

# AN675

### **KEELOQ** HCS410 Transponder Decoder Using a PIC16C56

Authors: Vivien Delport, Mike Sonnabend Microchip Technology Inc.

### INTRODUCTION

This document describes a secure transponder system. The system is suitable for use in security applications such as cars, motor bikes, and scooters (two-wheelers). Microchip's secure HCS410 KEELOQ<sup>®</sup> code hopping transponder is used. The decoder is implemented on a Microchip PIC16C56 microcontroller. The software can be used to implement a stand-alone decoder or can be integrated into a security system. The maximum operating range of this particular application circuit is 25 millimeters (one inch).

#### **KEY FEATURES**

- Stand-alone transponder decoder
- Compatible with KEELOQ HCS410 transponder
- Twelve learnable transponders
- Two function outputs
- XT oscillator

#### **TYPICAL APPLICATIONS**

- Automotive/scooter/motorcycle
- Access control
- Gate and garage door openers
- · Identity tokens

#### **PIN FUNCTIONS**



KEELOQ is a registered trademark of Microchip Technology, Inc.

Microchip's Secure Data Products are covered by some or all of the following patents: Code hopping encoder patents issued in Europe, U.S.A., and R.S.A. — U.S.A.: 5,517,187; Europe: 0459781; R.S.A.: ZA93/4726 Secure learning patents issued in the U.S.A. and R.S.A. — U.S.A.: 5,686,904; R.S.A.: 95/5429

#### HARDWARE

#### Overview

The hardware for this application note consists of a microcontroller circuit, a transponder, and a base station circuit. Figure 1 shows an overview of the hardware and the interface between each block. The base station is shown in Figure 2. The transponder and microcontroller are shown in Figure 3.









#### FIGURE 3: MICROCONTROLLER, POWER SUPPLY, AND TRANSPONDER



#### Microcontroller

The microcontroller consists of the following components:

- Microchip PIC16C56 microcontroller
- A Microchip 93LC46B serial EEPROM used to store all the information of learned transponders
- A 5V supply voltage regulator
- A supply supervisor that inhibits the microcontroller during low voltage events
- Two push buttons used for user inputs
- Three indicator LEDs used for user feedback and indication of function outputs

The microcontroller interfaces to the base station circuit by means of two wires: DATA\_T2B used to read data from the transponder to the base station. The carrier enable line of the read/write base station (DATA\_B2T) used by the base microcontroller to send data to the transponder.

Table 1 lists the I/O pin assignment for this application.

#### **Read/Write Base Station**

The base station is designed to operate from supply Vcc between 9V and 12 V.

The 14-bit binary counter U1 divides the 4MHz microcontroller clock CLKOUT to produce a 125kHz clock to transistor Q1. This transistor drives the resonant circuit formed by R1, C1 and L1 to produce a magnetic field. The microcontroller can switch the magnetic field on and off via signal DATA\_B2T for communication to the transponder.

The transponder is powered by coupling with the magnetic field produced by L1. The transponder also modulates this field for communication back to the microcontroller. The field modulation is detected at the junction of C1 and L1 by the envelope detector circuit input at diode D5. The envelope detector output signal is amplified by U6A and the data is recovered by bandpass filter U6B. The filter output DATA\_T2B is fed directly to the microcontroller.

Table 8 lists the components used in the decoder circuit as shown in the schematics, in Figure 2 and Figure 3.

Table 9 lists the components used for the transponder in Figure 3.

