

 1995 Microchip Technology Inc. DS00613A-page 1

INTRODUCTION

Systems requiring embedded control are becoming
more and more sophisticated, with microcontrollers
required to control these systems increasing in
complexity. Many microcontrollers today are being
designed with built-in serial communication capability
to be able to easily access other features that are not
built in to the microcontroller itself. Devices like
EEPROMs, A/Ds, D/As, LCDs etc. are all being built
with a serial interface to reduce cost, size, pin count,
and board area. There are many different serial
interfaces on the market used to interface peripherals
(I

2

C

, Microwire

, SPI, for example). One of the serial
interfaces that is gaining in popularity is SPI (Serial
Peripheral Interface). It is becoming more popular
because of its communication speed, simultaneous
full-duplex communication, and ease of programming.

Microchip PIC16C64/74 microcontrollers have a built-in
serial port that can be configured as an SPI port.
Currently, the Microchip Serial EEPROM product line
does not support SPI interface Serial EEPROMs,
however it is possible to use the 93 series devices on the
SPI port. Any version of Microchip’s 93 series devices
can be communicated with via the SPI port of a
PIC16C64/74. The code for this application note is
written for a Microchip 93LC56/66, but talking to other 93
series devices can be accommodated with minor code
changes. See the

Theory of Operation

 section of this
application note for more details on how this is
accomplished. This code was verified by downloading to
Microchip’s PICMASTER

 in-circuit emulator (run at full
speed with a 10 MHz crystal) and tested to make sure it
writes (polling ready/busy pin to verify write cycle
completion) and reads properly. A schematic (Figure 1)
is included in this application note to describe exactly
how the 93LC56/66 was connected to the PIC16C64/74.

The SPI interface was popularized by the Motorola
68HCXX microcontrollers. Microchip receives many
requests for Motorola assembly code that uses the SPI
port of the 68HC11 or 68HC05 to talk to Microchip
serial EEPROMs. Because of this, Microchip has
written 68HC11 assembly code to communicate with its
93 series devices via its SPI port. The program was
downloaded to a 68HC11 evaluation board and tested

Author: Keith Pazul
Memory and ASSP Division

to make sure it writes (polling ready/busy pin to verify
write cycle completion) and reads properly. A
schematic (Figure 2) is included in this application note
to describe exactly how the 93LC56/66 was connected
to the microcontroller.

THEORY OF OPERATION

To use an SPI port to communicate with Microchip’s 93
series Serial EEPROMs, the bytes to be output to the
93XXXX must be aligned such that the LSB of the
address is the 8th bit (LSB) of a byte to be output. From
there, the bits should fill the byte from right to left
consecutively. If more than 8 bits are required, then two
bytes will be required to be output. This same method
will work for any 93 series device. A 93LC66 was
chosen as the device to write this application note code
for, so the following example will be for that particular
device. The theory explained below will work for any 93
series device.

Since more than 8 bits are required to control a
93LC66, two consecutive bytes are required.

High Byte (where the start bit, op code bits, and
address MSB reside)

| 0 | 0 | 0 | 0 | SB | OP1 | OP0 | A8 |

The High Byte is configured in the following format: SB
is the start bit, OP1 is op code MSB, OP0 is op code
LSB, and A8 is the 9th address bit that is required to
address 512 bytes. The CS can be set before the byte
is output because the leading 0’s output to the 93xxxx
prevent a start bit from being recognized by the 93xxxx
until the first high bit is sent.

Low Byte (8 address LSBs)

| A7 | A6 | A5 | A4 | A3 | A2 | A1 | A0 |

The Low Byte contains A7-A0, which are the rest of the
address bits required to access 512 bytes.

Data output from master MUST be set up on the falling
edge of the clock so that it can be read from the
93XXXX on the next rising edge. Receiving data from
the 93XXXX MUST also happen on the falling edge of
the clock because the data is output from the 93XXXX
on the rising edge of the clock. THIS REQUIRES THE
CLOCK PHASE BIT OF THE SPI PORT TO BE
OPPOSITE FOR RECEIVING THAN IT IS FOR
TRANSMITTING. The clock phase needs to be
toggled between 0 for transmitting data and 1 for
receiving data. See source code for the exact spot
where the clock phase bit needs to be changed.

