
                

AN600

 

Air Flow Control Using Fuzzy Logic
INTRODUCTION

Fuzzy logic control can be used to implement a wide
variety of intelligent functions including everything from
consumer electronic goods and household appliances
to auto electronics, process control, and automation.

Typically, fuzzy logic control applications fall into two
categories. First, it can be used to enhance existing
products with intelligent functions. Second, it can utilize
sensors that continuously respond to changing input
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conditions. In addition, fuzzy logic simplifies dealing
with non-linearities in systems, and allows for quicker
product development cycles.

This application note will step the user through a fuzzy
logic control design utilizing sensors. The development
tool used is Inform  Software’s  fuzzyTECH -MP. The
development tool allows for an all-graphical editor,
analyzers, and debug capability.

PROJECT DESCRIPTION

The block diagram of the project is shown in Figure 1
and operates as follows.
FIGURE 1: BLOCK DIAGRAM
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The control panel prompts the user to enter the desired
beach ball height on the 16-key keypad.  The keypad
input is echoed on the LCD module and the user is
prompted for confirmation.  Upon confirmation of user
input, the control panel initiates a ranging cycle to
calculate the current height of the beach ball.  The
desired height and current height are continually
displayed on the LCD module.  From the current height,
the control panel calculates both the velocity and the
delta height (difference in desired height from current
height).  This information, along with the desired height,
is transmitted to the PC via an RS-232 link.  The fuzzy
logic algorithm, running on the PC, calculates the
appropriate duty cycle of the DC fan and transmits this
information to the control panel.  This emulates a “real
world” environment in which system level debug can be
done on the PC in real-time.  The control panel controls
the duty cycle of the DC fan with this input.  The above
listed ranging process continues indefinitely until
interrupted by the user.

The control panel houses an ultrasonic ranging module
and the microcontroller. The microcontroller handles all
of the peripheral interfaces including the 16-key
keypad, the LCD display, the ultrasonic ranging module,
and the RS-232 serial link. The project required a
microcontroller that could handle the data throughput
and all of these peripherals with little or no external
components. The microcontroller used was the
PIC16C74, which contains 4K of on-chip program
memory and 192 bytes of on-chip data memory.
Furthermore, the interrupt capabilities, I/O pins, PWM
module, capture and compare modules, timer modules,
Universal Asynchronous Receiver Transmitter
(USART), and A/D converter make it an excellent fit for
the application. In addition, the on-chip Pulse Width
Modulation (PWM) module allows for a single
component (FET) interface for the DC fan control and
the ranging module can interface directly to the
microcontroller (refer to Application Note AN597,
"Implementing Ultrasonic Ranging").
DS00600B-page 2
FUZZY DESIGN

Fuzzy logic first translates the crisp inputs from the sen-
sor into a linguistic description.  Then it evaluates the
control strategy contained in fuzzy logic rules and
translates the result back into a crisp value.

The first step in fuzzy logic control design is system def-
inition.  The only possible sources of inputs to the fuzzy
logic control algorithm are the ultrasonic transducer, the
user, and the DC fan.  The key is to decide which of
these inputs are significant and which are not.  Basi-
cally, the behavior of the beach ball was characterized
by asking the following questions from the beach ball’s
perspective: 

• Where am I?
• How far am I from where I want to be?
• How fast am I getting there?
• What external force will get me there?

The nice thing about fuzzy logic control is that the
linguistic system definition becomes the control
algorithm.

The variables were defined as follows: 

• Current Height [Where am I?]
• Delta Height [How far am I from where I want to 

be?]
• Velocity  [How fast am I getting there?)
• Duty Cycle [What external force will get me 

there?]

Defining the variables was the starting point, but for the
algorithm to work smoothly, it isn’t good enough to say
“the beach ball has velocity,” you need to know to what
degree the beach ball has velocity.  This is
accomplished by defining terms that more fully
describe the variable.  The combination of variables
and terms gives a linguistic description of what is
happening to the system.  From this, the Velocity
variable can be described as having a “positive small
velocity” or a “positive big velocity,” not just a “velocity.”
  1997 Microchip Technology Inc.
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There is no fixed rule on how many terms to define per
variable.  Typically, three to five terms are defined, but
more or less may be needed based on the control
algorithm.  In retrospect, we probably could have
reduced Current Height to three terms and Velocity to
five terms.  Table 1 lists the four variables that are used
for the trade show demo and their associated terms. 

Once the linguistic variables are defined, data types
and values need to be defined.  For this application,
data types were defined as 8-bit integers (16-bit
definition is also possible).  After defining the data
types, the shell and code values for each variable were
specified.  A shell value is used within the fuzzy logic
development tool and a code value is used when the
code is generated.  

