancel and the expression
for the A/D result reduces to:

Excitation

Voltage
VREF+

VREF-

INInstrumentation
Amplifier

AN694

DS00694A-page 4  2000 Microchip Technology Inc.

The output of the pressure sensor is a small differential
voltage superimposed on a large common mode volt-
age. To provide a usable signal, the amplifier should
provide high differential gain with a high common mode
rejection ratio (CMRR). The amplifier should also have
a high input impedance to avoid loading the sensor.

The classic three op-amp instrumentation amplifier
topology shown in Figure 4 has these properties and is
a good choice to amplify the output of the pressure sen-
sor.

Assuming the third op-amp is configured for unity gain
as shown in Figure 4, the gain of the instrumentation
amplifier is determined by resistors RF and RG and is
given by:

EQUATION 4: AMPLIFIER GAIN

To allow bipolar measurements, an offset voltage can
be connected at the non-inverting input of the third
op-amp. This is especially useful in single-supply
designs.

Many semiconductor manufacturers offer complete
instrumentation amplifiers in a single IC package with
the topology shown in Figure 4. These devices offer the
advantages of reduced parts count and higher perfor-
mance due to precise component matching. For these
devices, the user typically only needs to provide the
external gain resistor to complete the circuit. Depend-
ing on the application, an instrumentation amplifier con-
structed of individual op-amps may still be desirable
because of reduced parts cost.

FIGURE 4: THREE OP-AMP INSTRUMENTATION AMPLIFIER

A = 1 + 2 •
RF

RG

-

+

-

+

-

+

RF

RF

RG

R

R

R

R

VOFS

VOUT

VIN-

VIN+

 2000 Microchip Technology Inc. DS00694A-page 5

AN694

PCB LAYOUT

The hardware for the sensor application must be imple-
mented so it is possible to get 12 noise-free bits of mea-
surement resolution. Since the application PCB must
carry both digital and analog signals, special consider-
ations must be made to reduce the effects of noise on
the A/D conversion results. High-frequency switching
noise generated by digital circuits will easily find its way
into the analog signal conditioning circuitry, corrupting
the measurement results. A well designed PCB should
minimize the effects of conducted noise and radiated
noise.

Conducted paths allow noise to propagate into sensi-
tive areas of the circuit through PCB traces and circuit
elements. Conducted noise paths can be controlled by
using proper decoupling and bypassing techniques. To
control conducted noise, the designer should ensure
that noise currents are given the lowest possible
impedance along the desired route back to the power
supply.

In contrast, a radiated noise path is produced when
noise is coupled into unwanted circuit areas by some
airborne means. These airborne paths are produced by
stray capacitances and resistances formed by the
physical orientation of circuit elements and PCB traces.

A good power supply is essential to minimize noise in
the analog circuits. The power for the application
should be provided by a linear supply. Although a
switching power supply has obvious benefits, the
switching noise present on the output negates the
advantages. Central ground and power nodes should
be established near the power supply on the PCB.

A ground plane is essential for noise reduction in the
analog signal conditioning circuit, because signals are
referenced to this ground. The ground plane has two
purposes. First, the ground plane gives the lowest
impedance possible back to the central ground point for
return currents. Without the ground plane, it is easy for
common mode noise voltages to be developed due to
the series resistance and inductance in the ground cir-
cuit traces. Secondly, the ground plane provides shield-
ing for sensitive circuits and PCB traces.

The analog ground plane should be separated from the
digital ground plane, if one is present, and the two
ground planes should only connect at the power sup-
ply. If a two-layer PCB construction is used for cost sav-
ings, one side of the PCB can be dedicated to a ground
plane. The ground plane should encompass the PCB
areas that contain the analog signal conditioning cir-
cuits and should have minimal interruptions due to sig-
nal traces.

If a digital ground plane is not implemented, a ‘star’
topology should be used to connect individual IC’s to
the central ground. Care should be taken not to con-
nect the grounds between individual IC’s, which could

form a ground loop. The digital ground traces should be
two to three times the width of signal traces to minimize
series resistance and inductance.

A power plane is not essential, particularly in applica-
tions that require 12 bits of accuracy or less. However,
special precautions do need to be taken. First, power
traces should be two to three times the width of signal
traces and a ‘star’ connection topology should be
implemented. Second, proper power supply decou-
pling techniques should be used. Separate analog and
digital supply busses should be established on the
PCB. These two busses should only connect at the
power supply. The analog power supply bus is decou-
pled from the main supply using a series 10Ω resistor
and two shunt capacitors. This decoupling circuit
ensures that noise currents induced on the digital sup-
ply bus will not be conducted into the analog supply.

Decoupling capacitors should be installed near the
power pin of all IC’s on the PCB. Two capacitors should
be used at each location — a larger electrolytic capac-
itor and a smaller ceramic capacitor. Typical application
values for these capacitors are 10 µF and 0.1 µF,
respectively. The smaller capacitor is installed closest
to the power supply pin and provides effective bypass-
ing at higher frequencies. The larger electrolytic capac-
itor is used for local energy storage.

Physical distance is one of the best methods for reduc-
ing the effects of radiated noise in a circuit. Conse-
quently, the analog circuits should be located away
from the MCU and other digital circuits on the PCB for
this application. The designer should also check the
layout to verify the orientation of sensitive analog signal
traces. In general, these traces should be kept as short
as possible. Long runs of analog signal traces parallel
to digital signal traces should be avoided. Stray capac-
itance that is a function of trace width and physical sep-
aration of the traces will couple digital signals into the
analog signal path.

HARDWARE

A schematic of the complete pressure measurement
circuit has been included in Appendix B. Separate ana-
log and digital power supply busses have been estab-
lished in the circuit. The PIC16C774 has separate
analog and digital supply pins that have been con-
nected to the appropriate supply bus. The PIC16C774
is operated at 4 MHz using a crystal. A 16 x 2 character
LCD module is connected to PORTD of the MCU. I/O
pin RE0 is used to control the LED backlight on the
LCD module. Two pushbuttons are connected to pins
RB4 and RB5 for data entry. A serial EEPROM is con-
nected to the MSSP module for storage of the calibra-
tion values.