AN613

Using Microchip 93 Series Serial EEPROMs with Microcontroller SPI Ports

Thi d t t d ith F M k 4 0 4

AN613

DS00613A-page 2

 1995 Microchip Technology Inc.

FIGURE 1: PIC16C74 TO 93LC56/66 SCHEMATIC

VDD

VSS

OSC1/CLKIN

OSC2/CLKOUT

MCLR/VPP

RA0/AN0
RA1/AN1
RA2/AN2
RA3/AN3

RA4/T0CKI
RA5/AN4/SS

RB0/INT
RB1
RB2
RB3
RB4
RB5
RB6
RB7

RC0/T1OSO/T1CKI
RC1/T1OSI/CCP2

RC2/CCP1
RC3/SCK/SCL
RC4/SDI/SDA

RC5/SDO
RC6/TX/CK
RC7/RX/DT

RE0/RD/AN5
RE1/WR/AN6
RE2/CS/AN7

RD0/PSP0
RD1/PSP1
RD2/PSP2
RD3/PSP3
RD4/PSP4
RD5/PSP5
RD6/PSP6
RD7/PSP7

PIC16C74

10.0 MHz

15pF15pF

VDD

CS

CLK

DI

DO

VCC

NC

ORG

VSS

VDD

93LC56/66

 1995 Microchip Technology Inc. DS00613A-page 3

AN613

FIGURE 2: MOTOROLA 68HC11 TO MICROCHIP 93LC56/66 SCHEMATIC

VDD

VSS

EXTAL

XTAL

RESET

XIRQ

IRQ

MODB/VSTBY

MODA/LIR

VRH

VRL

E

PA0/IC3
PA1/IC2
PA2/IC0

PA3/OC5/OC1
PA4/OC4/OC1
PA5/0C3/0C1
PA6/0C2/0C1
PA7/PAI/OC1

STRB

STRA

PB0
PB1
PB2
PB3
PB4
PB5
PB6
PB7

PC0
PC1
PC2
PC3
PC4
PC5
PC6
PC7

PD0/RxD
PD1/TxD

PD2/MISO
PD3/MOSI
PD4/SCK

PD5/SS

PE0/AN0
PE1/AN1
PE2/AN2
PE3/AN3
PE4/AN4
PE5/AN5
PE6/AN6
PE7/AN7

MC68HC11E9

+
4.7µF

0.1µF

10MΩ

8.0 MHz

18pF18pF

4.7kΩ

4.7kΩ

4.7kΩ

4.7kΩ

System
Power

VDD

VDD

CS

CLK

DI

DO

VCC

NC

ORG

VSS

93LC56/66

VDD
10kΩ

Note: A pull down resistor is included on the CS pin. It deselects the 93LC56/66, always, except for when CS
is driven high by the 68HC11.

AN613

DS00613A-page 4

 1995 Microchip Technology Inc.

APPENDIX A: PIC16C64/74 SOURCE CODE

;**
;
; To use the SPI port to communicate with 3-wire devices,
; the bytes to be output must be aligned such that the LSB of the
; address is the 8th bit (LSB) of a byte to be output. From there,
; the bits should fill the byte from right to left consecutively.
; This same method will work for any 93xxxx device. A 93LC66 was
; chosen as the device to write this application note code for,
; so the following example will be for that particular device.
; The theory explained below will work for any 93 series device.
;
; Since more than 8 bits are required to control a 93LC66,
; two consecutive bytes are required.
;
; High byte (where start bit, op code bits and address MSB reside)
;
; | 0 | 0 | 0 | 0 | SB | OP1 | OP0 | A8 |
;
; The High Byte is configured in the following format:
; SB is the start bit, OP1 is op code MSB, OP0 is op code LSB, and A8
; is the 9th address bit that is required to address 512 bytes. The CS
; can be set before the byte is output because the leading 0’s output to
; the 93xxxx prevent a start bit from being recognized by the 93xxxx until
; the first high bit is sent.
;
; Low byte (8 address LSBs)
;
; | A7 | A6 | A5 | A4 | A3 | A2 | A1 | A0 |
;
; The Low Byte contains A8-A0, which are address bits required
; to access 512 bytes.
;
; The chip select is set high before sending the first byte out because
; the 93LC66 will not recognize a start bit until both CS and DI are
; high on the rising edge of a clock.
;
; This code is written to use the 16C64/74 SPI port to communicate with a
; Microchip 93LC66. The only other I/O line required besides the SPI port
; pins is a chip select. The ORG pin will be grounded to set up the part
; in x8 mode.
;
; PIN DESCRIPTIONS:
;
; SCK (serial clock) port C, bit 3
; SDO (serial data out) port C, bit 5
; SDI (serial data in) port C, bit 4
; CS (chip select) port C, bit 0
;
; Transmits from the master MUST happen on the falling edge of the clock
; so they can be read by the 93xxxx on the next rising edge of the clock.
; Receiving from the 93xxx MUST also happen on the falling edge of the
; clock because on the rising edge of the clock, the 93xxxx outputs its bit
; on its DO pin. This requires the CKP bit in the SSPCON register to be set
; to 1 for transmitting data and CKP=0 for receiving data.
;
; This code was written by Keith Pazul on 10/5/94
;
;**

