OVERVIEW

This document describes a PIC16C57 based code hopping automotive security system. The security system implements all the basic features found on security systems and can be changed to modify or add features as required. The code can also be moved to a higher functionality PICmicro® microcontroller for more I/O or code space.

FEATURES

- Code hopping alarm system
- System can handle up to six transmitters
- Learning of new transmitters
- Arm/Disarm
- Trunk release
- Car finder
- Panic
- Locking/unlocking of doors
- Door and shock sensor trigger inputs

RECOMMENDED READING

If the reader is unfamiliar with KEELÖQ Code Hopping it would be helpful to read Introduction to KEELÖQ® (DS91002). This and other KEELÖQ literature can be found on Microchip's Web site or from a Microchip field application engineer. The software described in this application note is available on a diskette from Microchip by ordering DS40149. A complete list of KEELÖQ literature can be found at the end of the application note.
MEMORY MAP EEPROM
(16 BIT WORDS)

<table>
<thead>
<tr>
<th>Address</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>00h USER0</td>
<td>20h CNT20</td>
</tr>
<tr>
<td>01h LRN_PTR</td>
<td>21h CNT21</td>
</tr>
<tr>
<td>02h BSTATUS</td>
<td>22h SER20</td>
</tr>
<tr>
<td>03h SSTATUS</td>
<td>23h SER21</td>
</tr>
<tr>
<td>04h TMPCNT</td>
<td>24h KEY20</td>
</tr>
<tr>
<td>05h USER1</td>
<td>25h KEY21</td>
</tr>
<tr>
<td>06h USER2</td>
<td>26h KEY22</td>
</tr>
<tr>
<td>07h USER3</td>
<td>27h KEY23</td>
</tr>
<tr>
<td>08h USER4</td>
<td>28h CNT30</td>
</tr>
<tr>
<td>09h USER5</td>
<td>29h CNT31</td>
</tr>
<tr>
<td>0Ah DIS0</td>
<td>2Ah SER30</td>
</tr>
<tr>
<td>0Bh DIS1</td>
<td>2Bh SER31</td>
</tr>
<tr>
<td>0Ch DIS2</td>
<td>2Ch KEY30</td>
</tr>
<tr>
<td>0Dh DIS3</td>
<td>2Dh KEY31</td>
</tr>
<tr>
<td>0Eh DIS4</td>
<td>2Eh KEY32</td>
</tr>
<tr>
<td>0Fh DIS5</td>
<td>2Fh KEY33</td>
</tr>
<tr>
<td>10h CNT0</td>
<td>30h CNT40</td>
</tr>
<tr>
<td>11h CNT0</td>
<td>31h CNT41</td>
</tr>
<tr>
<td>12h SER0</td>
<td>32h SER40</td>
</tr>
<tr>
<td>13h SER01</td>
<td>33h SER41</td>
</tr>
<tr>
<td>14h KEY0</td>
<td>34h KEY40</td>
</tr>
<tr>
<td>15h KEY01</td>
<td>35h KEY41</td>
</tr>
<tr>
<td>16h KEY02</td>
<td>36h KEY42</td>
</tr>
<tr>
<td>17h KEY03</td>
<td>37h KEY43</td>
</tr>
<tr>
<td>18h CNT1</td>
<td>38h CNT50</td>
</tr>
<tr>
<td>19h CNT11</td>
<td>39h CNT51</td>
</tr>
<tr>
<td>1Ah SER1</td>
<td>3A hSER50</td>
</tr>
<tr>
<td>1Bh SER11</td>
<td>3Bh SER51</td>
</tr>
<tr>
<td>1Ch KEY1</td>
<td>3Ch KEY50</td>
</tr>
<tr>
<td>1Dh KEY11</td>
<td>3Dh KEY51</td>
</tr>
<tr>
<td>1Eh KEY12</td>
<td>3Eh KEY52</td>
</tr>
<tr>
<td>1Fh KEY13</td>
<td>3Fh KEY53</td>
</tr>
</tbody>
</table>

- **LRN_PTR** – Learn indicator points to the next available learn position.
- **SSTATUS** – Stores the system status.
- **BSTATUS** – Backup copy of system status.
- **TMPCNT** – Stores the temporary counter for resynchronization.
FIGURE 1: ALARM STATE DIAGRAM

State == Alarm
State == Immob
State == Drive
State == Armed
Remote
Reset
Trigger
Remote
Learn request
Remote
30s & IGN off
30s Time-out
Learn complete or 30s time-out return to previous
Learn request
Learn request
IGN on
Learn request
Remote
Armed
Alarm
Drive
Immob
OPERATION

Reset
Reset initializes the I/O ports, variables, and flags. The system status is read from EEPROM and the status is restored.