| Pin Number | Pin Function | Device Pin | Description                                                                                                                            |  |
|------------|--------------|------------|----------------------------------------------------------------------------------------------------------------------------------------|--|
| 17         | IMMOB        | RA0        | Immobilize function output                                                                                                             |  |
| 1          | LRN_ IN      | RA2        | Input to initiate learning                                                                                                             |  |
| 2          | LRN_OUT      | RA3        | Output to show the status of the learn process<br>(in an integrated system this will be combined with the<br>system status indicator). |  |
| 6          | DATA_B2T     | RB0        | Data from base station to transponder                                                                                                  |  |
| 7          | DATA_T2B     | RB1        | Data from transponder to base station                                                                                                  |  |
| 8          | IGN/POLL     | RB2        | Input to activate transponder polling                                                                                                  |  |
| 9          | FIELD        | RB3        | Magnetic field is active                                                                                                               |  |
| 10         | EE_DIO       | RB4        | Interface lines to external serial EEPROM                                                                                              |  |
| 11         | EE_CLK       | RB5        |                                                                                                                                        |  |
| 12         | EE_CS        | RB6        |                                                                                                                                        |  |
| 13         | VALID        | RB7        | Valid token pulse function output                                                                                                      |  |

#### TABLE 1: PIC16C56 I/O PIN ASSIGNMENT

#### INTRODUCTION TO THE HCS410 KEELOQ TRANSPONDER

The HCS410 is a KEELOQ code hopping transmitter/ transponder designed for secure entry and identification system. The device combines the circuitry required for Remote Keyless Entry (RKE) and inductively coupled Identify Friend or Foe (IFF) This section describes software which uses the inductive coupled IFF functions of the HCS410.

#### **IFF Activation**

IFF mode is activated when the HCS410 senses a signal on its LC0 pin. After the HCS410 verifies application of power and elapse of the normal debounce time, the device starts to acknowledge IFF activation by loading the LC pins with continuous acknowledge pulses as shown in Figure 4. This is an indication that the HCS410 is ready to receive a command. All the communication timing is done in multiples of the basic time element TE.



#### **IFF Commands**

The HCS410 transponder responds to 5-bit IFF commands or opcodes. The opcodes are sent to the HCS410 with the least significant bit (LSb) first. Depending on the command, additional data may be required for the HCS410 to respond. A list of IFF commands can be found in the HCS410 data sheet (DS40158).



### IFF Communication Protocols and Waveforms

All communication to and from the HCS410 during IFF is done in asynchronous Pulse Position Modulation (PPM) format. The format differs when sending commands and data to the HCS410 and when receiving data from the HCS410. After a complete transaction, the HCS410 is ready for the next command and will continue to send out acknowledge pulses. Commands to the HCS410 start with a pulse of 2 TE. Time is measured from rising edge to rising edge with a logic 1 being 6 TE and a logic 0, 4 TE.

Data coming from the HCS410 starts with a start pulse of 1 TE. Again, time is measured from rising edge to rising edge with a logic 1 being 3TE and a logic 0, 2 TE. All data words are preceded by two preamble bits with the logic value  $01_2$  before the data is sent out.

#### FIGURE 5: IFF COMMUNICATION WAVEFORM



#### Identify Friend or Foe (IFF)

Identify Friend or Foe (IFF) is a procedure used to authenticate a transponder. IFF challenges the transponder with a random 32-bit value and then verifies the response.

#### **HCS410** Commands Used

This application uses the following transponder commands: The IFF READ command (Figure 6) is used to read the two portions of the 32-bit serial number (SER1 and SER0).

The IFF CHALLENGE command (IFF1 using key-1 and HOP algorithm) is used to validate the transponder. The microcontroller generates a 32-bit random challenge and then validates the transponder's 32-bit response by decrypting the response using the KEELOQ decryption algorithm.

#### FIGURE 6: IFF READ COMMAND



#### FIGURE 7: IFF CHALLENGE COMMAND

| -<br>M-M-M-M- |             |                             |                        |
|---------------|-------------|-----------------------------|------------------------|
| Ack pulses    | l<br>Opcode | Challenge I<br>16/32 bits I | Response<br>18/34 bits |

#### SOFTWARE DESCRIPTION

#### **Overview (Figure 8)**

After reset, the decoder enters the main loop. The main loop checks the learn button and if pressed (TST\_LEARN) enters the learn mode. The decoder also checks the IGN/POLL input and if low it starts polling for transponder acknowledge pulses for up to 30 seconds. If a transponder is detected, it is validated by means of a 32-bit challenge/response IFF. The decoder pulses the VALID output pin for 500 ms and asserts the IMMOB output for the duration that the IGN/POLL input is held low if the transponder is authentic.

