

AN600

Air Flow Control Using Fuzzy Logic
INTRODUCTION

Fuzzy logic control can be used to implement a wide
variety of intelligent functions including everything from
consumer electronic goods and household appliances
to auto electronics, process control, and automation.

Typically, fuzzy logic control applications fall into two
categories. First, it can be used to enhance existing
products with intelligent functions. Second, it can utilize
sensors that continuously respond to changing input

Author: Robert Schreiber
Microchip Technology Inc.
 1997 Microchip Technology Inc.
conditions. In addition, fuzzy logic simplifies dealing
with non-linearities in systems, and allows for quicker
product development cycles.

This application note will step the user through a fuzzy
logic control design utilizing sensors. The development
tool used is Inform Software’s fuzzyTECH -MP. The
development tool allows for an all-graphical editor,
analyzers, and debug capability.

PROJECT DESCRIPTION

The block diagram of the project is shown in Figure 1
and operates as follows.
FIGURE 1: BLOCK DIAGRAM

4x4 Keypad 2x20 LCD Display

PORT B

4Kx14 ROM

192x8 RAM

PIC16C74

PORT D, A

Beach Ball

Interactive
Fuzzy Control

on PC

Capture
Module

PWM
Module

Serial Port

4Kx14 ROM

Ranging
Module

Ultrasonic Transducer
for Height Detection

PWM Controlled
DC Fan

Control Panel
DS00600B-page 1

AN600

The control panel prompts the user to enter the desired
beach ball height on the 16-key keypad. The keypad
input is echoed on the LCD module and the user is
prompted for confirmation. Upon confirmation of user
input, the control panel initiates a ranging cycle to
calculate the current height of the beach ball. The
desired height and current height are continually
displayed on the LCD module. From the current height,
the control panel calculates both the velocity and the
delta height (difference in desired height from current
height). This information, along with the desired height,
is transmitted to the PC via an RS-232 link. The fuzzy
logic algorithm, running on the PC, calculates the
appropriate duty cycle of the DC fan and transmits this
information to the control panel. This emulates a “real
world” environment in which system level debug can be
done on the PC in real-time. The control panel controls
the duty cycle of the DC fan with this input. The above
listed ranging process continues indefinitely until
interrupted by the user.

The control panel houses an ultrasonic ranging module
and the microcontroller. The microcontroller handles all
of the peripheral interfaces including the 16-key
keypad, the LCD display, the ultrasonic ranging module,
and the RS-232 serial link. The project required a
microcontroller that could handle the data throughput
and all of these peripherals with little or no external
components. The microcontroller used was the
PIC16C74, which contains 4K of on-chip program
memory and 192 bytes of on-chip data memory.
Furthermore, the interrupt capabilities, I/O pins, PWM
module, capture and compare modules, timer modules,
Universal Asynchronous Receiver Transmitter
(USART), and A/D converter make it an excellent fit for
the application. In addition, the on-chip Pulse Width
Modulation (PWM) module allows for a single
component (FET) interface for the DC fan control and
the ranging module can interface directly to the
microcontroller (refer to Application Note AN597,
"Implementing Ultrasonic Ranging").
DS00600B-page 2
FUZZY DESIGN

Fuzzy logic first translates the crisp inputs from the sen-
sor into a linguistic description. Then it evaluates the
control strategy contained in fuzzy logic rules and
translates the result back into a crisp value.

The first step in fuzzy logic control design is system def-
inition. The only possible sources of inputs to the fuzzy
logic control algorithm are the ultrasonic transducer, the
user, and the DC fan. The key is to decide which of
these inputs are significant and which are not. Basi-
cally, the behavior of the beach ball was characterized
by asking the following questions from the beach ball’s
perspective:

• Where am I?
• How far am I from where I want to be?
• How fast am I getting there?
• What external force will get me there?

The nice thing about fuzzy logic control is that the
linguistic system definition becomes the control
algorithm.

The variables were defined as follows:

• Current Height [Where am I?]
• Delta Height [How far am I from where I want to

be?]
• Velocity [How fast am I getting there?)
• Duty Cycle [What external force will get me

there?]