Armed
When the system enters armed state, the doors are locked (activate LOCK) and the SIREN and PLIGHT are activated for 50 ms. The LED changes to a slow flash rate. If a trigger is detected (IGN, DOOR or TRIGGER) the system changes to the alarm state.

Actions upon entry:
1. Flash parking lights for 50 ms.
2. Chirp siren for 50 ms.
3. Lock doors for 500 ms.
4. Update system status.
5. LED flash.
6. Disable start.

Alarm
Alarm state is entered whenever a trigger is detected in armed state. SIREN is activated and PLIGHT is turned on and off at a 1 Hz rate. If a remote is detected in this state, the system changes to drive state. After a 30-second delay, SIREN and PLIGHT will be deactivated and the system returned to armed state.

Actions upon entry:
1. Flash parking lights.
2. Siren on.
3. LED flash.
4. Update system status.
5. Disable start.

TABLE 1: STATE CHANGE TABLE

<table>
<thead>
<tr>
<th>Condition</th>
<th>Next State</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGN high</td>
<td>Alarm</td>
</tr>
<tr>
<td>TRIG high</td>
<td>Alarm</td>
</tr>
<tr>
<td>DOOR high</td>
<td>Alarm</td>
</tr>
<tr>
<td>Panic (any button activated for 2 seconds)</td>
<td>Alarm</td>
</tr>
<tr>
<td>Remote function 1</td>
<td>Drive</td>
</tr>
<tr>
<td>Remote function 2 (trunk release)</td>
<td>Armed</td>
</tr>
<tr>
<td>Remote function 3 (car finder)</td>
<td>Armed</td>
</tr>
<tr>
<td>LEARN high</td>
<td>Learn</td>
</tr>
</tbody>
</table>

TABLE 2: STATE CHANGE TABLE

<table>
<thead>
<tr>
<th>Condition</th>
<th>Next state</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panic (any button activated for 2 seconds)</td>
<td>Alarm</td>
</tr>
<tr>
<td>Remote function 1</td>
<td>Drive</td>
</tr>
<tr>
<td>Remote function 2 (trunk release)</td>
<td>Armed</td>
</tr>
<tr>
<td>30-second timeout</td>
<td>Drive</td>
</tr>
</tbody>
</table>

Drive
When the system enters drive state, the doors are unlocked (activate UNLOCK), and the SIREN and PLIGHT are activated twice for 50 ms. The IMMOB output is activated to enable the starting of the vehicle and LED is turned off. A remote signal will return the system to armed state.

Actions upon entry:
1. Flash parking lights for 50 ms.
2. Chirp siren for 50 ms.
3. Unlock doors for 500 ms.
4. Flash parking lights for 50 ms.
5. Chirp siren for 50 ms.
6. Update system status.
7. LED off.
8. Enable start.

TABLE 3: STATE CHANGE TABLE

<table>
<thead>
<tr>
<th>Condition</th>
<th>Next State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panic (any button activated for 2 seconds)</td>
<td>Alarm</td>
</tr>
<tr>
<td>Remote function 1 & IGN low</td>
<td>Armed</td>
</tr>
<tr>
<td>Remote function 1 & IGN high</td>
<td>Drive</td>
</tr>
<tr>
<td>Remote function 2 (trunk release)</td>
<td>Drive</td>
</tr>
<tr>
<td>Remote function 3 (car finder)</td>
<td>Drive</td>
</tr>
<tr>
<td>30-second timeout & IGN off</td>
<td>Immob</td>
</tr>
<tr>
<td>LEARN high</td>
<td>Learn</td>
</tr>
</tbody>
</table>

Immob
If the IGN is turned off for more than 30 seconds, the system will immobilize. The IMMOB output is turned off, and the LED is turned on. A remote signal only will change the state to armed, and a remote signal with the IGN on will return to drive state.

Actions upon entry:
1. Update system status.
2. LED off.
3. Disable start.