#### **Transponder Validation Flow**

The decoder reads the transponder's 32-bit serial number after it detects the acknowledge pulses. It then calculates the 16-bit serial number checksum value. The decoder then searches through all the EEPROM memory blocks for a matching checksum value. Then, it challenges the transponder with a 32-bit random challenge. The decoder validates the transponder by decrypting the 32-bit response with the 64-bit transponder key and comparing it to the 32-bit challenge.

#### **Transponder Learn Flow**

The 64-bit Manufacturer's Code is read from the ROM table after the decoder enters learn mode. The decoder then starts polling the field to check if there is any transponder in the field for up to 30 seconds. The decoder reads the transponder's 32-bit serial number after it detects acknowledge pulses. The transponder's decryption key is then calculated using the 64 bit Manufacturer's Code and the 32-bit serial number. The decoder then challenges the transponder with a 32-bit random challenge and validates the 32-bit response by using the newly calculated 64-bit transponder key. The decoder calculates the 16-bit serial number checksum then stores both the 16-bit checksum value and the 64-bit transponder key in EEPROM.

## Calibration on Acknowledge Pulses (WAIT\_ACK)

The WAIT\_ACK function determines if there is a transponder in the field. The routine also calibrates on the acknowledge pulses of the transponder, thereby determining the basic elemental periods TE, which is used for communication to the HCS410 transponder. The routine switches on the inductive field and waits for 30 ms for the transponder to activate. It then waits for up to 100 ms for a falling edge on the data output line of the read/write base station. The decoder calibrates on the time between the two rising edges. This time, which is equal to 2 TE, is the used by the WAIT\_TE routine during communication to the HCS410. The decoder waits for three acknowledge pulse pairs before it indicates that there is a transponder in the field by setting the zero flag and returning E\_OK.

#### Capturing Data from the HCS410 (REC\_PPM)

The REC\_PPM function is used to receive PPM data from the transponder. The decoder waits for the start bit, after which it starts measuring the time from rising edge to rising edge. The decoder then checks if this values if less than 2 TE in which case, the result bit value is set to logic 0. Otherwise, the bit value is set to a logic 1. The function receives either 18- or 34-bits, depending on the initial value of the loop counter (CNT2) The incoming data is stored in a 32-bit temporary shift register (TMP3:TMP0). The two preamble bits are rotated though the shift register and their values are ignored.

#### Source Code

A floppy disk containing the source code for this application note is available under no fee license from your Microchip distributor. The disk order number is DS40149.

#### FIGURE 8: PROGRAM FLOW DIAGRAM



#### ADDING/LEARNING TRANSPONDERS

#### Overview

Adding/learning a transponder involves calculating the transponder's decryption key, then challenging the transponder and verifying the response using the newly derived key. If the learn was successful, the key and a serial number checksum will be stored in EEPROM. The decoder reads the transponder's 32-bit serial number, forces the upper 4 bits to 6h or 2h to calculate the two input seed algorithms. Then, using these two input seeds and the decryption algorithm, the 64-bit transponder key is calculated. The Manufacturer's Code is stored in a ROM table in program memory.

#### Generating the 64-bit Key

SEED1 = 6h + 28 bit Serial Number

SEED2 = 2h + 28 bit Serial Number

The transponder key is derived using the KEELOQ decryption algorithm and the 64-bit Manufacturer's Code as follows:

Key Upper 32 bits = F KEELOQ Decrypt (SEED1) | 64-Bit Manufacturers Code Key Lower 32 bits = F KEELOQ Decrypt (SEED2) | 64-Bit Manufacturers Code

### Calculating the 16-bit Checksum From 28-bit Serial Number

The serial number checksum value stored in EEPROM is calculated by as follows:

Checksum = [( SER\_3  $\oplus$  SER\_1 ) << 8 ] + ( SER\_2  $\oplus$  SER\_0 )