The pressure sensor includes an internal resistor, RG,
used as the gain setting resistor of the instrumentation
amplifier. The purpose of the resistor is to normalize the

AN694

DS00694A-page 6  2000 Microchip Technology Inc.

full-scale output of the sensor/instrumentation amp
combination, so the same sensitivity may be main-
tained across a range of sensors.

Op-amp U3A (MCP602) is configured as a unity-gain
buffer for the 4.096 voltage reference output used as
the excitation source for the pressure sensor. The volt-
age reference output is decoupled from the input of the
op-amp using a resistor and two capacitors.

A constant voltage source is used to excite the sensor
in order to simplify the design. Because a voltage
source is used instead of a current source as recom-
mended by the manufacturer, the internal gain com-
pensation provided by the sensor is lost. However, the
benefits of internal offset compensation are still
achieved. The internal offset calibration is important
because the output offset of an uncompensated sensor
can easily be equal in magnitude to the total output
span. Sensor output offset can easily be corrected in
software, but without external compensation resistors
large sensor output offsets will reduce the total mea-
surement range by lowering the available headroom in
the amplifier stages.

Op-amps U2A, U2B and U3B (MCP602) form the
instrumentation amplifier. The internal gain resistor,
RG, is used in the feedback circuit to set the gain. Feed-
back resistors R2 and R3 are set to 100 kΩ. Resistor R4
is not used because of the internal sensor resistor, but
may be used if another type of sensor is installed.
Based on the specifications for the pressure sensor,
the output of U3 is approximately 2 volts for a +50 psi
input.

Jumper J1 allows a 2.048 volt offset to be applied to the
output of the instrumentation amplifier, if desired. The
offset voltage is generated by the RA2/VRL output of
the PIC16C774. The offset voltage biases the quies-
cent output of the instrumentation amplifier to the cen-
ter of the A/D scale, which permits negative pressure
(vacuum) measurements.

Resistor R8 and capacitor C5 form a single order
low-pass filter. The purpose of this filter is to remove
high-frequency noise generated in the sensor amplifier
circuit. Without the filter, this noise will be aliased into
the measurement results.

Temperature sensor U4 is included in the circuit for the
purpose of offset and gain compensation if an uncom-
pensated sensor is used in the design. The tempera-
ture sensor produces a voltage output of 10 mV/°C.
Since the voltage reference for the A/D converter is
4.096 volts, a resolution of 1 mV/bit is obtained. There-
fore, each LSb represents 0.1 °C in the conversion
result.

SOFTWARE

The software for this application was written in C for the
Hi-Tech PICC compiler. The compiled code uses
approximately 1800 words of program memory. The
routines for reading and writing the EEPROM and writ-
ing the LCD display are included in separate files and
linked to the final project. A complete listing of the
source code is provided in Appendix A.

Button entry is handled in the main program loop. The
design makes use of the PORTB interrupt-on-change
feature to detect when a button has been pressed.
When a keypress is detected, the value of PORTB is
stored in a temporary variable, RBTemp. A short delay
is invoked for button debouncing and then PORTB is
read again. If the debounce check is OK, the PORTB
value is checked to see what button has been pressed.
The action taken depends on the calibration mode of
the software.

Timer1 is set up to overflow at 10 millisecond intervals
and is used to time the A/D conversions and display
updates. An interrupt service routine (ISR) is used to
handle the Timer1 overflows. The ISR reloads Timer1,
clears the interrupt flag, and sets DispFlag = 1,
which tells the main program loop to do an A/D conver-
sion and update the display.

The software turns on both on-chip voltage references
and enables their output by writing to the REFCON reg-
ister. When the reference outputs are enabled, the
function of the RA2(VRL) or RA3(VRH) pins is overrid-
den and the pin becomes a voltage reference output.

A/D conversions are performed with the MCU in
SLEEP mode to minimize the effects of noise on the
conversion. The A/D converter must be configured to
use its own internal RC oscillator to perform conver-
sions in SLEEP. When using the RC oscillator, the A/D
converter waits one instruction cycle before the conver-
sion begins. This allows the time needed to execute the
SLEEP instruction. Global interrupts are disabled
before starting the conversion. When the ADIE bit is set
and global interrupts are disabled, the MCU will wake
up when the conversion is complete and continue exe-
cution at the next instruction. The ADIF flag is cleared
before global interrupts are reenabled, so an unex-
pected interrupt will not be generated.

A circular buffer is maintained in RAM and is used to
calculate a running average of the last 32 conversion
results. After each conversion, the contents of the
buffer are summed and shifted to the right by one bit,
producing a 16-bit integer result. The 16-bit offset cali-
bration value is added to this result and multiplied by
the 16-bit gain calibration value. The calibrated pres-
sure is contained in the upper 16 bits of the multiplica-
tion result. This value is converted to a formatted ASCII
string using the prestoa() function and sent to the
LCD display.

 2000 Microchip Technology Inc. DS00694A-page 7

AN694

The software has two calibration modes for performing
gain and offset corrections. If one of the calibration
modes is active (CalMode = 1 or CalMode = 2),
an indicator is written to the LCD module to inform the
user.