TABLE 4: STATE CHANGE TABLE

<table>
<thead>
<tr>
<th>Condition</th>
<th>Next State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panic (any button activated for 2 seconds)</td>
<td>Alarm</td>
</tr>
<tr>
<td>Remote function 1 & IGN low</td>
<td>Armed</td>
</tr>
<tr>
<td>Remote function 1 & IGN high</td>
<td>Drive</td>
</tr>
<tr>
<td>Remote function 2 (trunk release)</td>
<td>Immob</td>
</tr>
<tr>
<td>Remote function 3 (car finder)</td>
<td>Immob</td>
</tr>
<tr>
<td>LEARN high</td>
<td>Learn</td>
</tr>
</tbody>
</table>
Learn

A LEARN input in any state will put the system in learn mode. After learn is completed or timed out the system returns to the previous state.

Actions upon entry:
1. Update system status—set PASS1.
2. LED on.

After first transmission:
1. Update system status—set PASS2.
2. LED off.

After second transmission:
1. Update system status—set NORMAL.
2. LED on for 1 second.
3. Return to previous state.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Next State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remote first operation</td>
<td>Pass2</td>
</tr>
<tr>
<td>Remote second operation</td>
<td>Return to previous state</td>
</tr>
<tr>
<td>LEARN high for 8 seconds</td>
<td>Erase all transmitters</td>
</tr>
</tbody>
</table>

TABLE 5: STATE CHANGE TABLE

FUNCTIONAL MODULES

Reception

The reception routine is based on reliable algorithms used in previous implementations of KEELQO decoders. Automatic baud rate detection is used to compensate for variations in baud rate from different encoders of a specific type as well as the difference in baud rate between different encoders (HCS200, HCS300, HCS301, HCS360, HCS361, and HCS410). The reception routine will be able to handle 56- and 66-bit transmissions. The reception routine will determine the type of transmission by the number of bits in the transmission. This routine will be the same for all implementations.

Key Generation and Decryption

Decryption is done in software in the implementation. The decryption and key generation algorithms is implemented in software. The manufacturer’s code is stored in program memory and code protected to securely store the key.

Validation

Validation consists of the following steps:
1. Checking the serial number (24 or 28 bits) against the stored transmitters.
2. Comparing the discrimination value (12 bits) against the stored discrimination value.
3. Checking that the synchronization counter falls within the first synchronization window.
4. Checking if the synchronization counter falls within the second synchronization window.
5. If found to be correct, updating the synchronization counter.

Function Interpretation

<table>
<thead>
<tr>
<th>Transmitter Button</th>
<th>Function Code</th>
<th>System Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0001</td>
<td>Arm/Disarm</td>
</tr>
<tr>
<td>2</td>
<td>0010</td>
<td>Trunk release</td>
</tr>
<tr>
<td>3</td>
<td>0011</td>
<td>Car finder</td>
</tr>
<tr>
<td>1, 2 or 3 for 2 seconds</td>
<td>00XX</td>
<td>Panic</td>
</tr>
</tbody>
</table>

Learn

The LEARN input is active high. Learning is initiated by momentarily pressing the LEARN button. The decoder uses the current learning position as a scratch pad area. This means that an unsuccessful learn will delete the information stored at that learn position. The learn indicator will not be incremented if the learn was unsuccessful. The flow chart (Figure 1) shows the learning operation.
FIGURE 2: LEARN OPERATION

LEARN MODE

Press Learn Button

LED on solid

Button still pressed?

YES

NO

First code received?

YES

LED off

Time greater than 33.6 sec.?

YES

NO

Second code received?

YES

Code Validated?

YES

NO

Learn new transmitter
LED on solid for 1 second

YES

NO

Exit Learn
Turn LED off

END

NO

YES

Time greater than 8.4 sec.?

Erase memory

YES

NO

Time greater than 33.6 sec.?
The following checks will be performed on the received codes to determine if the transmitter is valid:

1. The first code that is received is checked for bit integrity.
2. The stored serial numbers are searched to check if a transmitter is relearned. If a relearn is taking place, that position is used. Otherwise, the position pointed to by the learn indicator will be used.
3. The serial number is stored in the current learn position and used to generate a key.
4. The hop code is decrypted and the result stored temporarily.
5. The serial number of the second code that is received will be compared to the first received serial number.
6. The second hop code is decrypted and the discrimination values compared.
7. The synchronization counters of the decrypted codes will be compared to check that they are sequential codes.
8. If all the checks pass the learn were successful, the learn indicator is incremented. Otherwise, the position is erased.

