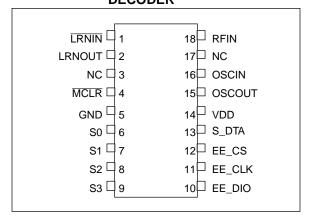
AN672

PICmicroTM Midrange MCU Code Hopping Decoder

Author: Vivien Delport

Microchip Technology Inc.


OVERVIEW

This application note describes the working of a KEELOQ[®] code hopping decoder implemented on a Microchip Midrange MCUs (PIC16C6X, PIC16C7X, PIC16C62X) The software can be used to implement a stand alone decoder or be integrated with the user application. The decoder supports the Microchip's HCS200, HCS201, HCS300, HCS301, HCS360, and HCS361 KEELOQ hopping code encoders. The decoder supports normal and secure learning. Two manufacturers codes allow different manufacturers to share a public key, but retain their own private keys.

KEY FEATURES

- · Supports two manufacturer's codes
- Compatible with Microchip's HCS200, HCS201, HCS300, HCS301, HCS360 and HCS361 encoders
- PIC16C6X, PIC16C7X and PIC16C62X platforms
- Automatic baud rate detection
- Automatic Normal or Secure learn detection
- · Four function outputs
- Six learnable transmitters
- RC Oscillator
- Serial interface

FIGURE 1: MICROCHIP MIDRANGE DECODER

FUNCTIONAL INPUTS AND OUTPUTS

TABLE 1: MICROCHIP DECODER FUNCTIONAL INPUTS AND OUTPUTS

Mnemonic	Pin Number	Input / Output	Function
RF IN	18	I	Demodulated PWM signal from RF receiver. The decoder uses this input to receive encoder transmissions.
LEARN INIT	I	1	Input to initiate learning.
LEARN INDICATION	2	0	Output to show the status of the learn process (in an integrated system this will be combined with the system status indicator).
S_DTA	13	0	Serial data string output which contains the function code, VLOW bit and function code match bit.
S0, S1, S2, S3	6, 7, 8, 9	0	Function outputs, correspond to encoder input pins.
EE_CS EE_CLK EE_DIO	10,11,12	I/O	External Serial EEPROM Interface lines.

KEELOQ is a registered trademark of Microchip Technology, Inc.

PICmicro is a trademark of Microchip Technology, Inc.

Microchip's Secure Data Products are covered by some or all of the following patents:

Code hopping encoder patents issued in Europe, U.S.A., and R.S.A. — U.S.A.: 5,517,187; Europe: 0459781; R.S.A.: ZA93/4726

Secure learning patents issued in the U.S.A. and R.S.A. — U.S.A.: 5,686,904; R.S.A.: 95/5429

PUBLIC AND PRIVATE MANUFACTURER'S CODE

The decoder supports two manufacturer's codes, called the public manufacturer's code and private manufacturer's code. This feature allows two manufacturers to share one public manufacturer's code, but retain their own private manufacturer's code. The decoder uses the public manufacturer's code first to drive the encoder's decryption key, but if learn fails, it will retry using the private manufacturer's code.

PROGRAM FLOW

The decoder software will run on any PIC6C6X/7X with 1K program memory. The operating frequency is 4 MHz. The clock speed is important as the reception routine (RECEIVE) has some critical timing specifications. Other decoder functions that rely on a 4 MHz clock speed are the hold times of the various outputs, time-outs, etc. The compiler used is MPASM.

A high-level description of the main program flow, the transmission validation flow, and the transmitter learn flow are described in the following sections. More detailed descriptions of the other modules can be found in Application Note AN642.

MAIN PROGRAM FLOW

After reset, the decoder enters the main loop where it spends most of the time. The main loop checks the learn button and if pressed (TST_LEARN) enters the learn mode. The microcontroller checks transmissions from the encoders (RECEIVE). Once 65 bits are received, the microcontroller validates the transmission. When a valid transmission is received from a learnt encoder, the decoder sends out a serial data string containing the function code (TX_FUNC) and sets the appropriate function outputs (M_BUT).

TRANSMISSION VALIDATION FLOW

After reception of a code, the decoder will first check if the transmitter is learnt on the decoder. This is done by calculating the checksum on the received transmission's serial number and then searching through the transmitter blocks stored in EEPROM to find a match. If a match is found, the decoder reads the decryption key stored for that transmitter and decrypts the hopping code portion. The 10 LSBs of the discrimination value are compared to the 10 LSBs of the serial number. The 16-bit synchronization counter is validated by checking if the received counter is in the blocked window. The decoder then checks if the counter is in the double operation window. If this is the case, the decoder will wait for the next sequential transmission to synchronize. If the counter is within the single operation window, the decoder updates the EEPROM counters and then generates the appropriate function output.