When the MCU is RESET, the calibration values stored
in the EEPROM are retrieved. After power-up, different
calibration modes may be invoked using the MCLR but-
ton. If the RB4 button is depressed and a MCLR Reset
is performed, the offset calibration mode is entered. If
the RB5 button is depressed and a MCLR Reset is per-
formed, the gain calibration mode is entered. An “OF”
or “GN” indicator is placed at the right side of the LCD
display to indicate that one of the calibration modes is
active. In both modes, the user can raise or lower the
calibration value using the RB4 and RB5 buttons. The
calibration values can be lowered or raised in small
increments by repeatedly pressing the RB4 or RB5 but-
tons, respectively. If either button is held continuously
for a period of time, the calibration value will begin to
change rapidly. Depending on the calibration mode, the
adjusted gain or offset value is stored in the EEPROM
by pressing the RB4 and RB5 buttons simultaneously.
The calibration indicator at the right side of the LCD dis-
play is turned off to indicate that the calibration value
has been stored and the program has returned to nor-
mal operating mode. Resetting the MCU without press-
ing RB4 or RB5 will exit any active calibration mode
and return to normal operation without saving the cali-
bration value. When the MCU is not in either of the cal-
ibration modes, pressing the RB4 button will toggle the
LCD backlight on or off.

CALIBRATION

The pressure sensor is calibrated by adjusting the gain
and offset values. The offset calibration is adjusted with
no input to the sensor and should be adjusted so the
display indicates 0.00 psi. The gain calibration is
adjusted with a known maximum input applied to the
sensor and should be adjusted using a stable pressure
reference source. The gain calibration is adjusted so
the display indicates the known value of the reference.

REFERENCES FOR FURTHER
READING

Lucas Novasensor Website:
www.novasensor.com

Microchip Technology Inc.

• AN682 – “Using Single Supply Operational Ampli-
fiers in Embedded Systems”

• AN688 – “Layout Tips for 12-bit A/D Converter
Applications”

• AN699 – “Anti-aliasing, Analog Filters for Data
Acquisition Systems”

 2000 Microchip Technology Inc. DS00694A-page 8

AN694

Software License Agreement

The software supplied herewith by Microchip Technology Incorporated (the “Company”) for its PICmicro® Microcontroller is
intended and supplied to you, the Company’s customer, for use solely and exclusively on Microchip PICmicro Microcontroller prod-
ucts.

The software is owned by the Company and/or its supplier, and is protected under applicable copyright laws. All rights are reserved.
Any use in violation of the foregoing restrictions may subject the user to criminal sanctions under applicable laws, as well as to civil
liability for the breach of the terms and conditions of this license.

THIS SOFTWARE IS PROVIDED IN AN “AS IS” CONDITION. NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATU-
TORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.

APPENDIX A: SOURCE CODE

//***
//* CPRES.C *
//***
//* *
//* Written by: Stephen Bowling *
//* Sr. Applications Engr. *
//* Microchip Technology Inc. *
//* Date: 6 October 1999 *
//* Revision: 1.03 *
//***
//* *
//* This program demonstrates a ratiometric pressure measurement *
//* using the PIC16C774. Offset and gain calibration values are *
//* stored in EEPROM memory. *
//***

#include <pic.h>
#include<stdio.h>
#include "16lcd.h" // Contains LCD functions.
#include "16i2c.h" // Contains I2C functions.

char i,
CalMode,
RBTemp,
DispFlag,
ButtonDly;

char data[8];

unsigned int TIMER1 @ &TMR1L;

unionINTVAL // Union to handle 16-bit values
{ // as 1 integer or two bytes.
unsigned int ui;
int i;
char b[2];
};

unionLNGVAL // Union to handle 32-bit values
{ // as 1 long, 2 integers, or
long l; // 4 bytes.
int i[2];
char b[4];
};

union INTVAL Gain, Offset;
union LNGVAL Pressure, TmpPressure;

bank1 unsigned char ADPtr;

 2000 Microchip Technology Inc. DS00694A-page 9

AN694

bank1 int ADTable[32];

void interrupt isr_handler(void); // Does measurement timing.
int ConvADC(void);
void DisplayBanner(void);
void prestoa(int value, char *string);

void main(void)
{
InitLCD(); // Initialize LCD display.
SSPADD = 9; // Setup MSSP for master I2C
SSPSTAT = 0; // "
SSPCON2 = 0; // "
SSPCON = 0x28; // "
ADCON1 = 0xCD; // Setup A/D converter
ADCON0 = 0xc1; //
REFCON = 0xF0; // Setup VREFs

RBPU = 0; // Setup PORTB I/O
PORTB = PORTB;

PORTC = 0; // Setup PORTC I/O
TRISC = 0xdf;

// Setup PORTE I/O
PORTE = 0; // RE0 controls LED backlight.
TRISE = 0x06; // 1 = off, 0 = on

CalMode = 0; // Variable indicates offset or gain calibration
DispFlag = 0; // Flag tells main loop to do A/D conversion
ButtonDly = 0; // Stores time button has been pressed
ADPtr = 0; // Pointer to A/D conversion result buffer

Offset.b[0] = EERandomRead(0xA0, 0);
Offset.b[1] = EERandomRead(0xA0, 1);
Gain.b[0] = EERandomRead(0xA0, 2); // Get calibration values from
Gain.b[1] = EERandomRead(0xA0, 3); // EEPROM

TMR1H = 0xd8; // Load Timer1 overflow value
TMR1L = 0xf0;
TMR1IF = 0; // Clear Timer1 interrupt flag
TMR1IE = 1; // Enable Timer1 interrupts
T1CON = 1; // Turn on Timer1
ADIF = 0; // Clear A/D interrupt flag
ADIE = 1; // Enable A/D interrupts
PEIE = 1; // Enable peripheral interrupts
GIE = 1; // Enable all interrupts

if(!POR) // If this was a Power-on Reset:
{
POR = 1; // Reset bit
DisplayBanner(); // Display intro message
}

else
{ // If this wasn’t a Power-on Reset:
if(!RB4 && !RB5) // Both buttons pressed: restore default

{ // gain and offset values
Offset.i = -32371;
Gain.i = 8323;
EEAckPolling(0xA0);
EEByteWrite(0xA0, 0, Offset.b[0]);
EEAckPolling(0xA0);
EEByteWrite(0xA0, 1, Offset.b[1]);
EEAckPolling(0xA0);
EEAckPolling(0xA0);
EEByteWrite(0xA0, 2, Gain.b[0]);

AN694

DS00694A-page 10  2000 Microchip Technology Inc.