Operation

1. Press and release the LEARN button. Indicator LED will turn on to indicate learn mode.
2. Press transmitter button. The LED will turn off.
3. Press transmitter a second time. The LED will turn on for 1 second to indicate that the transmitter was learned successfully.
4. Repeat steps 1-3 to learn up to six transmitters. The seventh transmitter will overwrite the first transmitter that was learned.
5. Learn will be terminated if two nonsequential codes were received or if two acceptable codes were not decoded within 33.6 seconds. A valid learn will be indicated by the LED turning on solid for 1 second.
6. Erasing all the transmitters is accomplished by pressing and holding the LEARN button for 8.4 seconds. The LED will turn off at the end of the 8.4 seconds to indicate that the transmitters were erased. The learn indicator will be reset to the first position.
TABLE 6: DEVICE PINOUT

<table>
<thead>
<tr>
<th>PIN</th>
<th>PIC16C57 Function</th>
<th>Alarm Function</th>
<th>PIN</th>
<th>PIC16C57 Function</th>
<th>Alarm Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RTCC</td>
<td>APP select</td>
<td>28</td>
<td>MCLR</td>
<td>RESET</td>
</tr>
<tr>
<td>2</td>
<td>Vdd</td>
<td>+5V supply</td>
<td>27</td>
<td>Osc In</td>
<td>RC osc (4 MHz)</td>
</tr>
<tr>
<td>3</td>
<td>NC</td>
<td></td>
<td>26</td>
<td>Osc Out</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>GND</td>
<td>Ground</td>
<td>25</td>
<td>Port C Bit 7</td>
<td>NC</td>
</tr>
<tr>
<td>5</td>
<td>NC</td>
<td></td>
<td>24</td>
<td>Port C Bit 6</td>
<td>NC</td>
</tr>
<tr>
<td>6</td>
<td>Port A Bit 0</td>
<td>EEPROM DIO(3+4)</td>
<td>23</td>
<td>Port C Bit 5</td>
<td>NC</td>
</tr>
<tr>
<td>7</td>
<td>Port A Bit 1</td>
<td>EEPROM CLK (2)</td>
<td>22</td>
<td>Port C Bit 4</td>
<td>OVR</td>
</tr>
<tr>
<td>8</td>
<td>Port A Bit 2</td>
<td>EEPROM CS (1)</td>
<td>21</td>
<td>Port C Bit 3</td>
<td>LEARN</td>
</tr>
<tr>
<td>9</td>
<td>Port A Bit 3</td>
<td>RFIN</td>
<td>20</td>
<td>Port C Bit 2</td>
<td>DOOR</td>
</tr>
<tr>
<td>10</td>
<td>Port B Bit 0</td>
<td>IMMOB</td>
<td>19</td>
<td>Port C Bit 1</td>
<td>TRIG</td>
</tr>
<tr>
<td>11</td>
<td>Port B Bit 1</td>
<td>SIREN</td>
<td>18</td>
<td>Port C Bit 0</td>
<td>IGN</td>
</tr>
<tr>
<td>12</td>
<td>Port B Bit 2</td>
<td>PLIGHT</td>
<td>17</td>
<td>Port B Bit 7</td>
<td>LED</td>
</tr>
<tr>
<td>13</td>
<td>Port B Bit 3</td>
<td>NC</td>
<td>16</td>
<td>Port B Bit 6</td>
<td>TRUNK</td>
</tr>
<tr>
<td>14</td>
<td>Port B Bit 4</td>
<td>LOCK</td>
<td>15</td>
<td>Port B Bit 5</td>
<td>UNLOCK</td>
</tr>
</tbody>
</table>

TABLE 7: TIMING PARAMETERS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Typical</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Armed LED flash rate</td>
<td>1</td>
<td>per second</td>
</tr>
<tr>
<td>Siren time-out</td>
<td>33</td>
<td>second</td>
</tr>
<tr>
<td>Drive time-out</td>
<td>33</td>
<td>second</td>
</tr>
<tr>
<td>Learn time-out</td>
<td>33</td>
<td>second</td>
</tr>
<tr>
<td>All erase</td>
<td>8</td>
<td>second</td>
</tr>
<tr>
<td>LOCK, UNLOCK, TRUNK activation</td>
<td>500</td>
<td>ms</td>
</tr>
<tr>
<td>Siren chirp (arm & disarm)</td>
<td>50</td>
<td>ms</td>
</tr>
<tr>
<td>Parking light (arm & disarm)</td>
<td>50</td>
<td>ms</td>
</tr>
<tr>
<td>Parking light flash rate (siren)</td>
<td>1</td>
<td>per second</td>
</tr>
<tr>
<td>Panic</td>
<td>2</td>
<td>seconds</td>
</tr>
</tbody>
</table>
FIGURE 3: CIRCUIT DIAGRAM
<table>
<thead>
<tr>
<th>Date</th>
<th>Version</th>
<th>Page</th>
<th>Paragraph</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>08/16/96</td>
<td>1.0</td>
<td></td>
<td></td>
<td>Original</td>
</tr>
<tr>
<td>10/20/98</td>
<td>2.0</td>
<td></td>
<td></td>
<td>EEPROM Changed from 93C46 to 93LC46B, adding a series resistor on DIO</td>
</tr>
</tbody>
</table>
Note the following details of the code protection feature on PICmicro® MCUs.