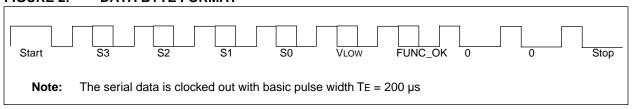
TRANSMITTER LEARN FLOW

To be able to use a transmitter with the decoder, the transmitter must first be learned into the decoder. Adding a transmitter is done by pressing the learn button. If the button is pressed for longer than 10 seconds, the decoder executes an "erase all" function, which will remove all the transmitters learned.

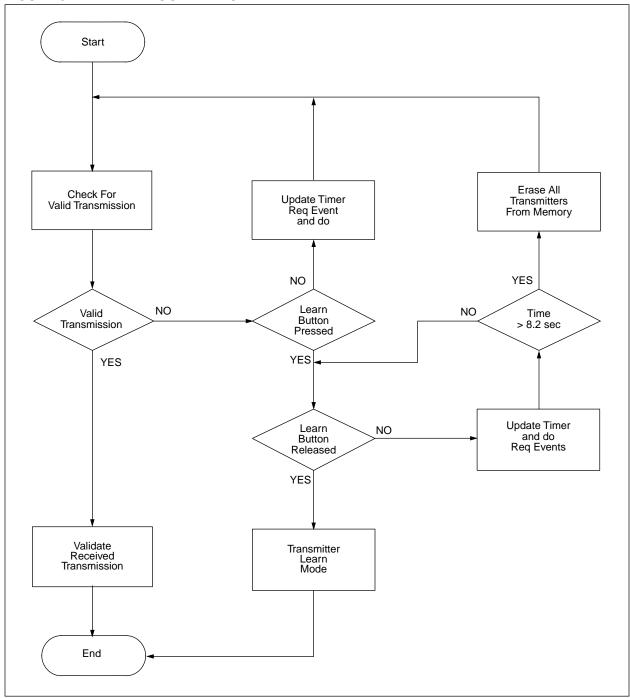
Normal Secure Learn Selection: In learn mode, the decoder monitors transmissions for 4 seconds. If two codes are received with different serial numbers, the first code is used as the hop code and the second as the seed for the secure learn algorithm. If the two serial numbers are the same, the first received code will be used for the normal learn algorithm.

Manufacturer's Code Selection: The decryption key is derived using the public manufacturer's code stored in a ROM table. The received hopping code is validated by comparing the received transmission's discrimination bits with the lower bits of the serial number. If the decryption validation fails, the decoder will derive the decryption key again by using the private manufacturer's code, also store in a ROM table. If the decryption validation was successful, the decoder will calculate a checksum value on the transmission's serial number. All of the information is then stored in an unused block in the EEPROM. The same memory block will be used if the transmitter was already learned. The result of the learn sequence is displayed on the LED.

COMPILER OPTIONS


Delayed Increment: When this option is enabled, the decoder will automatically increment the synchronization counter by twelve, 30 seconds after the last valid reception. The synchronization window is increased from 16 to 256 in this mode. Delayed increment is used to defeat jamming code grabbers in single button transmitters. This option is enabled by setting the define variable DLY INC to 1 and recompiling the code.

SERIAL FUNCTION STRING OUTPUT


The decoder's serial output sends out a function byte which consists of the function code, battery low status flag, and a function code match bit. After the last bit was clocked out, the line will go high for 500 ms. Repeated transmissions will, as with the binary function outputs, extend this 500 ms time-out. Start bit is one and the stop bit is zero.