Defining the variables was the starting point, but for the
algorithm to work smoothly, it isn’t good enough to say
“the beach ball has velocity,” you need to know to what
degree the beach ball has velocity. This is
accomplished by defining terms that more fully
describe the variable. The combination of variables
and terms gives a linguistic description of what is
happening to the system. From this, the Velocity
variable can be described as having a “positive small
velocity” or a “positive big velocity,” not just a “velocity.”
 1997 Microchip Technology Inc.

AN600

There is no fixed rule on how many terms to define per
variable. Typically, three to five terms are defined, but
more or less may be needed based on the control
algorithm. In retrospect, we probably could have
reduced Current Height to three terms and Velocity to
five terms. Table 1 lists the four variables that are used
for the trade show demo and their associated terms.

Once the linguistic variables are defined, data types
and values need to be defined. For this application,
data types were defined as 8-bit integers (16-bit
definition is also possible). After defining the data
types, the shell and code values for each variable were
specified. A shell value is used within the fuzzy logic
development tool and a code value is used when the
code is generated.

The best way to describe shell and code values is using
the analogy of a D/A converter. If we have a 5.0V, 8-bit
D/A converter, the digital input would correspond to the
code value and the analog output would correspond to
the shell value. This is, if we write (or pass) a value of
128 to the D/A we would get a 2.51V out. Applying this
analogy to our project, we would pass a crisp value
(digital) to the fuzzy world and the fuzzy world would
use the fuzzy value (analog).
 1997 Microchip Technology Inc.
Therefore, when we define shell and code values, we
are basically defining the "D/A converter." For example,
you can define the shell value for Duty Cycle to be a
minimum of 0 and a maximum of 100 (percent).
Therefore, within the fuzzy logic development tool, Duty
Cycle will take on a value between 0 and 100, inclusive.

The code value is limited by the data type, but can take
on any or all of the digital range. That is, if the shell
value is 0 to 100, the code values could be defined as
0 to 100. But to get full resolution, the code value
should be defined over the entire range (i.e., 0 to 255
for 8-bit data types). The code values and shell values
were defined as shown in Table 2. Note that for the
height and velocity variables, the shell values are
scaled by 2 (i.e., a Current Height with a crisp value of
60 would correspond to 30 inches).
TABLE 1: INPUT AND OUTPUT VARIABLES AND TERMS

TABLE 2: SHELL AND CODE VALUES

Input Variables Output Variable

Current Height Delta Height Velocity Duty Cycle

very lo neg big neg big very slo

lo neg small neg med slo

medium zero neg small medium slo

hi pos small zero medium

very hi pos big pos small medium fast

pos med fast

pos big very fast

Shell Value Code Value

Variable Min. Max. Min. Max.

Current Height 0 120 0 255

Delta Height -50 50 0 255

Velocity -5 5 0 255

Duty Cycle 0 255 0 255
DS00600B-page 3

AN600

Next, the membership functions were defined to further
describe the variables. The fuzzy logic development
tool creates the membership functions automatically.
This gives a good starting point, but the membership
functions still need to be fine-tuned during the debug
phase. In this application, only the linear shaped func-
tions (Pi, Z, S and Lambda types) were used as seen in
Figure 2.

FIGURE 2: STANDARD MEMBERSHIP
FUNCTION TYPES

FUZZIFICATION

Fuzzification entails translating a crisp value into a
fuzzy value. Once all of the variables have been
defined, the interfaces between the variables need to
be defined. The interfaces for the input variables
contain the fuzzification procedures. In defining the
interfaces, the input variable’s fuzzification method
needs to be defined. The computation of fuzzification
is carried out at runtime for code efficiency. The type of
fuzzification used in this project is membership function
computation. This is largely due to the code space
efficiency and accuracy associated with this method.
Once fuzzification has taken place, the algorithm is per-
formed in the fuzzy world according to the rule base.

Z-Type

Lambda-Type S-Type

Pi-Type
DS00600B-page 4
FUZZY RULE BASE

The entire fuzzy inference is contained within the rule
blocks of a system. For example, if the beach ball is
near the top of the tube and it was commanded to be
near the bottom of the tube, the rule that described the
situation would be:

IF CURRENT HEIGHT = VERY HI

AND DELTA HEIGHT = NEGATIVE BIG

THEN DUTY CYCLE = SLOW

The above rule describes one situation, but the rule def-
inition would continue until the system was adequately
described The rule block is the collection of all rules
that describe the system.