EEAckPolling(0xA0);
EEByteWrite(0xA0, 3, Gain.b[1]);
EEAckPolling(0xA0);

}
else // RB4: enter offset calibration mode
if(!RB4) CalMode = 1;
else
if(!RB5) CalMode = 2; // RB5: enter gain calibration mode
else;
}

while(1)
{
if(RBIF)

{
RBTemp = PORTB & 0xf0; // Get PORTB values.
for(i=0;i<20;i++); // Delay a little for debounce.

if(!(RBTemp^(PORTB & 0xf0))) // Process input if debounce is OK.
{
RBTemp ^= 0xf0;
if(!RBTemp) ButtonDly = 0; // Clear button delay if release
else // is detected.
if(RBTemp == 0x10) // If RB4 button was pressed.

{
if(CalMode == 0) // If not in calibration mode:

{
if(RE0) RE0 = 0; // Turn on LCD backlight.
else RE0 = 1; // Turn off LCD backlight.
}

if(CalMode == 1) // If in offset calibration mode.
Offset.i += 4; // Increment offset value.

else
if(CalMode == 2) // Increment gain value.

Gain.i += 2; // If in gain calibration mode
}

else
if(RBTemp == 0x20) // If RB5 button was pressed.

{
if(CalMode == 1) // If in offset calibration mode.

Offset.i -= 4; // Decrement offset value.

else
if(CalMode == 2) // If in gain calibration mode.

Gain.i -= 2; // Decrement gain value.
}

else
if(RBTemp == 0x30) // If both buttons pressed:

{
if(CalMode == 1) // Write new offset to EEPROM.

{
EEAckPolling(0xA0);
EEByteWrite(0xA0, 0, Offset.b[0]);
EEAckPolling(0xA0);
EEByteWrite(0xA0, 1, Offset.b[1]);
EEAckPolling(0xA0);

// Read back values for error checking.
Offset.b[0] = EERandomRead(0xA0, 0);
Offset.b[1] = EERandomRead(0xA0, 1);
CalMode = 0;
}

 2000 Microchip Technology Inc. DS00694A-page 11

AN694

else
if(CalMode == 2) // Write new gain to EEPROM

{
EEAckPolling(0xA0);
EEByteWrite(0xA0, 2, Gain.b[0]);
EEAckPolling(0xA0);
EEByteWrite(0xA0, 3, Gain.b[1]);
EEAckPolling(0xA0);

// Read back values for error checking.
Gain.b[0] = EERandomRead(0xA0, 2);
Gain.b[1] = EERandomRead(0xA0, 3);
CalMode = 0;
}

}
}

RBIF = 0; // Clear interrupt flag.
}

if(DispFlag)
{
if(RBTemp)

{
if(ButtonDly < 255) ButtonDly++; // Delay value is cleared whenever
else // a button is released. This makes
if(RBTemp == 0x10) // data value increment rapidly

{ // after button is held for a while.
if(CalMode == 1)

Offset.i += 4;

else
if(CalMode == 2) // Increment gain value.

Gain.i += 2; // Set flag for EEPROM write in main
}

else
if(RBTemp == 0x20) // If RB5 button still pressed.

{
if(CalMode == 1)

Offset.i -= 4; // Decrement offset value.

else
if(CalMode == 2)

Gain.i -= 2; // Decrement gain value.
}

}

ADPtr++; // Increment pointer to result buffer
if(ADPtr == 32) ADPtr = 0; // If at the end of the buffer, set to 0
ADTable[ADPtr] = ConvADC(); // Do a conversion and store in buffer

TmpPressure.l = 0;
for(i = 0;i < 32;i++) // Average last 32 A/D conversions stored
TmpPressure.l += (long)ADTable[i]; // in the buffer
TmpPressure.l >>= 1; // Shift by one to get 16 bit result
TmpPressure.i[0] += Offset.i; // Add offset to result.
Pressure.l =
(long)TmpPressure.i[0] * (long)Gain.i;

// Compute gain.

prestoa(Pressure.i[1], data); // Convert pressure
SendCmd(0x80); // reading to ASCII string.
putsLCD(data);
putsLCD(" PSI");

AN694

DS00694A-page 12  2000 Microchip Technology Inc.

SendCmd(0x8e);
if(CalMode == 0)

{
putsLCD(" "); // Put calibration indicator

// on LCD if depending on mode.
}

else
if(CalMode == 1)

{
putsLCD("OF");

}

else
if(CalMode == 2)

{
putsLCD("GN");
}

else;

DispFlag = 0; // Clear display flag.
}

}
}

//---
// Timer1 times the A/D conversions and display updates.
// A flag is set to signal the main program loop.
//---

void interrupt isr_handler(void) // Interrupt service routine
{
if(TMR1IF) // Timer1 set to overflow

{ // every 10 msec
DispFlag = 1; // Signal main loop to display
TIMER1 += 55536;
TMR1IF = 0;
}

}

//---
// This routine does the following steps for an A/D conversion:
//
// -global interrupts are disabled
// -conversion started
// -MCU is put to SLEEP--will wake when conversion is complete
// -Operation continues at next instruction when MCU wakes
// since global interrupts are disabled.
// -clear A/D interrupt flag and reenable global interrupts
//---

int ConvADC(void)
{
union INTVAL ADCRes;

GIE = 0; // Disable global interrupts.
ADGO = 1; // Start conversion.

#asm
sleep
nop
#endasm

 2000 Microchip Technology Inc. DS00694A-page 13

AN694

ADIF = 0; // Clear A/D interrupt flag.
GIE = 1; // Enable global interrupts.