;**
; Ram Register Definitions

Please check the Microchip BBS for the latest version of the source code. For BBS access information,
see Section 6, Microchip Bulletin Board Service information, page 6-3.

 1995 Microchip Technology Inc. DS00613A-page 5

AN613

;**
;
; received bytes from EEPROM memory locations 10h to 13h
; will be stored in RAM registers 20h to 23h.
rxdata equ 24h
txdata equ 25h
addr equ 26h
loops equ 27h
loops2 equ 28h
hibyte equ 29h
lobyte equ 2Ah
datbyt equ 2Bh
;**
;
; Other Definitions
;
;**
;
;
;**
; Bit Definitions
;**
;
cs equ 0
sdi equ 4
;**
include “c:\mpasm\include\p16cxx.inc” ; register map for PIC16CXX devices

org 0x000 ; Reset Vector
goto Start

;
;***
;
; This is the transmit/receive routine. The received bytes
; are don’t cares until reading back from the array.
;
;***
output movwf SSPBUF ; place data in buffer so it

; can be output
loop1 bsf STATUS, RP0 ; specify bank 1

btfss SSPSTAT, BF ; has data been received (xmit done)?
goto loop1 ; not done yet, keep trying
bcf STATUS, RP0 ; specify bank 0
movf SSPBUF, W ; empty receive buffer, even if we

; don’t need received data
movwf rxdata ; put received byte into location
retlw 0 ; return from subroutine

;**
;***
;
; EWEN routine
;
;***
EWEN

bcf STATUS, RP0 ; need to set bank 0
bsf PORTC, cs ; set chip select line high
movlw b’00001001’ ; start bit is bit 3, 00 is

; op code for EWEN
call output ;
movlw b’10000000’ ; 1 req for EWEN, 0000000 are don’t cares

; which is the 8 lsb address bits
call output;
bcf PORTC, cs ; bring chip select low to begin

; EEPROMs internal write cycle
retlw 0 ; return from subroutine

; remember CS must be low for at least 250 nsec
;**

AN613

DS00613A-page 6

 1995 Microchip Technology Inc.

;**
;
; This routine outputs the two bytes required to send
; the start bit, op code bits, and address bits
;
;**
WRITE

bcf STATUS, RP0 ; need to set bank 0
bsf PORTC, cs ; set chip select line high
movf hibyte, 0 ; put hibyte in w reg
call output ;
movf FSR, 0 ; put addr pointed to by FSR into

; w reg
call output ;
movf datbyt, 0 ; get ready to output data in datbyt
call output ;
bcf PORTC, cs ; bring chip select low to begin

; EEPROMs internal write cycle
incf FSR, 1 ; point to next location to

; write to
retlw 0

;**
;**
;
; This is the module that reads one byte of data
;
;**
READ

bcf STATUS, RP0 ; need to set bank 0
bsf PORTC, cs ; set chip select line high
bsf SSPCON, CKP ; make sure CKP is 1 to output

; next instruction and addr
movf hibyte, 0 ; move data from hibyte to w
call output ;
movf lobyte, 0 ; get ready to send next byte

; which is the 8 lsb address bits
call output ;