**Note:** If the calculated checksum is zero the value is changed to 5AA5h.

#### APPENDIX A: MEMORY ALLOCATIONS

#### TABLE 2: MEMORY FOR EACH TRANSPONDER

|   | Name     | Description                                | Bytes |
|---|----------|--------------------------------------------|-------|
| 1 | Checksum | 16-bit checksum value of the serial number | 2     |
| 2 | Key      | 64-Bit decryption key                      | 8     |
|   |          | Total                                      | 10    |

#### TABLE 3: COMBINED EEPROM MEMORY ALLOCATION

|    | Name     | Description                                   | Bytes |  |
|----|----------|-----------------------------------------------|-------|--|
| 1  | Block 1  | Scratch pad                                   | 6     |  |
| 2  | Block 2  | S-bit seed counter used by random generator 2 |       |  |
| 3  | Block 3  | Stored data for transponder #1                | 10    |  |
| 4  | Block 4  | Stored data for transponder #2                | 10    |  |
| 5  | Block 5  | Stored data for transponder #3                | 10    |  |
| 6  | Block 6  | Stored data for transponder #4                | 10    |  |
| 7  | Block 7  | Stored data for transponder #5                | 10    |  |
| 8  | Block 8  | Stored data for transponder #6 10             |       |  |
| 9  | Block 9  | tored data for transponder #7 10              |       |  |
| 10 | Block 10 | tored data for transponder #8 10              |       |  |
| 11 | Block 11 | Stored data for transponder #9 10             |       |  |
| 12 | Block 12 | Stored data for transponder #10 10            |       |  |
| 13 | Block 13 | Stored data for transponder #11 10            |       |  |
| 14 | Block 14 | Stored data for transponder #12               |       |  |
|    |          | Total                                         | 128   |  |

| Address | Mnemonic  | Address | Mnemonic  |
|---------|-----------|---------|-----------|
| 00      | CHAL_LW   | 20      | KEY6_2    |
| 01      | RESP_LW   | 21      | KEY6_3    |
| 02      | RESP_HI   | 22      | CHKSUM_7  |
| 03      | CHAL_SEED | 23      | KEY7_0    |
| 04      | CHKSUM_1  | 24      | KEY7_1    |
| 05      | KEY1_0    | 25      | KEY7_2    |
| 06      | KEY1_1    | 26      | KEY7_3    |
| 07      | KEY1_2    | 27      | CHKSUM_8  |
| 08      | KEY1_3    | 28      | KEY8_0    |
| 09      | CHKSUM_2  | 29      | KEY8_1    |
| 0A      | KEY2_0    | 2A      | KEY8_2    |
| 0B      | KEY2_1    | 2B      | KEY8_3    |
| 0C      | KEY2_2    | 2C      | CHKSUM_9  |
| 0D      | KEY2_3    | 2D      | KEY9_0    |
| 0E      | CHKSUM_3  | 2E      | KEY9_1    |
| 0F      | KEY3_0    | 2F      | KEY9_2    |
| 10      | KEY3_1    | 30      | KEY9_3    |
| 11      | KEY3_2    | 33      | CHKSUM_10 |
| 12      | KEY3_3    | 32      | KEY10_0   |
| 13      | CHKSUM_4  | 33      | KEY10_1   |
| 14      | KEY4_0    | 34      | KEY10_2   |
| 15      | KEY4_1    | 35      | KEY10_3   |
| 16      | KEY4_2    | 36      | CHKSUM_11 |
| 17      | KEY4_3    | 37      | KEY11_0   |
| 18      | CHKSUM_5  | 38      | KEY11_1   |
| 19      | KEY5_0    | 39      | KEY11_2   |
| 1A      | KEY5_1    | 3A      | KEY11_3   |
| 1B      | KEY5_2    | 3B      | CHKSUM_12 |
| 1C      | KEY5_3    | 3C      | KEY12_0   |
| 1D      | CHKSUM_6  | 3D      | KEY12_1   |
| 1E      | KEY6_0    | 3E      | KEY12_2   |
| 1F      | KEY6_1    | 3F      | KEY12_3   |