The best way to describe shell and code values is using
the analogy of a D/A converter.  If we have a 5.0V, 8-bit
D/A converter, the digital input would correspond to the
code value and the analog output would correspond to
the shell value.  This is, if we write (or pass) a value of
128 to the D/A we would get a 2.51V out.  Applying this
analogy to our project, we would pass a crisp value
(digital) to the fuzzy world and the fuzzy world would
use the fuzzy value (analog).
  1997 Microchip Technology Inc.
Therefore, when we define shell and code values, we
are basically defining the "D/A converter." For example,
you can define the shell value for Duty Cycle to be a
minimum of 0 and a maximum of 100 (percent).
Therefore, within the fuzzy logic development tool, Duty
Cycle will take on a value between 0 and 100, inclusive. 

The code value is limited by the data type, but can take
on any or all of the digital range.  That is, if the shell
value is 0 to 100, the code values could be defined as
0 to 100.  But to get full resolution, the code value
should be defined over the entire range (i.e., 0 to 255
for 8-bit data types).  The code values and shell values
were defined as shown in Table 2.  Note that for the
height and velocity variables, the shell values are
scaled by 2 (i.e., a Current Height with a crisp value of
60 would correspond to 30 inches).
TABLE 1: INPUT AND OUTPUT VARIABLES AND TERMS

TABLE 2: SHELL AND CODE VALUES

Input Variables Output Variable

Current Height Delta Height Velocity Duty Cycle

very lo neg big neg big very slo

lo neg small neg med slo

medium zero neg small medium slo

hi pos small zero medium

very hi pos big pos small medium fast

pos med fast

pos big very fast

Shell Value Code Value

Variable Min. Max. Min. Max.

Current Height 0 120 0 255

Delta Height -50 50 0 255

Velocity -5 5 0 255

Duty Cycle 0 255 0 255
DS00600B-page 3
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Next, the membership functions were defined to further
describe the variables. The fuzzy logic development
tool creates the membership functions automatically.
This gives a good starting point, but the membership
functions still need to be fine-tuned during the debug
phase. In this application, only the linear shaped func-
tions (Pi, Z, S and Lambda types) were used as seen in
Figure 2.

FIGURE 2: STANDARD MEMBERSHIP 
FUNCTION TYPES
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FUZZY RULE BASE

The entire fuzzy inference is contained within the rule
blocks of a system.  For example, if the beach ball is
near the top of the tube and it was commanded to be
near the bottom of the tube, the rule that described  the
situation would be:

IF CURRENT HEIGHT = VERY HI 

AND DELTA HEIGHT = NEGATIVE BIG 

THEN DUTY CYCLE = SLOW

The above rule describes one situation, but the rule def-
inition would continue until the system was adequately
described  The rule block is the collection of all rules
that describe the system.

The rules of the rule block can also be defined in terms
of how much a specific rule is supported when calculat-
ing inference. The support of a rule, or plausibility, is
known as the degree of support for that rule. A plausible
rule is defined by a 1.0, a totally implausible rule is
defined by 0.0.  In this project all rules are fully sup-
ported.

The degree to which a crisp value belongs to a term is
known as the degree of membership. For example, the
terms Medium and Hi for the variable Current Height
were defined as a Lambda-type membership function
centered around the crisp values 52 (26 inches) and 82
(41 inches), respectively, as shown in Figure 3.
FIGURE 3: DEGREE OF MEMBERSHIP
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Therefore, if the beach ball was at 26 inches, the
degree of membership would be 1.0 for Medium and
0.0 for Hi.  However, as the beach ball rises in height,
the degree of membership for the term Medium would
decrease and the degree of membership for the term Hi
would increase. The interplay of these linguistic
variable terms is controlled by the rule base. The rule
base defines not only the relationship between the
terms, but also how much each rule is supported, as
described previously.
  1997 Microchip Technology Inc.
From the list of rules, a Fuzzy Associative Map (FAM) is
constructed (see below). The FAM shows the
plausibility (degree of support) of each rule as seen in
Figure 4 and Figure 5.
FIGURE 4: MATRIX RULE EDITOR WITH FAM RULES
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FIGURE 5: 3-D RULE DISPLAY
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DEFUZZIFICATION

Defuzzification entails translating a fuzzy value to a
crisp value. The interface for the output variables
contains the defuzzification procedures. For most
control applications (and this project), the center-of-
maximum (CoM) method is used for defuzzification.
CoM evaluates more than one output term as valid and
compromises between them by computing a weighted
mean of the term membership maxima. Example 1 and
Figure 6 show the defuzzification of the linguistic
variable Duty Cycle using CoM.