ADCRes.b[0] = ADRESL;
ADCRes.b[1] = ADRESH;

return ADCRes.i; // Return 12-bit result.
}

//---
// This routine displays intro message and also displays calibration
// values stored in the EEPROM
//---

void DisplayBanner(void)
{
putsLCD("Microchip"); // Display intro message.
SendCmd(0xa8);
putsLCD("Technology");
i = 0;
while(i < 255) // Pause for a little while

{
if(DispFlag)

{
i++;
DispFlag = 0;
}

}
SendCmd(0x80);
putsLCD("PIC16C774"); // Display next message.
SendCmd(0xa8);
putsLCD("PSI Monitor 1.03");
i = 0;
while(i < 255) // Pause for a little while

{
if(DispFlag)

{
i++;
DispFlag = 0;
}

}
SendCmd(0x80); // Display offset and gain values
prestoa(Offset.i, data);
putsLCD(data);
putsLCD(" ");
prestoa(Gain.i, data);
SendCmd(0xa8);
putsLCD(data);
putsLCD(" ");
i = 0;
while(i < 255) // Pause for a little while

{
if(DispFlag)

{
i++;
DispFlag = 0;
}

}
clrLCD();
i = 0;
}

AN694

DS00694A-page 14  2000 Microchip Technology Inc.

//---
// Converts pressure to an ASCII string with the format ’+xxx.xx’
//---

void prestoa(int value, char *string)
{

unsigned char flag; //
// Leading ’0’s are removed.

flag = 0;
if(value < 0) // If negative
{ // 2’s complement the number

value = ~value;
value++;
*string = ’-’; // Store a minus sign in 1st character

}
else *string = ’+’;
string++; // Increment string pointer

*string = 0x30; // Start with ascii ’0’
while(value > 9999) // Check to see how many 10000s in number
{

value -= 10000; // Subtract 10000 from number
*string += 1; // Increment the 10000s character in

// the string
flag++;

}
if(!flag)

*string = ’ ’; // Remove leading ’0’
string++; // Increment string pointer

*string = 0x30; // Start with ascii ’0’
while(value > 999) // Check to see how many 1000s in number
{

value -= 1000; // Subtract 1000 from number
*string += 1; // Increment the 1000s character in

// the string
flag++;

}
if(!flag) //

*string = ’ ’; // Remove leading ’0’
string++; // Increment the string pointer

*string = 0x30; // Start with ascii ’0’
while(value > 99) // Check to see how many 100s in number
{

value -= 100; // Subtract 100 from number
*string += 1; // Increment the 100s character in

// the string
flag++;

}

string++; // Increment the string pointer
*string = ’.’; // Add in the decimal place
string++; // Increment the string pointer

*string = 0x30; // Start with ascii ’0’
while(value > 0x09) // Check to see how many 10s in number
{

value -= 10; // Subtract 10 from number
*string += 1; // Increment the 10s character in

// the string
flag++;

}
string++; // Increment the string pointer

 2000 Microchip Technology Inc. DS00694A-page 15

AN694

*string = 0x30; // Start with ascii ’0’
*string +=
(char)(value&0x00ff); // Add the remainder to the number
string++; // Increment the string pointer
*string = 0; // Add the null character

}

AN694

DS00694A-page 16  2000 Microchip Technology Inc.

//***
//* 16lcd.c *
//***
// *
// This file contains the functions necessary to communicate with *
// a Hitachi compatible LCD display. *
// The functions are written for the HiTech PICC compiler. *
// The display is used in 4-bit mode and 6 I/O lines are used *
// for communication. *
// To save I/O lines, these functions do not check the display’s *
// busy flag. The R/W line on the display is tied low. *
//***

#include <pic.h>
#include "16lcd.h"

// Defines for I/O ports that provide LCD data & control
// The lower 4 bits of the port are used for data lines

#defineLCD_DATAPORTD
#defineLCD_CNTLTRISD

// Defines for I/O pins that provide LCD control

volatile bit LCD_RS @ (unsigned)&PORTD*8 +5;
volatile bit LCD_E @ (unsigned)&PORTD*8 +4;

void InitLCD(void)
{
LCD_DATA = 0;
LCD_CNTL = 0xC0;

SendCmd(0x2c);
LongDelay();
SendCmd(0x2c);
LongDelay();
SendCmd(0x2c);
LongDelay();
SendCmd(0x0C);
SendCmd(0x06);
SendCmd(0x80);

clrLCD();
}

//***
//*putcLCD() - Sends character to LCD *
//*This routine splits the character into the upper and lower *
//*nibbles and sends them to the LCD, upper nibble first. *
//***

void putcLCD(char lcdbyte)
{
LCD_DATA = lcdbyte >> 4;
LCD_RS = 1;
LCD_E= 1;
LCD_E = 0;
LCD_DATA = lcdbyte &= 0x0f;
LCD_RS = 1;
LCD_E= 1;
LCD_E = 0;
Delay();
}

 2000 Microchip Technology Inc. DS00694A-page 17

AN694

//***
//* SendCmd() - Sends command to LCD *
//* This routine splits the command into the upper and lower *
//* nibbles and sends them to the LCD, upper nibble first. *
//***

void SendCmd(char lcdbyte)
{
LCD_DATA = lcdbyte >> 4;
LCD_E= 1;
LCD_E = 0;
LCD_DATA = lcdbyte &= 0x0f;
LCD_E= 1;
LCD_E = 0;
Delay();
}

//***
//* clrLCD - Clear the contents of the LCD *
//***

void clrLCD(void)
{
SendCmd(0x01);
}

/**
* Function Name: putsLCD *
* Return Value: void *
* Parameters: buffer: pointer to string *
* Description: This routine writes a string of bytes to the *
* Hitachi HD44780 LCD controller. *
**/

void putsLCD(const char *buffer)
{

do
{

putcLCD(*buffer); // Write character to LCD
buffer++;

}while(*buffer);
return;

}

//***
//* Delay(), LongDelay() - Generic LCD delays *
//* Since the microcontroller can not read the busy flag of the *
//* LCD, a specific delay needs to be executed between writes to *
//* the LCD. *
//***

void Delay(void)
{
char i;
for(i=0;i < 5;i++);
}

void LongDelay(void)
{
int i;

for(i=0;i < 0x400;i++);
}

AN694

DS00694A-page 18  2000 Microchip Technology Inc.