;**
; This is where CKP bit is reset for receiving data.
;**

bcf SSPCON, CKP ; change clock polarity to 0
movlw 0x00 ; The byte xmitted here is a

; don’t care
call output ;
bcf PORTC, cs ; bring chip select low to

; terminate read command
clrf INDF ; clr location pointed to by FSR
movf rxdata, 0 ; move received data to w reg
movwf INDF ; put received data in location

; pointed to by FSR
incf FSR, 1 ; point to next location to

; write to
incf lobyte, 1 ; next addr to read from
retlw 0 ;

;**
;**
;**
;**
Start

bcf STATUS, RP0 ; need to set bank 0
clrf PORTC ; initialize port c
bsf STATUS, RP0 ; need to set bank 1
movlw 0x10 ; all bits are outputs except SDI
movwf TRISC ; for SPI input
clrf PIE1 ; disables all peripheral ints
clrf INTCON ; disables all interrupts

 1995 Microchip Technology Inc. DS00613A-page 7

AN613

bcf STATUS, RP0 ; need to set bank 0
clrf SSPCON ; clear SSP control register
movlw 0x31 ; SPI master, clk/16, ckp=1
movwf SSPCON ; SSPEN enabled
call EWEN ; output EWEN for enabling writes

;***
; The next thing we will do is to write 0x5A to locations
; 10h through 13h.
;***

movlw b’00001010’ ; start bit is bit 3, 01 is
; op code for write

movwf hibyte ; load into hibyte

movlw 0x10 ; put beginning address in FSR
movwf FSR ; for later use
movlw b’01011010’ ; load 0x5A as data to be sent out
movwf datbyt ;

wrnext call WRITE ; call write subroutine
;***
; Ready/Busy poll to decide when write is complete
; and the 93LC66 is available for writing the next
; byte.
;***

nop ; cs must be low for > 250 ns
bsf PORTC, cs ; and then be brought high

rbusy btfss PORTC, sdi ; test ready/busy status
; if 1, internal write is done

goto rbusy ; part still writing, stay in
; loop

bcf PORTC, cs ; bring cs back low
btfss FSR, 2 ; have we written all 4 locations?
goto wrnext ; no, then write next byte

;***
; Now, lets read back 10h through 13h (non-sequentially) and
; store it in ram locations 20h through 23h in the 16C74.
; With the Picmaster, I can read those memory locations
; and see that it was read in properly. This is how
; I can quickly verify that the read function is working
; properly.
;***

movlw 0x20 ; where in RAM to begin storing
movwf FSR ; data read back from EEPROM
movlw 0x10 ; addr of where to begin reading
movwf lobyte ; EEPROM from
movlw b’00001100’ ; start bit is bit 3, 10 is
movwf hibyte ; op code for read

rdnext call READ ;
btfss FSR, 2 ; have we 20h thru 23?
goto rdnext ; no, then read next location

;**
; While program is in limbo routine, it is possible
; to halt the processor with Picmaster and look at
; the data contained 16C74 RAM locations 20h through 23h.
;**
limbo nop

goto limbo
;
;