EXAMPLE 1: DEFUZZIFICATION OF DUTY 
CYCLE

The crisp values of the three input variables are as
follows:

Current Height: 30

Delta Height: 0

Velocity: 0
  1997 Microchip Technology Inc.
The crisp value can be calculated using the CoM
method with the following equation.

For this example, when the crisp values are fuzzified,
the Duty Cycle variable is defined to be mostly
"medium" (degree of membership of 0.7) and
somewhat "medium fast" (degree of membership 0.1).
The arguments for the "medium" and "medium fast"
term membership maxima are 165 and 178,
respectively.

C = ∑i [ I • maxx (M) • arg (maxx (M))] 

∑i I

c = crisp output value
i = linguistic term
I = inference result
M = membership function of linguistic term

((0.7 •  1.0 •  165) + (0.1 •  1.0 •  178)) = 166

(0.7 + 0.1)
FIGURE 6: DEFUZZIFICATION OF DUTY CYCLE
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DEBUGGING

In serial debug mode, one can graphically adjust the
variable terms and see the results in “real time.” On this
project, the first variable adjusted was the Duty Cycle
variable. Duty Cycle was adjusted so that the beach
ball reached 30 inches (Figure 7). The Delta Height
terms were fine-tuned -- negative small, zero, and
positive small were bunched together -- and the beach
ball stabilized at 30 inches (Figure 8). There was
virtually no fluctuation in the height. In order for the
system to self-correct for environmental (external)
changes, the Velocity variable was used. The velocity
variable is calculated by the difference in height
between consecutive height calculations. A few rules
were added that used the Velocity variable to nudge the
ball into place when the environmental conditions
changed (Figure 9).
DS00600B-page 8
Another advantage of fuzzy logic is that it simplifies
dealing with non-linearities of the system. The system
was highly non-linear, so it was tested at the extremes
and moving the beach ball at different rates from one
extreme to the other. The Current Height variable
needed almost no adjustment (Figure 10). The variable
that required the most work was the Duty Cycle
variable, but in less than a day, the algorithm was
working well within specifications. The beach ball could
go from a resting position, with the DC fan off, to the
maximum allowable height of 42 inches in less than
8 seconds with no overshoot. Operation between the
minimum and maximum height was much quicker, also
with no overshoot.

The final graphical representation of the linguistic
variables are shown in Figure 7 through Figure 10.
FIGURE 7: DUTY CYCLE VARIABLE
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FIGURE 8: DELTA HEIGHT VARIABLE

FIGURE 9: VELOCITY VARIABLE
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FIGURE 10: CURRENT HEIGHT VARIABLE
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INTEGRATION

The system parameters and graphical variable
representations are captured in a Fuzzy Technology
Language (FTL) file.  The FTL file is a vendor and
hardware independent language which defines the
fuzzy logic based system.  The FTL file for this project
can be seen in Appendix A.

The FTL file is used to generate the public variable
definitions and code which can be embedded in the
microcontroller.  The appropriate device family from the
pre-assembler code are generated by simply selecting
the compile pull-down menu.  Once the pre-assembler
file is generated, the "hooks" to the main program must
be added. 

The best way to embed the code is to use the template
MYMAIN.ASM. The template for each of the families of
devices (PIC16C5X, PIC16CXXX and PIC17CXX) is
included in the  fuzzyTECH -MP development kit. The
template shown in Appendix B is for the PIC16CXXX
family.
DS00600B-page 10
The file MYMAIN.ASM should contain your program in
the "main_loop " section. The only other modifications
required to the template are listed below and are
specified in the left hand column of Appendix B.

1. Processor Type definition
2. Code Start Address
3. Fuzzy RAM Start Address
4. Include Public Variable Definition file

(myproj.var), which was created by
 fuzzyTECH -MP

5. Include Pre-Assembler Code (myproj.asm )
which was created by  fuzzyTECH -MP

6. Call Initialization (initmyproj ) which was cre-
ated by  fuzzyTECH -MP

7. Set Crisp Input Value(s)
8. Call Fuzzy Logic System (myproj )
9. Read Crisp Output Value(s)

For this project, the fuzzy logic algorithm assembled to
704 words of program memory and 41 bytes of data
memory.