The rules of the rule block can also be defined in terms
of how much a specific rule is supported when calculat-
ing inference. The support of a rule, or plausibility, is
known as the degree of support for that rule. A plausible
rule is defined by a 1.0, a totally implausible rule is
defined by 0.0. In this project all rules are fully sup-
ported.

The degree to which a crisp value belongs to a term is
known as the degree of membership. For example, the
terms Medium and Hi for the variable Current Height
were defined as a Lambda-type membership function
centered around the crisp values 52 (26 inches) and 82
(41 inches), respectively, as shown in Figure 3.
FIGURE 3: DEGREE OF MEMBERSHIP

very_lo
lo
medium

hi

x 51.2941

y 1

1

0

1200

Current_Height

mediumTerm

very_hi

52

26 52 82
 1997 Microchip Technology Inc.

AN600

Therefore, if the beach ball was at 26 inches, the
degree of membership would be 1.0 for Medium and
0.0 for Hi. However, as the beach ball rises in height,
the degree of membership for the term Medium would
decrease and the degree of membership for the term Hi
would increase. The interplay of these linguistic
variable terms is controlled by the rule base. The rule
base defines not only the relationship between the
terms, but also how much each rule is supported, as
described previously.
 1997 Microchip Technology Inc.
From the list of rules, a Fuzzy Associative Map (FAM) is
constructed (see below). The FAM shows the
plausibility (degree of support) of each rule as seen in
Figure 4 and Figure 5.
FIGURE 4: MATRIX RULE EDITOR WITH FAM RULES

zero
zero medium

delta_height

current_height

very_lo

very_hi

lo

neg_small

pos_small
zero

neg_big
pos_big

hi

medium
Composition with Degree of Support

Degree of Support

Input Aggregation

 Show ...

 Degree of Support

0.000

 IF

current_height delta_height velocity
duty_cycle

very_lo
lo

very_hi
hi

neg_big
neg_small

pos_big
pos_small

neg_small

neg_big
neg_med

pos_small

med_slow

very_slow
slow

med_fast
medium

 THEN
DS00600B-page 5

AN600

FIGURE 5: 3-D RULE DISPLAY

delta_height

Ok

very_hipos_big

hi

medium

lo

very_lo

pos_small
zero

neg_small

neg_big

current_height
DS00600B-page 6  1997 Microchip Technology Inc.

AN600

DEFUZZIFICATION

Defuzzification entails translating a fuzzy value to a
crisp value. The interface for the output variables
contains the defuzzification procedures. For most
control applications (and this project), the center-of-
maximum (CoM) method is used for defuzzification.
CoM evaluates more than one output term as valid and
compromises between them by computing a weighted
mean of the term membership maxima. Example 1 and
Figure 6 show the defuzzification of the linguistic
variable Duty Cycle using CoM.

EXAMPLE 1: DEFUZZIFICATION OF DUTY
CYCLE

The crisp values of the three input variables are as
follows:

Current Height: 30

Delta Height: 0

Velocity: 0
 1997 Microchip Technology Inc.
The crisp value can be calculated using the CoM
method with the following equation.

For this example, when the crisp values are fuzzified,
the Duty Cycle variable is defined to be mostly
"medium" (degree of membership of 0.7) and
somewhat "medium fast" (degree of membership 0.1).
The arguments for the "medium" and "medium fast"
term membership maxima are 165 and 178,
respectively.

C = ∑i [I • maxx (M) • arg (maxx (M))]

∑i I

c = crisp output value
i = linguistic term
I = inference result
M = membership function of linguistic term