end

AN613

DS00613A-page 8

 1995 Microchip Technology Inc.

APPENDIX B: MOTOROLA 68HC11 SOURCE CODE

;***
; 3-Wire byte write and byte read using SPI port (220 bytes)
;
; This program (hcllsp66.*) writes 4 bytes of $5A to a Microchip 93LC66
; using the SPI port of the Motorola 68HC11 microcontroller. Ready/busy
; polling is used to determine when the current byte is done writing and
; the next byte is ready to be written to the 93LC66. After the 4 bytes
; are written, they are read back and stored in RAM locations $100-$103.
; The evaluation board can be stopped after receiving the 4 bytes to
; view RAM locations and verify that what was written to the 93LC66 is
; what is read back.
;
; This code was written by Keith Pazul on 3/7/95.
;
; This is the way the bytes will be aligned to be sent to the 93LC56/66:
;
; First byte (where start bit, op codes reside)
;
; | 0 | 0 | 0 | 0 | SB | OP1 | OP0 | A8 |
;
; where SB is start bit, OP1 is op code msb, OP0 is op code lsb,
; and A8 is address msb.
;
; Next byte (address)
;
; | A7 | A6 | A5 | A4 | A3 | A2 | A1 | A0 |
;
; where A8-A0 are address bits required to address 4k bits of memory.
;
; This code will work for any 93 series device. The only difference
; is that the number of address bits is adjusted and the start bit
; and op code bits are adjusted to follow directly after the address
; MSB.
;
; THE 93LC56 or 66 IS ASSUMED TO BE IN x8 MODE. IT REQUIRES
; THE USER TO TIE THE ORG PIN TO Vss.
;
; This program was written using a 68CH11EVBU evaluation board.
; This board has a monitor program in firmware of the 68HC11 which
; allows single stepping, register viewing, modifying, etc. Since this
; is the case, the program code will be loaded into the on-chip EEPROM.
; This EEPROM begins at $B600. The control registers are left to thier
; default location of $1000 and the RAM is left to its default location.
; RAM locations $48-$ff are used by the monitor program and are not
; available for program use. Therefore, the stack pointer is set a $47
; and will be able to use all of the RAM to $00, and the RAM variables
; begin at location $100 and go up from there. I cannot program the
; reset vector since it is ROM space (at $FFFE), so the way I run this
; program is to use the monitor program that comes with the evaluation
; board to set the program counter to the starting address of my user
; program ($B600) and begin from there. For users who do have access
; to the reset vector, the label of the beginning program (in my case, it
; is called START) should be loaded at location $FFFE. This program was
; not assembled using a Motorola assembler, but was assembled using
; Universal Cross-Assemblers Cross-32 Meta-Assembler. It has the
; ability to assemble just about any microcontroller code. There are
; certain commands that are unique to the cross-assembler. These
; commands will be commented differently than other comments to
; be recognizable. They will look like this:

;++++++++++++++++++++++++++++++++

Please check the Microchip BBS for the latest version of the source code. For BBS access information,
see Section 6, Microchip Bulletin Board Service information, page 6-3.

 1995 Microchip Technology Inc. DS00613A-page 9

AN613

; Special cross-assembler command(s)
;++++++++++++++++++++++++++++++++

; I do not know the exact assembler commands required to accomplish
; assembly using a Motorola assembler.
;
; The crystal that comes with the evaluation board is 8 Mhz.
;
; The SPI port in on port D. The bits are defined as follows:
;
; MISO PORT D, PIN 2 (pin 22 on package)
; MOSI PORT D, PIN 3 (pin 23 on package)
; SCK PORT D, PIN 4 (pin 24 on package)
; SS\ PORT D, PIN 5 (pin 25 on package)
; CS PORT C, PIN 6
;
; Note that only the CS pin resides on port C.
;**

;+++
 CPU “C:\WINC32\68HC11.TBL” ; LOAD TABLE
 HOF “MOT8”; Hex output is Motorola S-records
;+++
;
;**
; 68HC11 control register locations
;**
REGBS EQU 1000H ; BEGINNING OF REGISTERS
RAMBS EQU 100H ; BEGINNING OF RAM VARIABLES
DDRC EQU REGBS+07H ; DATA DIRECTION REG FOR PORT C
PORTC EQU REGBS+03H ; PORT C DATA REGISTER
PCOFF EQU 03H ; OFFSET FROM CONTROL REG BEG.
PORTD EQU 1008H ; PORT D DATA REGISTER
DDRD EQU 1009H ; PORT D DATA DIRECTION REGISTER
SPCR EQU 1028H ; SPI CONTROL REGISTER
SPSR EQU 1029H ; SPI STATUS REGISTER
SPDR EQU 102AH ; SPE DATA REGISTER
;***
;***
; User defined constants
;**
CSMASK EQU 01000000B ; BIT MASK FOR CHIP SELECT
SDIMASK EQU 00000100B ; BIT MASK FOR MISO PIN
;**

LDS #0047H ; STACK POINTER BEGINS AT $47

ORG 100H ; RAM variables begin at 100h

;+++
; DFS is a Universal Cross-Assembler directive that stands for define
; storage. 1 is for byte, 2 is for word, 4 is for long word. These are
; the user defined RAM variables.