SUMMARY

This project demonstrates many aspects of fuzzy logic
control - quick development cycle, real-time debug,
sensor integration, and non-linear system control. The
total development time for the application took less than
a week and performed well within system
specifications.
  1997 Microchip Technology Inc.
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APPENDIX A:  FUZZY TECHNOLOGY LANGUAGE FILE
 PROJECT {
  NAME = B_BALL.FTL;
  AUTHOR = ROBERT SCHREIBER;
  DATEFORMAT = M.D.YY;
  LASTCHANGE = 9.16.94;
  CREATED    = 9.14.94;
  SHELL = MP;
  COMMENT {
}  /* COMMENT */
  SHELLOPTIONS {
    ONLINE_REFRESHTIME = 55;
    ONLINE_TIMEOUTCOUNT = 0;
    ONLINE_CODE = OFF;
    TRACE_BUFFER = (OFF, PAR(10000));
    BSUM_AGGREGATION = OFF;
    PUBLIC_IO = ON;
    FAST_CMBF = ON;
    FAST_COA  = OFF;
    SCALE_MBF = OFF;
    FILE_CODE = OFF;
    BTYPE = 8_BIT;
  } /* SHELLOPTIONS */
  MODEL {
    VARIABLE_SECTION {
      LVAR {
        NAME    = current_height;
        BASEVAR = Current_Height;
        LVRANGE = MIN(0.000000), MAX(120.000000),
                  MINDEF(0), MAXDEF(255),
                  DEFAULT_OUTPUT(120.000000); 
        RESOLUTION = XGRID(0.000000), YGRID(1.000000),
                     SHOWGRID (ON), SNAPTOGRID(ON);
        TERM {
          TERMNAME = very_lo;
          POINTS = (0.000000, 1.000000),
                   (14.117647, 0.000000),
                   (120.000000, 0.000000);
          SHAPE = LINEAR;
          COLOR = RED (255), GREEN (0), BLUE (0);
        }
        TERM {
          TERMNAME = lo;
          POINTS = (0.000000, 0.000000),
                   (5.176471, 0.000000),
                   (24.941176, 1.000000),
                   (40.941176, 0.000000),
                   (120.000000, 0.000000);
          SHAPE = LINEAR;
          COLOR = RED (0), GREEN (255), BLUE (0);
        }
        TERM {
          TERMNAME = medium;
          POINTS = (0.000000, 0.000000),
                   (27.294118, 0.000000),
                   (51.294118, 1.000000),
                   (66.352941, 0.000000),
                   (120.000000, 0.000000);
          SHAPE = LINEAR;
          COLOR = RED (0), GREEN (0), BLUE (255);
        }