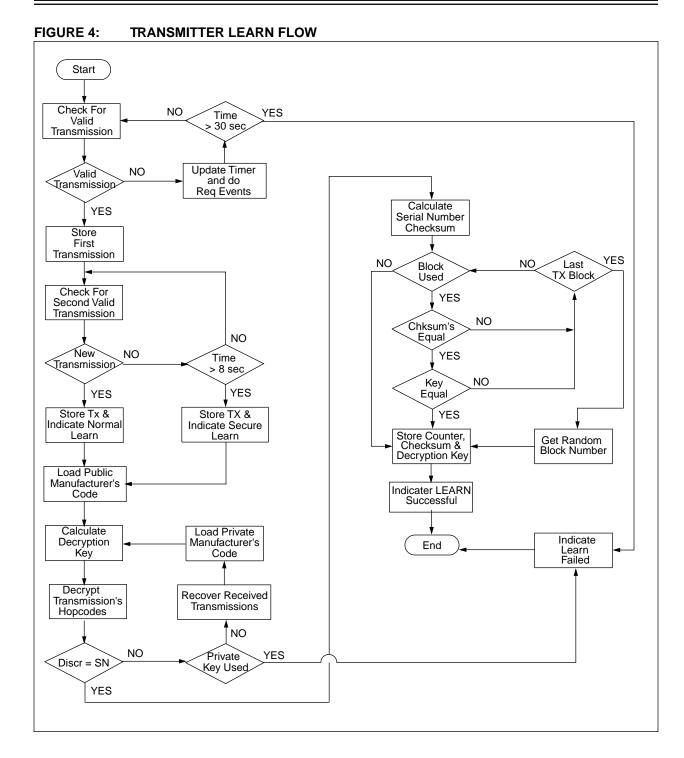

The data byte format for this output is shown in Figure 2

FIGURE 2: DATA BYTE FORMAT

FIGURE 3: MAIN PROGRAM FLOW

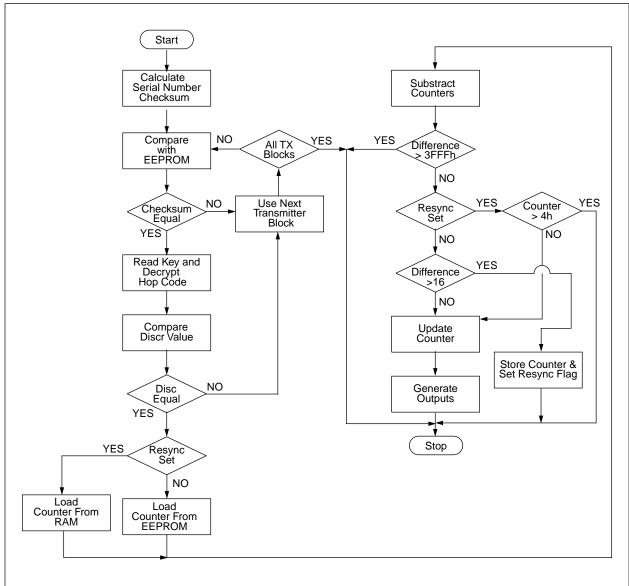


FIGURE 5: TRANSMISSION VALIDATION FLOW

AN672

DECODER MEMORY MAPS

TABLE 2: MEMORY MAP ROM (8-BIT BYTES)

Word Address	Mnemonic	Description	
42	MKEY1_0		
43	MKEY1_1		
44	MKEY1_2	64-Bit Public	
45	MKEY1_3	Manufacturers Code	
46	MKEY1_4	(Used to generate	
47	MKEY1_5	decryption keys)	
48	MKEY1_6		
49	MKEY1_7		
4A	MKEY2_0		
4B	MKEY2_1		
4C	MKEY2_2	64-Bit Private	
4D	MKEY2_3	Manufacturers Code	
4E	MKEY2_4	(Used to generate	
4F	MKEY2_5	decryption keys)	
50	MKEY2_6		
51	MKEY2_7		
52	EKEY_0		
53	EKEY_1		
54	EKEY_2		
55	EKEY_3	64-Bit	
56	EKEY_4	EEPROM Key (Used to encrypt EEPROM data)	
57	EKEY_5	(Cood to onerypt ZEI Now data)	
58	EKEY_6		
59	EKEY_7		

TABLE 3: MEMORY MAP EEPROM (16 BIT WORDS)

Address	Mnemonic	Address	Mnemonic
00	Scratch Pad #1 – First TX	20	CNT20
01	Scratch Pad #1 – First TX	21	CNT21
02	Scratch Pad #1 – First TX	22	DISC2
03	Scratch Pad #1 – First TX	23	CHKSUM2
04	Scratch Pad #2 – Seed TX	24	KEY20
05	Scratch Pad #2 – Seed TX	25	KEY21
06	Scratch Pad #2 – Seed TX	26	KEY22
07	Scratch Pad #2 – Seed TX	27	KEY23
08	Not Used	28	CNT30
09	Not Used	29	CNT31
0A	Not Used	2A	DISC3
0B	Not Used	2B	CHKSUM3
0C	Not Used	2C	KEY30
0D	Not Used	2D	KEY31
0E	Not Used	2E	KEY32
0F	Not Used	2F	KEY33
10	CNT00	30	CNT40
11	CNT01	33	CNT41
12	DISC0	32	DISC4
13	CHKSUM0	33	CHKSUM4
14	KEY00	34	KEY40
15	KEY01	35	KEY41
16	KEY02	36	KEY42
17	KEY03	37	KEY43
18	CNT10	38	CNT50
19	CNT11	39	CNT51
1A	DISC1	3A	DISC5
1B	CHKSUM1	3B	CHKSUM5
1C	KEY10	3C	KEY50
1D	KEY11	3D	KEY51
1E	KEY12	3E	KEY52
1F	KEY13	3F	KEY53
Note:	•	•	