TABLE 4: **MEMORY MAP EEPROM (16-BIT WORDS)** 

CHAL\_LW RESP\_HI RESP\_LW CHAL\_SEED Temporary storage of lower 16 bits of challenge

Temporary storage of upper 16 bits of HCS410's response Temporary storage of lower 16 bits of HCS410's response

CHKSUM

16 bit seed counter used by random generator to calculate a 32 bit random seed

Transponder's serial number 16 bit checksum storage

KEY

These bytes contain the 64 bit decryption key for each transponder

| Address | Mnemonic | Description                                                        |  |  |
|---------|----------|--------------------------------------------------------------------|--|--|
| 0D      | FLAGS    | Decoder flags                                                      |  |  |
| 0E      | ADDRESS  | Address register – points to address in EEPROM                     |  |  |
| 0F      | TXNUM    | Current transponder's block index                                  |  |  |
| 10      | XP_CNT   | Transponder loop counter                                           |  |  |
| 08      | OUTBYT   | General data register, mask register used in decryption            |  |  |
| 09      | TMP0     |                                                                    |  |  |
| 0A      | TMP1     |                                                                    |  |  |
| 0B      | TMP2     |                                                                    |  |  |
| 0C      | TMP3     |                                                                    |  |  |
| 11      | CNT0     |                                                                    |  |  |
| 12      | CNT1     |                                                                    |  |  |
| 13      | CNT2     |                                                                    |  |  |
| 07      | CNT3     |                                                                    |  |  |
| 14      | CSR0     |                                                                    |  |  |
| 15      | CSR1     | 22 bit Code shift register used in destruction and key generation  |  |  |
| 16      | CSR2     | - 52-bit Code shint register used in decryption and key generation |  |  |
| 17      | CSR3     |                                                                    |  |  |
| 18      | KEY7     |                                                                    |  |  |
| 19      | KEY6     |                                                                    |  |  |
| 1A      | KEY5     |                                                                    |  |  |
| 1B      | KEY4     | 64 hit shift register holds descuption key                         |  |  |
| 1C      | KEY3     |                                                                    |  |  |
| 1D      | KEY2     |                                                                    |  |  |
| 1E      | KEY1     |                                                                    |  |  |
| 1F      | KEY0     |                                                                    |  |  |

#### TABLE 5: RAM MEMORY MAP (8-BIT BYTES)

Many of the memory locations in RAM are used by multiple routines. A list of alternate names and functions are given in the table below.

| Address | Mnemonic | Also known as | Description                                                        |
|---------|----------|---------------|--------------------------------------------------------------------|
| 18      | DTA1     | TMP0          |                                                                    |
| 19      | DTA2     | TMP1          | 22 hit han ande register                                           |
| 1A      | DTA3     | TMP2          |                                                                    |
| 1B      | DTA4     | TMP3          |                                                                    |
| OD      | EHOP3    | ADDRESS       |                                                                    |
| 1C      | EHOP2    | TXNUM         | Extended 32-bit buffer used during key generation                  |
| 1D      | EHOP1    | TE_CNT        | as a 32-bit buffer                                                 |
| 1E      | EHOP0    | CNT2          |                                                                    |
| 17      | SER_0    | CSR0          |                                                                    |
| 16      | SER_1    | CSR1          | Shift register for upgenerinted 22 hits regained from transponder. |
| 15      | SER_2    | CSR2          |                                                                    |
| 14      | SER_3    | CSR3          |                                                                    |

#### TABLE 6: MANUFACTURER'S CODE IN PROGRAM MEMORY (RETLW TABLE)

| Address | Mnemonic | Description                        |
|---------|----------|------------------------------------|
| 09B     | MKEY_0   |                                    |
| 09C     | MKEY_1   |                                    |
| 09D     | MKEY_2   |                                    |
| 09E     | MKEY_3   | 64-Bit Manufacturer's Code         |
| 09F     | MKEY_4   | (Used to generate decryption keys) |
| 0A0     | MKEY_5   |                                    |
| 0A1     | MKEY_6   |                                    |
| 0A2     | MKEY_7   |                                    |