((0.7 • 1.0 • 165) + (0.1 • 1.0 • 178)) = 166

(0.7 + 0.1)
FIGURE 6: DEFUZZIFICATION OF DUTY CYCLE

very slow

med_slow
slow

medium
med_fast

x 1

y 0

1

0

2550

Duty_Cycle

very_slow
Term

fast
very_fast

166

delta_height
velocity

current_height 30.0000
0.0000
0.0000

duty_cycle 166.0000

Value: 0.0000 Steps [%]: 10.00

Inputs Outputs

165
178

.7

.1
DS00600B-page 7

AN600

DEBUGGING

In serial debug mode, one can graphically adjust the
variable terms and see the results in “real time.” On this
project, the first variable adjusted was the Duty Cycle
variable. Duty Cycle was adjusted so that the beach
ball reached 30 inches (Figure 7). The Delta Height
terms were fine-tuned -- negative small, zero, and
positive small were bunched together -- and the beach
ball stabilized at 30 inches (Figure 8). There was
virtually no fluctuation in the height. In order for the
system to self-correct for environmental (external)
changes, the Velocity variable was used. The velocity
variable is calculated by the difference in height
between consecutive height calculations. A few rules
were added that used the Velocity variable to nudge the
ball into place when the environmental conditions
changed (Figure 9).
DS00600B-page 8
Another advantage of fuzzy logic is that it simplifies
dealing with non-linearities of the system. The system
was highly non-linear, so it was tested at the extremes
and moving the beach ball at different rates from one
extreme to the other. The Current Height variable
needed almost no adjustment (Figure 10). The variable
that required the most work was the Duty Cycle
variable, but in less than a day, the algorithm was
working well within specifications. The beach ball could
go from a resting position, with the DC fan off, to the
maximum allowable height of 42 inches in less than
8 seconds with no overshoot. Operation between the
minimum and maximum height was much quicker, also
with no overshoot.

The final graphical representation of the linguistic
variables are shown in Figure 7 through Figure 10.
FIGURE 7: DUTY CYCLE VARIABLE

very_slow
slow
med_slow

med_fast

x 1

y 0

1

0

2550
Duty_Cycle

very_slowTerm

fast
very_fast

medium
 1997 Microchip Technology Inc.

AN600

FIGURE 8: DELTA HEIGHT VARIABLE

FIGURE 9: VELOCITY VARIABLE

neg_small
zero
pos_small

x

y

-16.6667

0

1

0

50-50
Delta_Height

neg_bigTerm

neg_big

pos_big

neg_small
neg_med

zero
pos_small

x

y

-3.78431

1

1

0

5-5
Velocity

neg_big
Term

neg_big

pos_med
pos_big
 1997 Microchip Technology Inc. DS00600B-page 9

AN600

FIGURE 10: CURRENT HEIGHT VARIABLE

medium
lo

hi
very_hi

x

y

14.1176

0

1

0

1200 Current_Height

very_loTerm

very_lo
INTEGRATION

The system parameters and graphical variable
representations are captured in a Fuzzy Technology
Language (FTL) file. The FTL file is a vendor and
hardware independent language which defines the
fuzzy logic based system. The FTL file for this project
can be seen in Appendix A.

The FTL file is used to generate the public variable
definitions and code which can be embedded in the
microcontroller. The appropriate device family from the
pre-assembler code are generated by simply selecting
the compile pull-down menu. Once the pre-assembler
file is generated, the "hooks" to the main program must
be added.

The best way to embed the code is to use the template
MYMAIN.ASM. The template for each of the families of
devices (PIC16C5X, PIC16CXXX and PIC17CXX) is
included in the fuzzyTECH -MP development kit. The
template shown in Appendix B is for the PIC16CXXX
family.
DS00600B-page 10
The file MYMAIN.ASM should contain your program in
the "main_loop " section. The only other modifications
required to the template are listed below and are
specified in the left hand column of Appendix B.

1. Processor Type definition
2. Code Start Address
3. Fuzzy RAM Start Address
4. Include Public Variable Definition file

(myproj.var), which was created by
 fuzzyTECH -MP

5. Include Pre-Assembler Code (myproj.asm)
which was created by fuzzyTECH -MP

6. Call Initialization (initmyproj) which was cre-
ated by fuzzyTECH -MP

7. Set Crisp Input Value(s)
8. Call Fuzzy Logic System (myproj)
9. Read Crisp Output Value(s)

For this project, the fuzzy logic algorithm assembled to
704 words of program memory and 41 bytes of data
memory.

SUMMARY

This project demonstrates many aspects of fuzzy logic
control - quick development cycle, real-time debug,
sensor integration, and non-linear system control. The
total development time for the application took less than
a week and performed well within system
specifications.
 1997 Microchip Technology Inc.