Note:

SCRATCHPAD: Temporary storage of transmission during learn.

CHKSUM: The encoder serial number checksum.

KEY: These bytes contain the decryption key for each encoder.

DIS: Discrimination values and function code storage.

CNT: Two copies of the synchronization counter are stored for each encoder to prevent loss of synchronization counter are stored for each encoder to prevent loss of synchronization counter are stored for each encoder to prevent loss of synchronization counter are stored for each encoder to prevent loss of synchronization counter are stored for each encoder to prevent loss of synchronization counter are stored for each encoder to prevent loss of synchronization counter are stored for each encoder to prevent loss of synchronization counter are stored for each encoder to prevent loss of synchronization counter are stored for each encoder to prevent loss of synchronization counter are stored for each encoder to prevent loss of synchronization counter are stored for each encoder to prevent loss of synchronization counter are stored for each encoder to prevent loss of synchronization counter are stored for each encoder are stored for each encoder

nization information due to EEPROM write failure.

AN672

TABLE 4: RAM MEMORY MAP (8-BIT BYTES)

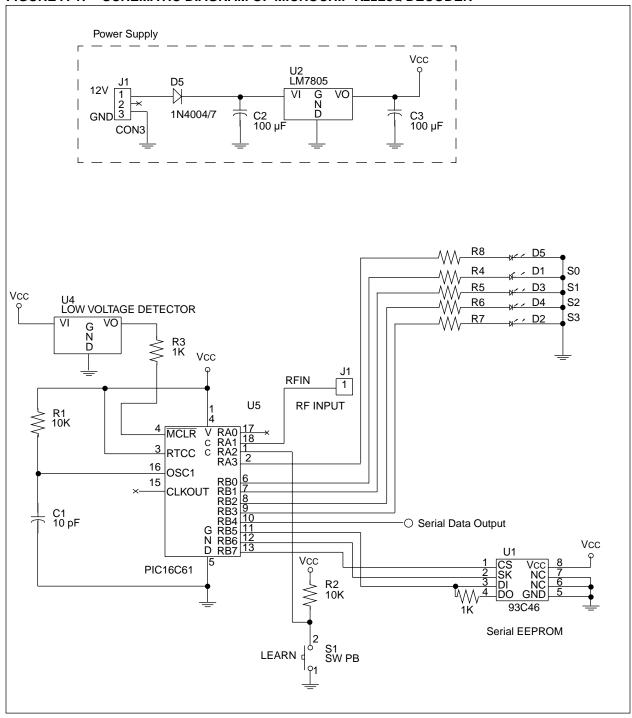
Address	Mnemonic	Description	
0C	FLAGS	Decoder flags	
0D	ADDRESS	Address register – points to address in EEPROM	
0E	TXNUM	Current transmitter's block index	
0F	TX_CNT	Transmitter loop counter	
10	OUTBYT	General data register, mask register used in decryption	
11	CNT0		
12	CNT2	Loop counters	
13	CNT3		
14	CNT_HI	16-bit event clock counter	
15	CNT_LO	10-bit event clock counter	
16	RAM_HI	16 bit DAM counter (used in recognition)	
17	RAM_LW	16-bit RAM counter (used in resynchronization)	
18	TMP0		
19	TMP1		
1A	TMP2		
1B	TMP3	Tomporary registers	
1C	TMP4	Temporary registers	
1D	TMP5		
1E	TMP6		
1F	TMP7		
20	CSR4		
21	CSR5		
22	CSR6		
23	CSR7	64-bit shift register	
24	CSR0	Used in reception, decryption and key generation	
25	CSR1		
26	CSR2		
27	CSR3		
28	KEY7		
29	KEY6		
2A	KEY5		
2B	KEY4	64 bit shift register holds degraption key	
2C	KEY3	64-bit shift register holds decryption key	
2D	KEY2		
2E	KEY1		
2F	KEY0		

Many of the memory locations in RAM are used by multiple routines. A list of alternate names and functions are given in the table below.