Please check the Microchip BBS for the latest version of the source code. Microchip’s Worldwide Web Address: 
www.microchip.com; Bulletin Board Support: MCHIPBBS using CompuServe® (CompuServe membership not 
required).
  1997 Microchip Technology Inc. DS00600B-page 11
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        TERM {
          TERMNAME = hi;
          POINTS = (0.000000, 0.000000),
                   (55.529412, 0.000000),
                   (82.352941, 1.000000),
                   (106.352941, 0.000000),
                   (120.000000, 0.000000);
          SHAPE = LINEAR;
          COLOR = RED (128), GREEN (0), BLUE (0);
        }
        TERM {
          TERMNAME = very_hi;
          POINTS = (0.000000, 0.000000),
                   (73.411765, 0.000000),
                   (113.411765, 1.000000),
                   (120.000000, 1.000000);
          SHAPE = LINEAR;
          COLOR = RED (0), GREEN (128), BLUE (0);
        }
      }  /* LVAR */ 
      LVAR {
        NAME    = delta_height;
        BASEVAR = Delta_Height;
        LVRANGE = MIN(-50.000000), MAX(50.000000),
                  MINDEF(0), MAXDEF(255),
                  DEFAULT_OUTPUT(-50.000000); 
        RESOLUTION = XGRID(0.000000), YGRID(1.000000),
                     SHOWGRID (ON), SNAPTOGRID(ON);
        TERM {
          TERMNAME = neg_big;
          POINTS = (-50.000000, 1.000000),
                   (-16.666667, 0.000000),
                   (50.000000, 0.000000);
          SHAPE = LINEAR;
          COLOR = RED (255), GREEN (0), BLUE (0);
        }
        TERM {
          TERMNAME = neg_small;
          POINTS = (-50.000000, 0.000000),
                   (-21.764706, 0.000000),
                   (-6.470588, 1.000000),
                   (-0.588235, 0.000000),
                   (50.000000, 0.000000);
          SHAPE = LINEAR;
          COLOR = RED (0), GREEN (255), BLUE (0);
        }
        TERM {
          TERMNAME = zero;
          POINTS = (-50.000000, 0.000000),
                   (-12.352941, 0.000000),
                   (0.196078, 1.000000),
                   (13.529412, 0.000000),
                   (50.000000, 0.000000);
          SHAPE = LINEAR;
          COLOR = RED (0), GREEN (0), BLUE (255);
        }
        TERM {
          TERMNAME = pos_small;
          POINTS = (-50.000000, 0.000000),
                   (0.196078, 0.000000),
                   (10.000000, 1.000000),
                   (10.392157, 1.000000),
                   (32.745098, 0.000000),
                   (50.000000, 0.000000);
          SHAPE = LINEAR;
          COLOR = RED (128), GREEN (0), BLUE (0);
DS00600B-page 12   1997 Microchip Technology Inc.
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        }
        TERM {
          TERMNAME = pos_big;
          POINTS = (-50.000000, 0.000000),
                   (26.470588, 0.000000),
                   (39.803922, 1.000000),
                   (50.000000, 1.000000);
          SHAPE = LINEAR;
          COLOR = RED (0), GREEN (128), BLUE (0);
        }
      }  /* LVAR */ 
      LVAR {
        NAME    = duty_cycle;
        BASEVAR = Duty_Cycle;
        LVRANGE = MIN(0.000000), MAX(255.000000),
                  MINDEF(0), MAXDEF(255),
                  DEFAULT_OUTPUT(0.000000); 
        RESOLUTION = XGRID(0.000000), YGRID(1.000000),
                     SHOWGRID (ON), SNAPTOGRID(ON);
        TERM {
          TERMNAME = very_slow;
          POINTS = (0.000000, 0.000000),
                   (1.000000, 0.000000),
                   (103.000000, 1.000000),
                   (113.000000, 1.000000),
                   (147.000000, 0.000000),
                   (255.000000, 0.000000);
          SHAPE = LINEAR;
          COLOR = RED (255), GREEN (0), BLUE (0);
        }
        TERM {
          TERMNAME = slow;
          POINTS = (0.000000, 0.000000),
                   (108.000000, 0.000000),
                   (127.000000, 1.000000),
                   (131.000000, 0.000000),
                   (255.000000, 0.000000);
          SHAPE = LINEAR;
          COLOR = RED (0), GREEN (255), BLUE (0);
        }
        TERM {
          TERMNAME = med_slow;
          POINTS = (0.000000, 0.000000),
                   (133.000000, 0.000000),
                   (142.000000, 1.000000),
                   (162.000000, 0.000000),
                   (255.000000, 0.000000);
          SHAPE = LINEAR;
          COLOR = RED (0), GREEN (128), BLUE (128);
        }
        TERM {
          TERMNAME = medium;
          POINTS = (0.000000, 0.000000),
                   (151.000000, 0.000000),
                   (164.000000, 1.000000),
                   (166.000000, 1.000000),
                   (174.000000, 0.000000),
                   (255.000000, 0.000000);
          SHAPE = LINEAR;
          COLOR = RED (0), GREEN (0), BLUE (255);
        }
        TERM {
          TERMNAME = med_fast;
          POINTS = (0.000000, 0.000000),
                   (166.000000, 0.000000),
                   (178.000000, 1.000000),
  1997 Microchip Technology Inc. DS00600B-page 13
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                   (193.000000, 0.000000),
                   (255.000000, 0.000000);
          SHAPE = LINEAR;
          COLOR = RED (255), GREEN (0), BLUE (128);
        }
        TERM {
          TERMNAME = fast;
          POINTS = (0.000000, 0.000000),
                   (189.000000, 0.000000),
                   (202.000000, 1.000000),
                   (232.000000, 0.000000),
                   (255.000000, 0.000000);
          SHAPE = LINEAR;
          COLOR = RED (128), GREEN (0), BLUE (0);
        }
        TERM {
          TERMNAME = very_fast;
          POINTS = (0.000000, 0.000000),
                   (206.000000, 0.000000),
                   (255.000000, 1.000000);
          SHAPE = LINEAR;
          COLOR = RED (0), GREEN (128), BLUE (0);
        }
      }  /* LVAR */ 
      LVAR {
        NAME    = velocity;
        BASEVAR = Velocity;
        LVRANGE = MIN(-5.000000), MAX(5.000000),
                  MINDEF(0), MAXDEF(255),
                  DEFAULT_OUTPUT(0.000000); 
        RESOLUTION = XGRID(0.000000), YGRID(1.000000),
                     SHOWGRID (OFF), SNAPTOGRID(ON);
        TERM {
          TERMNAME = neg_big;
          POINTS = (-5.000000, 1.000000),
                   (-3.784314, 1.000000),
                   (-2.529412, 0.000000),
                   (5.000000, 0.000000);
          SHAPE = LINEAR;
          COLOR = RED (255), GREEN (0), BLUE (0);
        }
        TERM {
          TERMNAME = neg_med;
          POINTS = (-5.000000, 0.000000),
                   (-3.784314, 0.000000),
                   (-2.529412, 1.000000),
                   (-1.274510, 0.000000),
                   (5.000000, 0.000000);
          SHAPE = LINEAR;
          COLOR = RED (0), GREEN (255), BLUE (0);
        }
        TERM {
          TERMNAME = neg_small;
          POINTS = (-5.000000, 0.000000),
                   (-2.568627, 0.000000),
                   (-1.313725, 1.000000),
                   (-0.058824, 0.000000),
                   (5.000000, 0.000000);
          SHAPE = LINEAR;
          COLOR = RED (0), GREEN (0), BLUE (255);
        }
        TERM {
          TERMNAME = zero;
          POINTS = (-5.000000, 0.000000),
                   (-1.000000, 0.000000),
                   (-0.019608, 1.000000),
DS00600B-page 14   1997 Microchip Technology Inc.
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                   (0.960784, 0.000000),
                   (5.000000, 0.000000);
          SHAPE = LINEAR;
          COLOR = RED (128), GREEN (0), BLUE (0);
        }
        TERM {
          TERMNAME = pos_small;
          POINTS = (-5.000000, 0.000000),
                   (-0.137255, 0.000000),
                   (1.117647, 1.000000),
                   (2.372549, 0.000000),
                   (5.000000, 0.000000);
          SHAPE = LINEAR;
          COLOR = RED (0), GREEN (128), BLUE (0);
        }
        TERM {
          TERMNAME = pos_med;
          POINTS = (-5.000000, 0.000000),
                   (1.078431, 0.000000),
                   (2.333333, 1.000000),
                   (3.588235, 0.000000),
                   (5.000000, 0.000000);
          SHAPE = LINEAR;
          COLOR = RED (0), GREEN (0), BLUE (128);
        }
        TERM {
          TERMNAME = pos_big;
          POINTS = (-5.000000, 0.000000),
                   (2.294118, 0.000000),
                   (3.549020, 1.000000),
                   (5.000000, 1.000000);
          SHAPE = LINEAR;
          COLOR = RED (255), GREEN (0), BLUE (128);
        }
      }  /* LVAR */ 
    }  /* VARIABLE_SECTION */