#### TABLE 7:TIMING PARAMETERS

| Parameter                       | Typical | Unit |
|---------------------------------|---------|------|
| Output activation duration      | 500     | ms   |
| Transponder validation duration | 330     | ms   |
| Erase all duration              | 4.2     | S    |
| Learn mode time-out             | 25      | S    |

| ltem | Reference                    | Supplier  | Part Number   | Description                                                      |
|------|------------------------------|-----------|---------------|------------------------------------------------------------------|
| 1    | C1                           | Digi-Key  | P3499         | 1.5nF, 630V Polypropylene Capacitor                              |
| 2    | C2                           | Digi-Key  | P4797         | 10nF, B Series 100V Polyester Capacitor                          |
| 3    | C3                           | Digi-Key  | P4787         | 1.5nF, B Series 100V Polyester Capacitor                         |
| 4    | C4                           | Digi-Key  | P4773         | 100pF, B Series 100V Polyester Capacitor                         |
| 5    | C5                           | Digi-Key  | P4797         | 10nF, B Series 100V Polyester Capacitor                          |
| 6    | C6, C7, C11, C14             | Digi-Key  | 1210PHCT      | 0.1µF, 50V Axial Ceramic Capacitor                               |
| 7    | C8, C9                       | Digi-Key  | P4016A        | 22pF, 50V Ceramic Disc Capacitor                                 |
| 8    | C10                          | Digi-Key  | P918          | 22µF 25V, KG Series Miniature Aluminum<br>Electrolytic Capacitor |
| 9    | C12                          | Digi-Key  | P6629         | 10μF 25V, Z Series Miniature Aluminum<br>Electrolytic Capacitor  |
| 10   | D1, D2, D3, D4               | Digi-Key  | P403          | 3mm Red Diffused High Brightness LED                             |
| 11   | D5, D6, D7                   | Digi-Key  | IN4148DICT    | 100V, 500 MW Fast Switching Diode                                |
| 12   | L1                           | Coilcraft | DO5022P-105   | 1mH, DO5022 Series Surface Mount<br>Power Inductors              |
| 13   | Q1                           | Digi-Key  | 2N3904        | Small Signal General Purpose Transistor                          |
| 14   | R1                           | Digi-Key  | 180R W-1      | 180R, 5% Metal Oxide Film Resistor                               |
| 15   | R2, R6, R7, R13,<br>R14, R15 | Digi-Key  | 10K W-1       | 10k, 5% Metal Oxide Film Resistor                                |
| 16   | R3                           | Digi-Key  | 100R W-1      | 100R, 5% Metal Oxide Film Resistor                               |
| 17   | R4, R5                       | Digi-Key  | 470K W-1      | 470k, 5% Metal Oxide Film Resistor                               |
| 18   | R8                           | Digi-Key  | 56K W-1       | 56k, 5% Metal Oxide Film Resistor                                |
| 19   | R9                           | Digi-Key  | 22K W-1       | 22k, 5% Metal Oxide Film Resistor                                |
| 20   | R10, R11, R12, R19           | Digi-Key  | 1K W-1        | 1k, 5% Metal Oxide Film Resistor                                 |
| 21   | R16                          | Digi-Key  | 120K W-1      | 120k, 5% Metal Oxide Film Resistor                               |
| 22   | R17                          | Digi-Key  | 390K W-1      | 390k, 5% Metal Oxide Film Resistor                               |
| 23   | R18                          | Digi-Key  | 2.7K W-1      | 2.7k, 5% Metal Oxide Film Resistor                               |
| 24   | SW1, SW2                     | Digi-Key  | P8006S        | Momentary Push-button Switch                                     |
| 25   | U1                           | Digi-Key  | MM74HC4060N   | 14 Stage Binary counter                                          |
| 26   | U2                           | Digi-Key  | PIC16C56-XP/P | 8-Bit CMOS Microcontroller                                       |
| 27   | U3                           | Digi-Key  | 93LC46B-I/P   | 2K CMOS Serial EEPROM                                            |
| 28   | U4                           | Digi-Key  | LM78L05ACH    | +5V 100 mA Positive Regulator, TO-39                             |
| 29   | U6                           | Digi-Key  | LM358N        | Low Power Dual OP Amp                                            |
| 30   | U7                           | Digi-Key  | 158-2021-2    | IC 4.63V UP Reset Monitor SOT-23                                 |
| 31   | Y1                           | Digi-Key  | X911          | 4 MHz ZTA Series Ceramic Resonator                               |