Address	Mnemonic	Also Known As	Description	
10	CNT2	OUTBYT	Temporary Loop Counter.	
18	HOP1	CSR0		
19	HOP2	CSR1	20 hit ham and remister	
1A	HOP3	CSR2	32-bit hop code register.	
1B	HOP4	CSR3		
OD	EHOP3	ADDRESS		
1C	EHOP2	TXNUM	Extended 32-bit buffer used during key	
1D	EHOP1	TX_CNT	generation as a 32-bit buffer.	
1E	EHOP0	CNT3		
17	SER_0	CSR7	28-bit serial number, stores received	
16	SER_1	CSR6		
15	SER_2	CSR5	transmission open 32 bits.	
14	SER_3	CSR4		
1B	FUNC	CSR3	Button code and user nibble of discrimination value.	
1A	DISCR	CSR2	Discrimination value.	
19	CNTR_HI	CSR1	16-bit received counter.	
18	CNTR_LW	CSR0		

DEVICE PINOUTS

The device used in the application note is a PIC16C6X PDIP.


PIN	PICmicro Function	Decoder Function	PIN	PICmicro Function	Decoder Function
1	Port A Bit 2	LEARN Input Act Low	18	Port A Bit 1	RF Input
2	Port A Bit 3	LRN IND Output High	17	Port A Bit 0	Not Used
3	TIMER0	Connect to VDD	16	OSCIN	RC OSC (4 MHz)
4	MCLR	Brown-out detect	15	OSCout	
5	GND	Ground	14	VDD	+5V supply
6	Port B Bit 0	S0	13	Port B Bit 7	FUNC OK
7	Port B Bit 1	S1	12	Port B Bit 6	CS (1)
8	Port B Bit 2	S2	11	Port B Bit 5	CLK (2)
9	Port B Bit 3	S3	10	Port B Bit 4	DIO (3+4)

TIMING PARAMETERS

Parameter	Typical	Unit
Output activation duration	524	ms
Output pause if new function code received	100	ms
Erase all duration	8.4	s
Learn mode time-out	33.6	s
Learn successful LED flash duration	4.2	s
Learn successful LED flash rate	3.8	Hz
Learn failure LED on duration	1	s

APPENDIX A: APPENDIX SCHEMATIC DIAGRAMS

FIGURE A-1: SCHEMATIC DIAGRAM OF MICROCHIP KEELOQ DECODER

Note the following details of the code protection feature on PICmicro® MCUs.

- The PICmicro family meets the specifications contained in the Microchip Data Sheet.
- Microchip believes that its family of PICmicro microcontrollers is one of the most secure products of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the PICmicro microcontroller in a manner outside the operating specifications contained in the data sheet. The person doing so may be engaged in theft of intellectual property.
- · Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable".
- Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our product.

If you have any further questions about this matter, please contact the local sales office nearest to you.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, FilterLab, KEELOQ, microID, MPLAB, PIC, PICmicro, PICMASTER, PICSTART, PRO MATE, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, microPort, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, MXDEV, PICC, PICDEM, PICDEM.net, rfPIC, Select Mode and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A.

Serialized Quick Turn Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2002, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999. The Company's quality system processes and procedures are QS-9000 compliant for its PICmicro® 8-bit MCUs, KEELO© code hopping devices, Serial EEPROMs and microperipheral products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001 certified.

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office

2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: 480-792-7627 Web Address: http://www.microchip.com

Rocky Mountain

2355 West Chandler Blvd. Chandler, AZ 85224-6199
Tel: 480-792-7966 Fax: 480-792-7456

Atlanta

500 Sugar Mill Road, Suite 200B Atlanta, GA 30350
Tel: 770-640-0034 Fax: 770-640-0307

Boston

2 Lan Drive, Suite 120 Westford, MA 01886 Tel: 978-692-3848 Fax: 978-692-3821

Chicago

333 Pierce Road, Suite 180 Itasca, IL 60143

Tel: 630-285-0071 Fax: 630-285-0075

Dallas

4570 Westgrove Drive, Suite 160 Addison, TX 75001 Tel: 972-818-7423 Fax: 972-818-2924

Detroit

Tri-Atria Office Building 32255 Northwestern Highway, Suite 190 Farmington Hills, MI 48334 Tel: 248-538-2250 Fax: 248-538-2260