    OBJECT_SECTION {
      INTERFACE {
        INPUT = (current_height, FCMBF);
        POS = -213, -137;
        RANGECHECK = ON;
      }
      INTERFACE {
        INPUT = (delta_height, FCMBF);
        POS = -216, -83;
        RANGECHECK = ON;
      }
      INTERFACE {
        OUTPUT = (duty_cycle, COM);
        POS = 158, -79;
        RANGECHECK = ON;
      }
      RULEBLOCK {
        INPUT = current_height, delta_height, velocity; 
        OUTPUT = duty_cycle; 
        AGGREGATION = (MIN_MAX, PAR (0.000000));
        COMPOSITION = (GAMMA, PAR (0.000000));
        POS = -39, -113;
        RULES {
          IF    current_height = very_lo
            AND delta_height = neg_big
          THEN  duty_cycle = slow   WITH 1.000;
          IF    current_height = very_lo
            AND delta_height = neg_small
          THEN  duty_cycle = med_slow   WITH 1.000;
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          IF    current_height = very_lo
            AND delta_height = zero
          THEN  duty_cycle = medium   WITH 1.000;
          IF    current_height = very_lo
            AND delta_height = pos_small
          THEN  duty_cycle = fast   WITH 1.000;
          IF    current_height = very_lo
            AND delta_height = pos_big
          THEN  duty_cycle = very_fast   WITH 1.000;
          IF    current_height = lo
            AND delta_height = neg_big
          THEN  duty_cycle = slow   WITH 1.000;
          IF    current_height = lo
            AND delta_height = neg_small
          THEN  duty_cycle = med_slow   WITH 1.000;
          IF    current_height = lo
            AND delta_height = zero
          THEN  duty_cycle = medium   WITH 1.000;
          IF    current_height = lo
            AND delta_height = pos_small
          THEN  duty_cycle = fast   WITH 1.000;
          IF    current_height = lo
            AND delta_height = pos_big
          THEN  duty_cycle = very_fast   WITH 1.000;
          IF    current_height = medium
            AND delta_height = neg_big
          THEN  duty_cycle = very_slow   WITH 1.000;
          IF    current_height = medium
            AND delta_height = neg_small
          THEN  duty_cycle = med_slow   WITH 1.000;
          IF    current_height = medium
            AND delta_height = zero
          THEN  duty_cycle = med_fast   WITH 1.000;
          IF    current_height = medium
            AND delta_height = pos_small
          THEN  duty_cycle = fast   WITH 1.000;
          IF    current_height = medium
            AND delta_height = pos_big
          THEN  duty_cycle = very_fast   WITH 1.000;
          IF    current_height = hi
            AND delta_height = neg_big
          THEN  duty_cycle = very_slow   WITH 1.000;
          IF    current_height = hi
            AND delta_height = neg_small
          THEN  duty_cycle = med_slow   WITH 1.000;
          IF    current_height = hi
            AND delta_height = zero
          THEN  duty_cycle = med_fast   WITH 1.000;
          IF    current_height = hi
            AND delta_height = pos_small
          THEN  duty_cycle = fast   WITH 1.000;
          IF    current_height = hi
            AND delta_height = pos_big
          THEN  duty_cycle = very_fast   WITH 1.000;
          IF    current_height = very_hi
            AND delta_height = neg_big
          THEN  duty_cycle = very_slow   WITH 1.000;
          IF    current_height = very_hi
            AND delta_height = neg_small
          THEN  duty_cycle = slow   WITH 1.000;
          IF    current_height = very_hi
            AND delta_height = zero
          THEN  duty_cycle = med_slow   WITH 1.000;
          IF    current_height = very_hi
            AND delta_height = pos_small
          THEN  duty_cycle = medium   WITH 1.000;
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          IF    current_height = very_hi
            AND delta_height = pos_big
          THEN  duty_cycle = very_fast   WITH 1.000;
          IF    current_height = very_lo
            AND delta_height = neg_small
            AND velocity = zero
          THEN  duty_cycle = very_slow   WITH 1.000;
          IF    current_height = very_lo
            AND delta_height = neg_small
            AND velocity = pos_small
          THEN  duty_cycle = very_slow   WITH 1.000;
          IF    current_height = very_lo
            AND delta_height = neg_small
            AND velocity = pos_med
          THEN  duty_cycle = very_slow   WITH 1.000;
          IF    current_height = very_lo
            AND delta_height = neg_small
            AND velocity = pos_big
          THEN  duty_cycle = very_slow   WITH 1.000;
          IF    current_height = very_lo
            AND delta_height = pos_small
            AND velocity = zero
          THEN  duty_cycle = fast   WITH 1.000;
          IF    current_height = very_lo
            AND delta_height = pos_small
            AND velocity = neg_small
          THEN  duty_cycle = fast   WITH 1.000;
          IF    current_height = very_lo
            AND delta_height = pos_small
            AND velocity = neg_med
          THEN  duty_cycle = fast   WITH 1.000;
          IF    current_height = very_lo
            AND delta_height = pos_small
            AND velocity = neg_big
          THEN  duty_cycle = fast   WITH 1.000;
          IF    current_height = lo
            AND delta_height = neg_small
            AND velocity = zero
          THEN  duty_cycle = very_slow   WITH 1.000;
          IF    current_height = lo
            AND delta_height = neg_small
            AND velocity = pos_small