- The PICmicro family meets the specifications contained in the Microchip Data Sheet.
- Microchip believes that its family of PICmicro microcontrollers is one of the most secure products of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the PICmicro microcontroller in a manner outside the operating specifications contained in the data sheet. The person doing so may be engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable”.
- Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our product.

If you have any further questions about this matter, please contact the local sales office nearest to you.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip’s products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, FilterLab, KEELoQ, microID, MPLAB, PIC, PICmicro, PICMASTER, PICSTART, PRO MATE, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, microPort, Migratable Memory, MPASM, MPLIB, MPSIM, MXDEV, PICC, PICDEM, PICDEM.net, rPIC, Select Mode and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A.

Serialized Quick Turn Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2002, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.
<table>
<thead>
<tr>
<th>Region</th>
<th>Country</th>
<th>Address</th>
<th>Telephone</th>
<th>Fax</th>
</tr>
</thead>
<tbody>
<tr>
<td>Americas</td>
<td>Corporate Office</td>
<td>2335 West Chandler Blvd. Chandler, AZ 85224-6199</td>
<td>480-792-7200</td>
<td>480-792-7277</td>
</tr>
<tr>
<td></td>
<td>Technical Support</td>
<td>480-792-7627</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Web Address</td>
<td>http://www.microchip.com</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Americas</td>
<td>Rocky Mountain</td>
<td>2335 West Chandler Blvd. Chandler, AZ 85224-6199</td>
<td>480-792-7966</td>
<td>480-792-7456</td>
</tr>
<tr>
<td></td>
<td>Boston</td>
<td>2 Lan Drive, Suite 120 Westford, MA 01886</td>
<td>978-692-3848</td>
<td>978-692-3821</td>
</tr>
<tr>
<td>Americas</td>
<td>Chicago</td>
<td>333 Pierce Road, Suite 180 Itasca, IL 60143</td>
<td>630-285-0071</td>
<td>630-285-0075</td>
</tr>
<tr>
<td></td>
<td>Dallas</td>
<td>4570 Westgrove Drive, Suite 160 Addison, TX 75001</td>
<td>972-818-7423</td>
<td>972-818-2924</td>
</tr>
<tr>
<td></td>
<td>Kokomo</td>
<td>2767 S. Albright Road Kokomo, Indiana 46902</td>
<td>765-864-8360</td>
<td>765-864-8387</td>
</tr>
<tr>
<td>Americas</td>
<td>Los Angeles</td>
<td>18201 Von Karman, Suite 1090 Irvine, CA 92612</td>
<td>949-263-1888</td>
<td>949-263-1338</td>
</tr>
<tr>
<td>Americas</td>
<td>San Jose</td>
<td>Microchip Technology Inc. 2107 North First Street, Suite 590 San Jose, CA 95131</td>
<td>408-436-7950</td>
<td>408-436-7955</td>
</tr>
<tr>
<td></td>
<td>Tokyo</td>
<td>6285 Northam Drive, Suite 108 Mississauga, Ontario L4V 1XS, Canada</td>
<td>905-673-0699</td>
<td>905-673-6509</td>
</tr>
<tr>
<td>Asia/Pacific</td>
<td>Australia</td>
<td>Microchip Technology Australia Pty Ltd Suite 22, 41 Lawson Street</td>
<td>Tel: 61-2-9868-6733</td>
<td>Fax: 61-2-9868-6755</td>
</tr>
<tr>
<td></td>
<td>China - Beijing</td>