**Note:** Different value of the same order may have to be used to compensate for tolerance variations in R1, L1, and C1 to keep the peak-to-peak voltage across L1 at 100V.

#### TABLE 9: BILL OF MATERIALS FOR TRANSPONDER

| Item | Reference | Supplier  | Part Number | Description                        |
|------|-----------|-----------|-------------|------------------------------------|
| 1    | U5        | Microchip | HCS410      | KEELOQ Transponder IC              |
| 2    | L2        | Digi-Key  | DN7437      | 1000 µH Power Axial Inductor       |
| 3    | C13       | Digi-Key  | P4787       | 0.0015 μF 100V Poly B Series CAP   |
| 4    | C14       | Digi-Key  | 1210PHCT    | 0.1µF, 50V Axial Ceramic Capacitor |

#### Note the following details of the code protection feature on PICmicro<sup>®</sup> MCUs.

- The PICmicro family meets the specifications contained in the Microchip Data Sheet.
- Microchip believes that its family of PICmicro microcontrollers is one of the most secure products of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the PICmicro microcontroller in a manner outside the operating specifications contained in the data sheet. The person doing so may be engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
  mean that we are guaranteeing the product as "unbreakable".
- Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our product.

If you have any further questions about this matter, please contact the local sales office nearest to you.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

#### Trademarks

The Microchip name and logo, the Microchip logo, FilterLab, KEELOQ, microID, MPLAB, PIC, PICmicro, PICMASTER, PICSTART, PRO MATE, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, microPort, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, MXDEV, PICC, PICDEM, PICDEM.net, rfPIC, Select Mode and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A.

Serialized Quick Turn Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2002, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.





Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999. The Company's quality system processes and procedures are QS-9000 compliant for its PICmicro® 8-bit MCUs, KEELoq® code hopping devices, Serial EEPROMs and microperipheral products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001 certified.



### WORLDWIDE SALES AND SERVICE

#### AMERICAS

**Corporate Office** 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: 480-792-7627 Web Address: http://www.microchip.com

#### **Rocky Mountain**

2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7966 Fax: 480-792-7456

#### Atlanta

500 Sugar Mill Road, Suite 200B Atlanta, GA 30350 Tel: 770-640-0034 Fax: 770-640-0307

#### Boston

2 Lan Drive, Suite 120 Westford, MA 01886 Tel: 978-692-3848 Fax: 978-692-3821

#### Chicago

333 Pierce Road, Suite 180 Itasca, IL 60143 Tel: 630-285-0071 Fax: 630-285-0075

Dallas

4570 Westgrove Drive, Suite 160 Addison, TX 75001 Tel: 972-818-7423 Fax: 972-818-2924

Detroit Tri-Atria Office Building

32255 Northwestern Highway, Suite 190 Farmington Hills, MI 48334 Tel: 248-538-2250 Fax: 248-538-2260 Kokomo

### 2767 S. Albright Road

Kokomo, Indiana 46902 Tel: 765-864-8360 Fax: 765-864-8387 Los Angeles

18201 Von Karman, Suite 1090 Irvine, CA 92612

Tel: 949-263-1888 Fax: 949-263-1338 New York

150 Motor Parkway, Suite 202 Hauppauge, NY 11788 Tel: 631-273-5305 Fax: 631-273-5335 San Jose

Microchip Technology Inc. 2107 North First Street, Suite 590 San Jose, CA 95131 Tel: 408-436-7950 Fax: 408-436-7955