          THEN  duty_cycle = very_slow   WITH 1.000;
          IF    current_height = lo
            AND delta_height = neg_small
            AND velocity = pos_med
          THEN  duty_cycle = very_slow   WITH 1.000;
          IF    current_height = lo
            AND delta_height = neg_small
            AND velocity = pos_big
          THEN  duty_cycle = very_slow   WITH 1.000;
          IF    current_height = lo
            AND delta_height = pos_small
            AND velocity = zero
          THEN  duty_cycle = fast   WITH 1.000;
          IF    current_height = lo
            AND delta_height = pos_small
            AND velocity = neg_small
          THEN  duty_cycle = fast   WITH 1.000;
          IF    current_height = lo
            AND delta_height = pos_small
            AND velocity = neg_med
          THEN  duty_cycle = fast   WITH 1.000;
          IF    current_height = lo
            AND delta_height = pos_small
            AND velocity = neg_big
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          THEN  duty_cycle = fast   WITH 1.000;
          IF    current_height = medium
            AND delta_height = neg_small
            AND velocity = zero
          THEN  duty_cycle = slow   WITH 1.000;
          IF    current_height = medium
            AND delta_height = neg_small
            AND velocity = pos_small
          THEN  duty_cycle = slow   WITH 1.000;
          IF    current_height = medium
            AND delta_height = neg_small
            AND velocity = pos_med
          THEN  duty_cycle = slow   WITH 1.000;
          IF    current_height = medium
            AND delta_height = neg_small
            AND velocity = pos_big
          THEN  duty_cycle = slow   WITH 1.000;
          IF    current_height = medium
            AND delta_height = pos_small
            AND velocity = zero
          THEN  duty_cycle = fast   WITH 1.000;
          IF    current_height = medium
            AND delta_height = pos_small
            AND velocity = neg_small
          THEN  duty_cycle = fast   WITH 1.000;
          IF    current_height = medium
            AND delta_height = pos_small
            AND velocity = neg_med
          THEN  duty_cycle = fast   WITH 1.000;
          IF    current_height = medium
            AND delta_height = pos_small
            AND velocity = neg_big
          THEN  duty_cycle = fast   WITH 1.000;
          IF    current_height = hi
            AND delta_height = neg_small
            AND velocity = zero
          THEN  duty_cycle = med_slow   WITH 1.000;
          IF    current_height = hi
            AND delta_height = neg_small
            AND velocity = pos_small
          THEN  duty_cycle = med_slow   WITH 1.000;
          IF    current_height = hi
            AND delta_height = neg_small
            AND velocity = pos_med
          THEN  duty_cycle = med_slow   WITH 1.000;
          IF    current_height = hi
            AND delta_height = neg_small
            AND velocity = pos_big
          THEN  duty_cycle = med_slow   WITH 1.000;
          IF    current_height = hi
            AND delta_height = pos_small
            AND velocity = zero
          THEN  duty_cycle = very_fast   WITH 1.000;
          IF    current_height = hi
            AND delta_height = pos_small
            AND velocity = neg_small
          THEN  duty_cycle = very_fast   WITH 1.000;
          IF    current_height = hi
            AND delta_height = pos_small
            AND velocity = neg_med
          THEN  duty_cycle = very_fast   WITH 1.000;
          IF    current_height = hi
            AND delta_height = pos_small
            AND velocity = neg_big
          THEN  duty_cycle = very_fast   WITH 1.000;
          IF    current_height = very_hi
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            AND delta_height = neg_small
            AND velocity = zero
          THEN  duty_cycle = medium   WITH 1.000;
          IF    current_height = very_hi
            AND delta_height = neg_small
            AND velocity = pos_small
          THEN  duty_cycle = medium   WITH 1.000;
          IF    current_height = very_hi
            AND delta_height = neg_small
            AND velocity = pos_med
          THEN  duty_cycle = medium   WITH 1.000;
          IF    current_height = very_hi
            AND delta_height = neg_small
            AND velocity = pos_big
          THEN  duty_cycle = medium   WITH 1.000;
          IF    current_height = very_hi
            AND delta_height = pos_small
            AND velocity = zero
          THEN  duty_cycle = very_fast   WITH 1.000;
          IF    current_height = very_hi
            AND delta_height = pos_small
            AND velocity = neg_small
          THEN  duty_cycle = very_fast   WITH 1.000;
          IF    current_height = very_hi
            AND delta_height = pos_small
            AND velocity = neg_med
          THEN  duty_cycle = very_fast   WITH 1.000;
          IF    current_height = very_hi
            AND delta_height = pos_small
            AND velocity = neg_big
          THEN  duty_cycle = very_fast   WITH 1.000;
        }  /* RULES */
      }
      INTERFACE {
        INPUT = (velocity, FCMBF);
        POS = -211, -29;
        RANGECHECK = ON;
      }
    }  /* OBJECT_SECTION */
  }  /* MODEL */
}  /* PROJECT */ 
TERMINAL {
    BAUDRATE     = 9600;
    STOPBITS     = 1;
    PROTOCOL     = NO;
    CONNECTION   = PORT1;
    INPUTBUFFER  = 4096;
    OUTPUTBUFFER = 1024;
}  /* TERMINAL */
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APPENDIX B: MYMAIN.ASM TEMPLATE FOR THE PIC16CXXX FAMILY