Kokomo

2767 S. Albright Road Kokomo, Indiana 46902 Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles

18201 Von Karman, Suite 1090 Irvine, CA 92612

Tel: 949-263-1888 Fax: 949-263-1338

New York

150 Motor Parkway, Suite 202 Hauppauge, NY 11788 Tel: 631-273-5305 Fax: 631-273-5335

San Jose

Microchip Technology Inc. 2107 North First Street, Suite 590 San Jose, CA 95131 Tel: 408-436-7950 Fax: 408-436-7955

Toronto

6285 Northam Drive, Suite 108 Mississauga, Ontario L4V 1X5, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Australia

Microchip Technology Australia Pty Ltd Suite 22, 41 Rawson Street Epping 2121, NSW Australia

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Microchip Technology Consulting (Shanghai)

Co., Ltd., Beijing Liaison Office Unit 915 Bei Hai Wan Tai Bldg.

No. 6 Chaoyangmen Beidajie Beijing, 100027, No. China Tel: 86-10-85282100 Fax: 86-10-85282104

China - Chengdu

Microchip Technology Consulting (Shanghai)
Co., Ltd., Chengdu Liaison Office
Rm. 2401, 24th Floor, Ming Xing Financial Tower No. 88 TIDU Street Chengdu 610016, China Tel: 86-28-6766200 Fax: 86-28-6766599

China - Fuzhou

Microchip Technology Consulting (Shanghai) Co., Ltd., Fuzhou Liaison Office Unit 28F, World Trade Plaza No. 71 Wusi Road Fuzhou 350001, China Tel: 86-591-7503506 Fax: 86-591-7503521

China - Shanghai

Microchip Technology Consulting (Shanghai) Co., Ltd.

Room 701, Bldg. B Far East International Plaza No. 317 Xian Xia Road Shanghai, 200051

Tel: 86-21-6275-5700 Fax: 86-21-6275-5060

China - Shenzhen

Microchip Technology Consulting (Shanghai) Co., Ltd., Shenzhen Liaison Office Rm. 1315, 13/F, Shenzhen Kerry Centre, Renminnan Lu Shenzhen 518001, China Tel: 86-755-2350361 Fax: 86-755-2366086

Hong Kong

Microchip Technology Hongkong Ltd. Unit 901-6, Tower 2, Metroplaza 223 Hing Fong Road Kwai Fong, N.T., Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431

India

Microchip Technology Inc. India Liaison Office Divvasree Chambers 1 Floor, Wing A (A3/A4) No. 11, O'Shaugnessey Road Bangalore, 560 025, India Tel: 91-80-2290061 Fax: 91-80-2290062

Japan

Microchip Technology Japan K.K. Benex S-1 6F 3-18-20, Shinyokohama Kohoku-Ku, Yokohama-shi Kanagawa, 222-0033, Japan

Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea

Microchip Technology Korea 168-1, Youngbo Bldg. 3 Floor Samsung-Dong, Kangnam-Ku Seoul, Korea 135-882

Tel: 82-2-554-7200 Fax: 82-2-558-5934

Singapore

Microchip Technology Singapore Pte Ltd. 200 Middle Road #07-02 Prime Centre Singapore, 188980

Tel: 65-334-8870 Fax: 65-334-8850

Taiwan

Microchip Technology Taiwan 11F-3, No. 207 Tung Hua North Road Taipei, 105, Taiwan

Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE

Denmark

Microchip Technology Nordic ApS Regus Business Centre Lautrup hoj 1-3 Ballerup DK-2750 Denmark Tel: 45 4420 9895 Fax: 45 4420 9910

France

Microchip Technology SARL Parc d'Activite du Moulin de Massy 43 Rue du Saule Trapu Batiment A - Ier Etage 91300 Massy, France Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany Microchip Technology GmbH Gustav-Heinemann Ring 125 D-81739 Munich, Germany Tel: 49-89-627-144 0 Fax: 49-89-627-144-44

Italy

Microchip Technology SRL Centro Direzionale Colleoni Palazzo Taurus 1 V. Le Colleoni 1 20041 Agrate Brianza Milan, Italy Tel: 39-039-65791-1 Fax: 39-039-6899883

United Kingdom

Arizona Microchip Technology Ltd. 505 Eskdale Road Winnersh Triangle Wokingham Berkshire, England RG41 5TU Tel: 44 118 921 5869 Fax: 44-118 921-5820

01/18/02