//***
//* 16i2c.c *
//***
// *
// This file contains the functions necessary to communicate with *
// a 24C01 serial EEPROM connected to the MSSP module of a 16CXXX *
// device. The functions are written for the HiTech PICC compiler.*
//***

#include <pic.h>
#include "16i2c.h" // contains the prototypes for the

// function calls.
void Nop(void)
{
return;
}

unsigned char EEByteWrite(unsigned char control,
unsigned char address, unsigned char data)

{
 IdleI2C(); // ensure module is idle
 SEN = 1; // initiate START condition
 Nop(); // 1Tcy required before test can be made
 if (BCLIF) // test for bus collision
 {
 return (-1); // return with Bus Collision error
 }
 else // start condition successful
 {

IdleI2C(); // ensure module is idle
WriteI2C(control); // write byte
IdleI2C(); // ensure module is idle

if (!AKSTAT) // test for ACK condition received
{
 WriteI2C(address); // write byte - word address location
 IdleI2C(); // ensure module is idle

 if (!AKSTAT) // test for ACK condition received
 {
 WriteI2C(data); // data byte to be written
 IdleI2C(); // ensure module is idle
 }
}

 else
 {
 return (-2); // return with Not Ack error condition
 }
 }

 IdleI2C(); // ensure module is idle
 PEN = 1; // send STOP condition
 Nop(); // 1Tcy required before test can be made
 if (BCLIF) // test for bus collision
 {
 return (-1); // return with BUS Collision error
 }
 return (0); // return with no error
}

 2000 Microchip Technology Inc. DS00694A-page 19

AN694

char EERandomRead(unsigned char control, unsigned char address)
{
 IdleI2C(); // ensure module is idle
 SEN = 1; // initiate START condition
 Nop(); // 1Tcy required before test can be made
 if (BCLIF) // test for bus collision
 {
 return (-1); // return with Bus Collision error
 }
 else
 {
 IdleI2C(); // ensure module is idle
 WriteI2C(control); // WRITE control byte - R/W bit should be 0
 IdleI2C(); // ensure module is idle

 if (!AKSTAT) // test for ACK condition received
 {
 WriteI2C(address); // WRITE word address for EEPROM
 IdleI2C(); // ensure module is idle

 if (!AKSTAT) // test for ACK condition received
 {
 RSEN = 1;
 Nop(); // 1Tcy required before test can be made
 if (BCLIF) // test for bus collision
 {
 return (-1); // return with Bus Collision error
 }

 IdleI2C(); // ensure module is idle
 WriteI2C(control+1); // control byte - R/W bit should be 1 for read
 IdleI2C(); // ensure module is idle

 if (!AKSTAT) // test for ACK condition received
 {
 ReadI2C(); // initiate read of 1 byte

 IdleI2C(); // ensure module is idle
 AKDT = 1; // send ACK condition

 AKEN = 1;
 IdleI2C(); // ensure module is idle
 PEN = 1; // send STOP condition
 Nop(); // 1Tcy required before test can be made
 if (BCLIF) // test for bus collision
 {
 return (-1); // return with Bus Collision error
 }
 }
 else
 {
 return (-2); // return with Not Ack error
 }

 }
 else
 {
 return (-2); // return with Not Ack error
 }
 }
 else
 {
 return (-2); // return with Not Ack error
 }
 }
 return (SSPBUF); // return with data
}

AN694

DS00694A-page 20  2000 Microchip Technology Inc.

char WriteI2C(unsigned char data_out)
{
 SSPBUF = data_out; // write single byte to SSPBUF
 if (WCOL) // test if write collision occurred
 return (-1); // if WCOL is set return negative #
 else
 {
 while(STAT_BF); //
 return (0); // if WCOL is not set return postive #
 }
}

char EEAckPolling(unsigned char control)
{
 IdleI2C(); // ensure module is idle
 SEN = 1; // initiate START condition
 Nop(); // 1Tcy required before test can be made
 if (BCLIF) // test for bus collision
 {
 return (-1); // return with Bus Collision error
 }
 else
 {
 IdleI2C(); // ensure module is idle
 WriteI2C(control); // write byte - R/W bit should be 0
 IdleI2C(); // ensure module is idle

 while (AKSTAT) // test for ACK condition received
 {
 RSEN = 1; // initiate Restart condition
 Nop(); // 1Tcy required before test can be made
 if (BCLIF) // test for bus collision
 {
 return (-1); // return with Bus Collision error
 }
 IdleI2C(); // ensure module is idle
 WriteI2C(control); // write byte - R/W bit should be 0
 IdleI2C(); // ensure module is idle
 };
 }

 PEN = 1; // send STOP condition
 Nop(); // 1Tcy required before test can be made
 if (BCLIF) // test for bus collision
 {
 return (-1); // return with Bus Collision error
 }
 return (0); // return with no error
}

char ReadI2C(void)
{
 RCEN = 1; // enable master for 1 byte reception
 while (STAT_BF); // wait until byte received
 return(SSPBUF); // return with read byte
}

void IdleI2C(void)
{
 while ((SSPCON2 & 0x1F) | STAT_RW)
 continue;
}

 2000 Microchip Technology Inc. DS00694A-page 21

AN694

// LCD and EEPROM Function Prototypes --

void InitLCD(void);
void putcLCD(char lcdbyte);
void SendCmd(char lcdbyte);
void clrLCD(void);
void putsLCD(const char *buffer);
void Delay(void);
void LongDelay(void);

unsigned char EEByteWrite(unsigned char control,
unsigned char address, unsigned char data);

char EERandomRead(unsigned char control, unsigned char address);
char EEAckPolling(unsigned char control);
char WriteI2C(unsigned char data_out);
char ReadI2C(void);
void IdleI2C(void);
void Nop(void);

AN694

DS00694A-page 22  2000 Microchip Technology Inc.