RXARAY DFS 1 * {4} ; 100H-103H
RXDATA DFS 1 ; 104H
DATBYT DFS 1 ; 105H
HIBYTE DFS 1 ; 106H
LOBYTE DFS 1 ; 107H
RBTEST DFS 1 ; 108H
ADDROFF DFS 1 ; 109H
;+++

;**
; Program code cannot be placed in ROM for eval board because

AN613

DS00613A-page 10

 1995 Microchip Technology Inc.

; eval board firmware is loaded in ROM. Program code will be
; loaded in EEPROM (which is 512 bytes and begins at B600h).
;

ORG 0B600H
;**
;
; This is the main portion of the code. It is where the reset
; vector should set program counter to.
;
;**

START
LDX #REGBS ; LOADS BEG OF REGISTERS INTO X

BCLR PCOFF,X,CSMASK ; MASK SURE CS IS CLEARED

LDAA #10110000B ; SETS UP BITS 0-3 AND 6 AS INPUTS,
STAA DDRC ; BITS 4,5, AND 7 AS OUTPUTS

CLR PORTC ; CLEAR ALL PORT C BITS

LDAA #11111011B ; ALL BITS ARE OUTPUTS EXCEPT MISO
STAA DDRD ;

LDAA #01010010B ; SPIE=0,SPE=1,DWOM=0,MSTR=1,
STAA SPCR ; CPOL=0,CPHA=0, CLK/16

LDAA #SDIMASK ; STORE READY/BUSY MASK IN
STAA RBTEST ; LOCATION RBTEST

LDAA #10H ;
STAA LOBYTE ; LOAD 8 LSB’S OF ADDRESS

CLR ADDROFF ; SET ADDRESS OFFSET TO 0 FOR
; READ COMMANDS

JSR EWEN ; SEND EWEN COMMAND

;**
; Now lets write 5Ah out to address 10h
;**

LDAA #00001010B ; STRT BIT IS BIT 3, 01 IS
STAA HIBYTE ; OP CODE FOR WRITE, LSB IS

; ADDRESS

LDAA #01011010B ; LOAD 0x5A IN DATA LOCATION
STAA DATBYT ;

WRNEXT JSR WRITE ; CALL WRITE ROUTINE

;***
; ready/busy poll input pin to see when internal write
; cycle is complete.
;***

BSET PCOFF,X,CSMASK ; RAISE CS FOR READY/BUSY POLLING

RBUSY LDAA PORTD ; INPUT PORT D
ANDA RBTEST ; MASK OFF ALL BITS EXCEPT MISO
BEQ RBUSY ; IF MISO IS LO, PART STILL BUSY,

; ELSE WRITE IS COMPLETE

BCLR PCOFF,X,CSMASK ; POLLING COMPLETE, END CHIP SELECT

 1995 Microchip Technology Inc. DS00613A-page 11

AN613

LDAA LOBYTE ; GET ADDRESS OFFSET
BITA #00000100B ; ARE ALL BYTES WRITTEN YET?
BEQ WRNEXT ; ALL BYTES HAVE NOT BEEN WRITTEN,

; WRITE NEXT BYTE

;**
; Now lets read back the location of rxdata to see if we
; read back what we wrote to that location.
;**

LDAA #00001100B ; STRT BIT IS BIT 3, 10 IS
STAA HIBYTE ; OP CODE FOR READ, LSB IS

; ADDRESS
LDAA #10H ; RESET BEGINNING ADDRESS
STAA LOBYTE ; FOR READ OPERATIONS

LDY #RAMBS ; RX BUFF IS AT BEG OF RAM

RDNEXT JSR READ ; CALL READ SUBROUTINE

LDAA LOBYTE ; LOAD ACC WITH MASK THAT
; CHECKS TO SEE IF 4 BYTES
; HAVE BEEN WRITTEN

BITA #00000100B ; CHECK TO SEE IF 4 BYTES HAVE
BEQ RDNEXT ; BEEN WRITTEN. IF NOT, READ

; NEXT BYTE.