<td>Microchip Technology Consulting (Shanghai) Co., Ltd, Beijing Liaison Office Unit 915 Beijing, 100027, China</td>
<td>Tel: 86-10-85282100</td>
<td>Fax: 86-10-85282104</td>
</tr>
<tr>
<td></td>
<td>China - Chengdu</td>
<td>Microchip Technology Consulting (Shanghai) Co., Ltd, Chengdu Liaison Office Unit 28F World Trade Plaza No. 71 Wus Road Fuzhou 350001, China</td>
<td>Tel: 86-21-6275-5700</td>
<td>Fax: 86-21-6275-5060</td>
</tr>
<tr>
<td>Asia/Pacific</td>
<td>China - Shanghai</td>
<td>Microchip Technology Consulting (Shanghai) Co., Ltd, Shanghai Liaison Office Room 701, Bldg. B Far East International Plaza No. 317 Xian Xian Road Shanghai, 200005</td>
<td>Tel: 86-21-6275-5700</td>
<td>Fax: 86-21-6275-5060</td>
</tr>
<tr>
<td></td>
<td>China - Shenzhen</td>
<td>Microchip Technology Consulting (Shanghai) Co., Ltd, Shenzhen Liaison Office Rm. 1315, 13/F, Shenzhen Kerry Centre, Rennminnu Lu Shenzhen 518001, China</td>
<td>Tel: 86-755-2350361</td>
<td>Fax: 86-755-2366086</td>
</tr>
<tr>
<td>Asia/Pacific</td>
<td>Hong Kong</td>
<td>Microchip Technology Hong Kong Ltd. Unit 901-6, Tower 2, Metroplaza 223 Hing Fong Road Kowloon, Hong Kong</td>
<td>Tel: 852-2401-1200</td>
<td>Fax: 852-2401-3431</td>
</tr>
<tr>
<td></td>
<td>India</td>
<td>Microchip Technology Inc. India Liaison Office Divyasaar Chambers 1 Floor, Wing A (A3/A4) No. 11, O'Shaugnessy Road Bangalore, 560 025, India</td>
<td>Tel: 91-80-2290061</td>
<td>Fax: 91-80-2290062</td>
</tr>
<tr>
<td>EUA</td>
<td>Korea</td>
<td>Microchip Technology Korea 168-1, Youngbo Bldg. 3 Floor Samsung-Dong, Kangnam-Ku Seoul, Korea 135-882</td>
<td>Tel: 82-2-554-7200</td>
<td>Fax: 82-2-558-5934</td>
</tr>
<tr>
<td>EUA</td>
<td>Singapore</td>
<td>Microchip Technology Singapore Pte Ltd. 200 Middle Road #07-02 Prime Centre Singapore, 189980</td>
<td>Tel: 65-334-8870</td>
<td>Fax: 65-334-8850</td>
</tr>
<tr>
<td>EUA</td>
<td>Taiwan</td>
<td>Microchip Technology Taiwan 11F-3, No. 207 Tung Hua North Road Taipei, 105, Taiwan</td>
<td>Tel: 886-2-2717-7175</td>
<td>Fax: 886-2-2545-0139</td>
</tr>
<tr>
<td>EUA</td>
<td>Denmark</td>
<td>Microchip Technology Nordic ApS Regus Business Centre Lautrup høj 1-3 Ballerup DK-2750 Denmark</td>
<td>Tel: 45 4420 9895</td>
<td>Fax: 45 4420 9910</td>
</tr>
<tr>
<td>EUA</td>
<td>France</td>
<td>Microchip Technology SARL Parc d'Activite du Moulin de Massy 43 Rue du Saule Trappu</td>
<td>Tel: 33-1-69-3-63-20</td>
<td>33-1-69-30-90-79</td>
</tr>
<tr>
<td>EUA</td>
<td>Germany</td>
<td>Microchip Technology GmbH Gustav-Heinemann Ring 125 D-81739 Munich, Germany</td>
<td>Tel: 49-89-627-144 0</td>
<td>Fax: 49-89-627-144-44</td>
</tr>
<tr>
<td>EUA</td>
<td>Italy</td>
<td>Microchip Technology SRL Centro Direzionale Colleoni Palazzo Taurus 1 V. Le Colleoni 1 20041 Agrate Brianza Milan, Italy</td>
<td>Tel: 39-039-65791-1</td>
<td>Fax: 39-039-6899883</td>
</tr>
<tr>
<td>EUA</td>
<td>United Kingdom</td>
<td>Microchip Technology Ltd. 505 Eskdale Road Winkensh Triangle</td>
<td>Tel: 44 118 921 5869</td>
<td>Fax: 44-118 921-5820</td>
</tr>
</tbody>
</table>

© 2002 Microchip Technology Inc.