APPENDIX B: SCHEMATICS

FIGURE B-1: PRESSURE MONITOR SCHEMATIC DIAGRAM (PAGE 1 OF 3)

4MHz

Y1

31
VSS

32
VDD

11
AVDD

1
MCLR

2
RA0

3
RA1

4
RA2

5
RA3

6
RA4

7
RA5

33
RB0

34
RB1

35
RB2

36
RB3

37
RB4

38
RB5

39
RB6

40
RB7

12
AVSS

13
OSC1

14
OSC2

15
RC0

16
RC1

17
RC2

18
RC3

23
RC4

24
RC5

25
RC6

26
RC7

19
RD0

20
RD1

21
RD2

22
RD3

27
RD4

28
RD5

29
RD6

30
RD7

10
RE2

9
RE1

8
RE0

U1

PIC16C774

4

32

1
S6

C7

22pF

C9

22pF

C18

.1µF

AVDD

C19

.1µF

C28

.1µF

4.7k
R38

+5V

+5V

RB5

RB4

RA3

RA0

RA1

RA2

RC2

SDA

SCL

RD2

RD1

RD0

RD4

RD5

RD3

RE2

RE0

RE1

VBAT

3
OUT

1
IN

VR1

LM340T-5.0CR1

1
3
2

J2

DJ005B

C15

.1µF

10

R1
AVDD

.1µF

C32C8

220µF

C1

10µF
.1µF

C33

.1µF

C34

+5V

9-15 Volts
AC or DC
Input

COM
2

 2000 Microchip Technology Inc. DS00694A-page 23

AN694

FIGURE B-2: PRESSURE MONITOR SCHEMATIC DIAGRAM (PAGE 2 OF 3)

4

32

1

S10

4

32

1

S9

RB5

RB4

+5V 5
SDA

1
A0

2
A1

3
A2

4
GND

7
WP

6
SCL

8
VCC

U5

24LC01BD

R33

4.7k

+5V

C12

.1µF

SCL

4.7k

R32

SDA

+5V

4.7k

R43

6
R/S

19
VSS

5
E

18
VCC

16
VEE

15
R/W

14
DB4

13
DB5

12
DB6

11
DB7

17LED

LCD_SIMM

LCD1

R42

47

RD5

+5V

RD4

RD0

2

1

3
Q1

2N4403

470

R20
RE0

+5V

RD1

RD2

RD3

AN694

DS00694A-page 24  2000 Microchip Technology Inc.

FIGURE B-3: PRESSURE MONITOR SCHEMATIC DIAGRAM (PAGE 3 OF 3)

(2.048V)

(4.096V)

C4

10µF

10

R18

5 +

6 -

7

U3:B

10k, 1%

R10

3 1

5

6

4

2

NPC-1210

3
+

2
-

1

U2:A
MCP_602

5 +

6 -

7

U2:B

1
2
3

J1

SIP_3

100k, 1%

R2

100k, 1%

R3

O.C.

R4

10k, 1%

R6

10k, 1%

R5

3+

2-

1

U3:AMCP_602

C37

.1µF

AVDD

.1µF

C40

C38

.1µF
AVDD

1k, 1%

R8

RA2

10k, 1%

R7

C5

10µF

RA0

RA3

1 VCC
2VOUT

3
GND

U4

TC03

RA1AVDD

 2000 Microchip Technology Inc. DS00694A-page 25

AN694

 2002 Microchip Technology Inc.

Information contained in this publication regarding device
applications and the like is intended through suggestion only
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
No representation or warranty is given and no liability is
assumed by Microchip Technology Incorporated with respect
to the accuracy or use of such information, or infringement of
patents or other intellectual property rights arising from such
use or otherwise. Use of Microchip’s products as critical com-
ponents in life support systems is not authorized except with
express written approval by Microchip. No licenses are con-
veyed, implicitly or otherwise, under any intellectual property
rights.

Trademarks

The Microchip name and logo, the Microchip logo, FilterLab,
KEELOQ, microID, MPLAB, PIC, PICmicro, PICMASTER,
PICSTART, PRO MATE, SEEVAL and The Embedded Control
Solutions Company are registered trademarks of Microchip Tech-
nology Incorporated in the U.S.A. and other countries.

dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB,
In-Circuit Serial Programming, ICSP, ICEPIC, microPort,
Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM,
MXDEV, PICC, PICDEM, PICDEM.net, rfPIC, Select Mode
and Total Endurance are trademarks of Microchip Technology
Incorporated in the U.S.A.

Serialized Quick Turn Programming (SQTP) is a service mark
of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2002, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

 Printed on recycled paper.

Microchip received QS-9000 quality system
certification for its worldwide headquarters,
design and wafer fabrication facilities in
Chandler and Tempe, Arizona in July 1999. The
Company’s quality system processes and
procedures are QS-9000 compliant for its
PICmicro® 8-bit MCUs, KEELOQ® code hopping
devices, Serial EEPROMs and microperipheral
products. In addition, Microchip’s quality
system for the design and manufacture of
development systems is ISO 9001 certified.

Note the following details of the code protection feature on PICmicro® MCUs.

• The PICmicro family meets the specifications contained in the Microchip Data Sheet.
• Microchip believes that its family of PICmicro microcontrollers is one of the most secure products of its kind on the market today,

when used in the intended manner and under normal conditions.
• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowl-

edge, require using the PICmicro microcontroller in a manner outside the operating specifications contained in the data sheet.
The person doing so may be engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.
• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not

mean that we are guaranteeing the product as “unbreakable”.
• Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of

our product.