LDAA #10110000B ; DISABLES CS TO PROHIBIT
STAA DDRC ; POSSIBILITY OF INADVERTANT

; WRITES

LIMBO NOP
JMP LIMBO

;**
;
; This subroutine outputs the data stored in TXBUFF
;
;**

OUTPUT
STAA SPDR ; MOVE DATA FROM ACC A TO SPDR

LOOP1 LDAB SPSR ; SEE IF XFER COMPLETE FLAG SET
BPL LOOP1 ; IF NOT, LOOP UNTIL SET

LDAA SPDR ; MOVES RECEIVED BYTE FROM DATA REG
STAA RXDATA ; TO RECEIVE DATA LOCATION

RTS
;**

;**
;
; EWEN routine
;
;**
EWEN

LDAA #11110000B ; SET CS FROM IN TO OUT. ALL
STAA DDRC ; OTHER BITS ARE THE SAME

BSET PCOFF,X,CSMASK ; DROP CS TO BEGIN COMMAND

LDAA #00001001B ; STRT BIT IS BIT 3, 00 IS
; OP CODE FOR EWEN

JSR OUTPUT ;

AN613

DS00613A-page 12

 1995 Microchip Technology Inc.

LDAA #10000000B ; 1 IS REQ FOR EWEN. REST
; ARE DON’T CARE BITS FOR
; LOWER 8 ADDR BITS

JSR OUTPUT ;

BCLR PCOFF,X,CSMASK ; SET CS TO COMPLETE EWEN

RTS
;***

;***
;
; WRITE routine
;
;***
WRITE

BSET PCOFF,X,CSMASK ; BEGIN WRITE COMMAND

LDAA HIBYTE ; GET DATA FROM HIBYTE TO OUTPUT
JSR OUTPUT ;

LDAA LOBYTE ; 8 LSBs OF ADDRESS POINTED TO
JSR OUTPUT ; BY ADDROFF OFFSET TO Y REG

LDAA DATBYT ; OUTPUT DATA BYTE
JSR OUTPUT ;

BCLR PCOFF,X,CSMASK ; DROP CS TO BEGIN COMMAND

INC LOBYTE ; INC ADDRESS FOR NEXT LOCATION
; TO WRITE TO

RTS
;***

;***
;
; READ routine
;
;***
READ

LDAA SPCR ; READ IN SPI CONTROL REG
ANDA #11111011B ; SET CPHA TO 0 FOR CONTROL
STAA SPCR ; PORTION OF READ SEQUENCE

BSET PCOFF,X,CSMASK ; DROP CS TO BEGIN COMMAND

LDAA HIBYTE ; OUTPUT HI BYTE FOR READ CMD
JSR OUTPUT ;

LDAA LOBYTE ; 8 LSBs OF ADDRESS
JSR OUTPUT ;

;**
;**
;**
; To read a byte, a byte must be transmitted. Here we xmit a byte
; of don’t care bits to receive a byte. WE MUST CHANGE THE CPHA
; FROM 0 TO 1 TO CHANGE BEFORE DATA IS RECEIVED. IF NOT, THEN THE
; MICRO WILL TRY TO RECEIVE AT THE SAME TIME THE 93XX66 WILL BE
; TRANSMITTING. THE SYMPTOM OF THIS NOT SET UP PROPERLY IS THAT
; THE DATA READ WILL BE SHIFTED RIGHT ONE BIT WITH MSB BEING 0.
;**
;**
;**

LDAA SPCR ; READ IN SPI CONTROL REG

 1995 Microchip Technology Inc. DS00613A-page 13

AN613

ORAA #00000100B ; SET CPHA TO 1
STAA SPCR

JSR OUTPUT ; XMIT A BYTE OF DON’T CARE BITS
; TO RECEIVE A BYTE

BCLR PCOFF,X,CSMASK ; CLR CS TO END COMMAND

LDAA RXDATA ; GET DATA RECIEVED IN RXDATA
STAA 0, Y ; AND STORE IN LOCATION POINTED

; TO BY Y INDEX REG + 0 OFFSET
INY
INC LOBYTE ; INC ADDR OF NEXT BYTE TO READ

; FROM
RTS

;**

;++
; This command tells the cross-assembler that code starts
; at the location of START

END START
;++

AN613

DS00613A-page 14

 1995 Microchip Technology Inc.

NOTES:

 1995 Microchip Technology Inc. DS00613A-page 15

AN613

NOTES:

DS00613A-page 16

 1995 Microchip Technology Inc.

W

ORLDWIDE

 S

ALES

 & S

ERVICE

ASIA/PACIFIC

Hong Kong

Microchip Technology
Unit No. 3002-3004, Tower 1
Metroplaza
223 Hing Fong Road
Kwai Fong, N.T. Hong Kong
Tel: 852 2 401 1200 Fax: 852 2 401 3431

Korea

Microchip Technology
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku,
Seoul, Korea
Tel: 82 2 554 7200 Fax: 82 2 558 5934

Singapore

Microchip Technology
200 Middle Road
#10-03 Prime Centre
Singapore 188980
Tel: 65 334 8870 Fax: 65 334 8850

Taiwan

Microchip Technology
10F-1C 207
Tung Hua North Road
Taipei, Taiwan, ROC
Tel: 886 2 717 7175 Fax: 886 2 545 0139

EUROPE

United Kingdom

Arizona Microchip Technology Ltd.
Unit 6, The Courtyard
Meadow Bank, Furlong Road
Bourne End, Buckinghamshire SL8 5AJ
Tel: 44 0 1628 851077 Fax: 44 0 1628
850259

France

Arizona Microchip Technology SARL
2 Rue du Buisson aux Fraises
91300 Massy - France
Tel: 33 1 69 53 63 20 Fax: 33 1 69 30 90 79

Germany

Arizona Microchip Technology GmbH
Gustav-Heinemann-Ring 125
D-81739 Muenchen, Germany
Tel: 49 89 627 144 0 Fax: 49 89 627 144 44

Italy

Arizona Microchip Technology SRL
Centro Direzionale Colleoni
Palazzo Pegaso Ingresso No. 2
Via Paracelso 23, 20041
Agrate Brianza (MI) Italy
Tel: 39 039 689 9939 Fax: 39 039 689 9883

JAPAN

Microchip Technology Intl. Inc.
Benex S-1 6F
3-18-20, Shin Yokohama
Kohoku-Ku, Yokohama
Kanagawa 222 Japan
Tel: 81 45 471 6166 Fax: 81 45 471 6122

9/22/95

AMERICAS

Corporate Office

Microchip Technology Inc.
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 602 786-7200 Fax: 602 786-7277

Technical Support:

 602 786-7627

Web:

 http://www.mchip.com/microchip

Atlanta

Microchip Technology Inc.
500 Sugar Mill Road, Suite 200B
Atlanta, GA 30350
Tel: 770 640-0034 Fax: 770 640-0307

Boston

Microchip Technology Inc.
5 Mount Royal Avenue
Marlborough, MA 01752
Tel: 508 480-9990 Fax: 508 480-8575

Chicago

Microchip Technology Inc.
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 708 285-0071 Fax: 708 285-0075

Dallas

Microchip Technology Inc.
14651 Dallas Parkway, Suite 816
Dallas, TX 75240-8809
Tel: 214 991-7177 Fax: 214 991-8588

Dayton

Microchip Technology Inc.
35 Rockridge Road
Englewood, OH 45322
Tel: 513 832-2543 Fax: 513 832-2841

Los Angeles

Microchip Technology Inc.
18201 Von Karman, Suite 455
Irvine, CA 92715
Tel: 714 263-1888 Fax: 714 263-1338

New York

Microchip Technology Inc.
150 Motor Parkway, Suite 416
Hauppauge, NY 11788
Tel: 516 273-5305 Fax: 516 273-5335

San Jose

Microchip Technology Inc.
2107 North First Street, Suite 590
San Jose, CA 95131
Tel: 408 436-7950 Fax: 408 436-7955

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. No representation or warranty
is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property
rights arising from such use or otherwise. Use of Microchip’s products as critical components in life support systems is not authorized except with express written approval by Microchip.
No licenses are conveyed, implicitly or otherwise, under any intellectual property rights. The Microchip logo and name are registered trademarks of Microchip Technology Inc. All rights
reserved. All other trademarks mentioned herein are the property of their respective companies.

All rights reserved.

 1995, Microchip Technology Incorporated, USA.

	INTRODUCTION
	THEORY OF OPERATION
	APPENDIX A: PIC16C64/74 SOURCE CODE
	APPENDIX B: MOTOROLA 68HC11 SOURCE CODE
	WORLDWIDE SALES & SERVICE