Toronto

6285 Northam Drive, Suite 108 Mississauga, Ontario L4V 1X5, Canada Tel: 905-673-0699 Fax: 905-673-6509

#### ASIA/PACIFIC

Australia

Microchip Technology Australia Pty Ltd Suite 22, 41 Rawson Street Epping 2121, NSW Australia

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 China - Beijing

Microchip Technology Consulting (Shanghai) Co., Ltd., Beijing Liaison Office Unit 915 Bei Hai Wan Tai Bldg. No. 6 Chaoyangmen Beidajie Beijing, 100027, No. China Tel: 86-10-85282100 Fax: 86-10-85282104

#### China - Chengdu

Microchip Technology Consulting (Shanghai) Co., Ltd., Chengdu Liaison Office Rm. 2401, 24th Floor, Ming Xing Financial Tower No. 88 TIDU Street Chengdu 610016, China Tel: 86-28-6766200 Fax: 86-28-6766599

#### China - Fuzhou

Microchip Technology Consulting (Shanghai) Co., Ltd., Fuzhou Liaison Office Unit 28F, World Trade Plaza No. 71 Wusi Road Fuzhou 350001, China Tel: 86-591-7503506 Fax: 86-591-7503521 China - Shanghai

Microchip Technology Consulting (Shanghai) Co., Ltd. Room 701, Bldg. B Far East International Plaza No. 317 Xian Xia Road Shanghai, 200051 Tel: 86-21-6275-5700 Fax: 86-21-6275-5060

#### China - Shenzhen

Microchip Technology Consulting (Shanghai) Co., Ltd., Shenzhen Liaison Office Rm. 1315, 13/F, Shenzhen Kerry Centre, Renminnan Lu Shenzhen 518001, China Tel: 86-755-2350361 Fax: 86-755-2366086 Hong Kong Microchip Technology Hongkong Ltd. Unit 901-6, Tower 2, Metroplaza

223 Hing Fong Road Kwai Fong, N.T., Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431

#### India

Microchip Technology Inc. India Liaison Office **Divvasree Chambers** 1 Floor, Wing A (A3/A4) No. 11, O'Shaugnessey Road Bangalore, 560 025, India Tel: 91-80-2290061 Fax: 91-80-2290062

#### Japan

Microchip Technology Japan K.K. Benex S-1 6F 3-18-20, Shinyokohama Kohoku-Ku, Yokohama-shi Kanagawa, 222-0033, Japan Tel: 81-45-471- 6166 Fax: 81-45-471-6122 Korea Microchip Technology Korea 168-1, Youngbo Bldg. 3 Floor Samsung-Dong, Kangnam-Ku Seoul, Korea 135-882 Tel: 82-2-554-7200 Fax: 82-2-558-5934 Singapore Microchip Technology Singapore Pte Ltd. 200 Middle Road #07-02 Prime Centre Singapore, 188980 Tel: 65-334-8870 Fax: 65-334-8850 Taiwan Microchip Technology Taiwan 11F-3, No. 207 Tung Hua North Road Taipei, 105, Taiwan Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE

Denmark

Microchip Technology Nordic ApS **Regus Business Centre** Lautrup hoj 1-3 Ballerup DK-2750 Denmark Tel: 45 4420 9895 Fax: 45 4420 9910 France Microchip Technology SARL Parc d'Activite du Moulin de Massy 43 Rue du Saule Trapu Batiment A - ler Etage 91300 Massy, France Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 Germany Microchip Technology GmbH

Gustav-Heinemann Ring 125 D-81739 Munich, Germany Tel: 49-89-627-144 0 Fax: 49-89-627-144-44 Italy

Microchip Technology SRL Centro Direzionale Colleoni Palazzo Taurus 1 V. Le Colleoni 1 20041 Agrate Brianza Milan, Italy Tel: 39-039-65791-1 Fax: 39-039-6899883

#### United Kinadom

Arizona Microchip Technology Ltd. 505 Eskdale Road Winnersh Triangle Wokingham Berkshire, England RG41 5TU Tel: 44 118 921 5869 Fax: 44-118 921-5820

01/18/02