If you have any further questions about this matter, please contact the local sales office nearest to you.

 2002 Microchip Technology Inc.

M
AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200 Fax: 480-792-7277
Technical Support: 480-792-7627
Web Address: http://www.microchip.com
Rocky Mountain
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7966 Fax: 480-792-7456

Atlanta
500 Sugar Mill Road, Suite 200B
Atlanta, GA 30350
Tel: 770-640-0034 Fax: 770-640-0307
Boston
2 Lan Drive, Suite 120
Westford, MA 01886
Tel: 978-692-3848 Fax: 978-692-3821
Chicago
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071 Fax: 630-285-0075
Dallas
4570 Westgrove Drive, Suite 160
Addison, TX 75001
Tel: 972-818-7423 Fax: 972-818-2924
Detroit
Tri-Atria Office Building
32255 Northwestern Highway, Suite 190
Farmington Hills, MI 48334
Tel: 248-538-2250 Fax: 248-538-2260
Kokomo
2767 S. Albright Road
Kokomo, Indiana 46902
Tel: 765-864-8360 Fax: 765-864-8387
Los Angeles
18201 Von Karman, Suite 1090
Irvine, CA 92612
Tel: 949-263-1888 Fax: 949-263-1338
New York
150 Motor Parkway, Suite 202
Hauppauge, NY 11788
Tel: 631-273-5305 Fax: 631-273-5335
San Jose
Microchip Technology Inc.
2107 North First Street, Suite 590
San Jose, CA 95131
Tel: 408-436-7950 Fax: 408-436-7955
Toronto
6285 Northam Drive, Suite 108
Mississauga, Ontario L4V 1X5, Canada
Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC
Australia
Microchip Technology Australia Pty Ltd
Suite 22, 41 Rawson Street
Epping 2121, NSW
Australia
Tel: 61-2-9868-6733 Fax: 61-2-9868-6755
China - Beijing
Microchip Technology Consulting (Shanghai)
Co., Ltd., Beijing Liaison Office
Unit 915
Bei Hai Wan Tai Bldg.
No. 6 Chaoyangmen Beidajie
Beijing, 100027, No. China
Tel: 86-10-85282100 Fax: 86-10-85282104
China - Chengdu
Microchip Technology Consulting (Shanghai)
Co., Ltd., Chengdu Liaison Office
Rm. 2401, 24th Floor,
Ming Xing Financial Tower
No. 88 TIDU Street
Chengdu 610016, China
Tel: 86-28-6766200 Fax: 86-28-6766599
China - Fuzhou
Microchip Technology Consulting (Shanghai)
Co., Ltd., Fuzhou Liaison Office
Unit 28F, World Trade Plaza
No. 71 Wusi Road
Fuzhou 350001, China
Tel: 86-591-7503506 Fax: 86-591-7503521
China - Shanghai
Microchip Technology Consulting (Shanghai)
Co., Ltd.
Room 701, Bldg. B
Far East International Plaza
No. 317 Xian Xia Road
Shanghai, 200051
Tel: 86-21-6275-5700 Fax: 86-21-6275-5060
China - Shenzhen
Microchip Technology Consulting (Shanghai)
Co., Ltd., Shenzhen Liaison Office
Rm. 1315, 13/F, Shenzhen Kerry Centre,
Renminnan Lu
Shenzhen 518001, China
Tel: 86-755-2350361 Fax: 86-755-2366086
Hong Kong
Microchip Technology Hongkong Ltd.
Unit 901-6, Tower 2, Metroplaza
223 Hing Fong Road
Kwai Fong, N.T., Hong Kong
Tel: 852-2401-1200 Fax: 852-2401-3431
India
Microchip Technology Inc.
India Liaison Office
Divyasree Chambers
1 Floor, Wing A (A3/A4)
No. 11, O’Shaugnessey Road
Bangalore, 560 025, India
Tel: 91-80-2290061 Fax: 91-80-2290062

Japan
Microchip Technology Japan K.K.
Benex S-1 6F
3-18-20, Shinyokohama
Kohoku-Ku, Yokohama-shi
Kanagawa, 222-0033, Japan
Tel: 81-45-471- 6166 Fax: 81-45-471-6122
Korea
Microchip Technology Korea
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea 135-882
Tel: 82-2-554-7200 Fax: 82-2-558-5934
Singapore
Microchip Technology Singapore Pte Ltd.
200 Middle Road
#07-02 Prime Centre
Singapore, 188980
Tel: 65-334-8870 Fax: 65-334-8850
Taiwan
Microchip Technology Taiwan
11F-3, No. 207
Tung Hua North Road
Taipei, 105, Taiwan
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE
Denmark
Microchip Technology Nordic ApS
Regus Business Centre
Lautrup hoj 1-3
Ballerup DK-2750 Denmark
Tel: 45 4420 9895 Fax: 45 4420 9910
France
Microchip Technology SARL
Parc d’Activite du Moulin de Massy
43 Rue du Saule Trapu
Batiment A - ler Etage
91300 Massy, France
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79
Germany
Microchip Technology GmbH
Gustav-Heinemann Ring 125
D-81739 Munich, Germany
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44
Italy
Microchip Technology SRL
Centro Direzionale Colleoni
Palazzo Taurus 1 V. Le Colleoni 1
20041 Agrate Brianza
Milan, Italy
Tel: 39-039-65791-1 Fax: 39-039-6899883
United Kingdom
Arizona Microchip Technology Ltd.
505 Eskdale Road
Winnersh Triangle
Wokingham
Berkshire, England RG41 5TU
Tel: 44 118 921 5869 Fax: 44-118 921-5820

01/18/02

WORLDWIDE SALES AND SERVICE