PROCESSOR 16C71
; -----------------------------------------------------------------------------------------------
;- USER MAIN FILE -
; -----------------------------------------------------------------------------------------------

CODE_START EQU 0x100 ;code startadr for 16C71
RESET_ADR EQU 0x000 ;reset vector
FUZZY_RAM_START EQU 0x00C ;first free RAM location for 16C71

include "myproj.var" ;include preassembler variables
CBLOCK ;starts after fuzzy ram locations

user1 ;reserve 1 byte (example)
ENDC
ORG CODE_START  ;example start adress for code

mymain
call initmyproj ;call init once

main_loop
movlw 000 ;example
movwf lv0_Input_1 ;set 1st crisp input
movlw 0A0 ;example
movwf lv1_Input_2 ;set 2nd crisp input
call myproj ;call preassembler code
movf invalidflags,W
btfss Z ;test if the project is completely defined
goto case_no_fire

case_fire
;proj OK
movf lv2_Output,W ;fetch crisp output
;user code
goto main_loop

case_no_fire
;no rule defined for this input combination
;call default_handling_routine
;user code
goto main_loop
INCLUDE "myproj.asm" ;include preassembler code

; -----------------------------------------------------------------------------------------------
;- RESET VECTOR -
; -----------------------------------------------------------------------------------------------

ORG RESET_ADR
goto mymain ;jump to program code
END ;end for assembler (only here)

Note: Refer to the "Integration" section for the number descriptions.

2

3
4

6

7

7
8

9

5

1
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