AN600

APPENDIX A: FUZZY TECHNOLOGY LANGUAGE FILE
 PROJECT {
 NAME = B_BALL.FTL;
 AUTHOR = ROBERT SCHREIBER;
 DATEFORMAT = M.D.YY;
 LASTCHANGE = 9.16.94;
 CREATED = 9.14.94;
 SHELL = MP;
 COMMENT {
} /* COMMENT */
 SHELLOPTIONS {
 ONLINE_REFRESHTIME = 55;
 ONLINE_TIMEOUTCOUNT = 0;
 ONLINE_CODE = OFF;
 TRACE_BUFFER = (OFF, PAR(10000));
 BSUM_AGGREGATION = OFF;
 PUBLIC_IO = ON;
 FAST_CMBF = ON;
 FAST_COA = OFF;
 SCALE_MBF = OFF;
 FILE_CODE = OFF;
 BTYPE = 8_BIT;
 } /* SHELLOPTIONS */
 MODEL {
 VARIABLE_SECTION {
 LVAR {
 NAME = current_height;
 BASEVAR = Current_Height;
 LVRANGE = MIN(0.000000), MAX(120.000000),
 MINDEF(0), MAXDEF(255),
 DEFAULT_OUTPUT(120.000000);
 RESOLUTION = XGRID(0.000000), YGRID(1.000000),
 SHOWGRID (ON), SNAPTOGRID(ON);
 TERM {
 TERMNAME = very_lo;
 POINTS = (0.000000, 1.000000),
 (14.117647, 0.000000),
 (120.000000, 0.000000);
 SHAPE = LINEAR;
 COLOR = RED (255), GREEN (0), BLUE (0);
 }
 TERM {
 TERMNAME = lo;
 POINTS = (0.000000, 0.000000),
 (5.176471, 0.000000),
 (24.941176, 1.000000),
 (40.941176, 0.000000),
 (120.000000, 0.000000);
 SHAPE = LINEAR;
 COLOR = RED (0), GREEN (255), BLUE (0);
 }
 TERM {
 TERMNAME = medium;
 POINTS = (0.000000, 0.000000),
 (27.294118, 0.000000),
 (51.294118, 1.000000),
 (66.352941, 0.000000),
 (120.000000, 0.000000);
 SHAPE = LINEAR;
 COLOR = RED (0), GREEN (0), BLUE (255);
 }

Please check the Microchip BBS for the latest version of the source code. Microchip’s Worldwide Web Address:
www.microchip.com; Bulletin Board Support: MCHIPBBS using CompuServe® (CompuServe membership not
required).
 1997 Microchip Technology Inc. DS00600B-page 11

AN600

 TERM {
 TERMNAME = hi;
 POINTS = (0.000000, 0.000000),
 (55.529412, 0.000000),
 (82.352941, 1.000000),
 (106.352941, 0.000000),
 (120.000000, 0.000000);
 SHAPE = LINEAR;
 COLOR = RED (128), GREEN (0), BLUE (0);
 }
 TERM {
 TERMNAME = very_hi;
 POINTS = (0.000000, 0.000000),
 (73.411765, 0.000000),
 (113.411765, 1.000000),
 (120.000000, 1.000000);
 SHAPE = LINEAR;
 COLOR = RED (0), GREEN (128), BLUE (0);
 }
 } /* LVAR */
 LVAR {
 NAME = delta_height;
 BASEVAR = Delta_Height;
 LVRANGE = MIN(-50.000000), MAX(50.000000),
 MINDEF(0), MAXDEF(255),
 DEFAULT_OUTPUT(-50.000000);
 RESOLUTION = XGRID(0.000000), YGRID(1.000000),
 SHOWGRID (ON), SNAPTOGRID(ON);
 TERM {
 TERMNAME = neg_big;
 POINTS = (-50.000000, 1.000000),
 (-16.666667, 0.000000),
 (50.000000, 0.000000);
 SHAPE = LINEAR;
 COLOR = RED (255), GREEN (0), BLUE (0);
 }
 TERM {
 TERMNAME = neg_small;
 POINTS = (-50.000000, 0.000000),
 (-21.764706, 0.000000),
 (-6.470588, 1.000000),
 (-0.588235, 0.000000),
 (50.000000, 0.000000);
 SHAPE = LINEAR;
 COLOR = RED (0), GREEN (255), BLUE (0);
 }
 TERM {
 TERMNAME = zero;
 POINTS = (-50.000000, 0.000000),
 (-12.352941, 0.000000),
 (0.196078, 1.000000),
 (13.529412, 0.000000),
 (50.000000, 0.000000);
 SHAPE = LINEAR;
 COLOR = RED (0), GREEN (0), BLUE (255);
 }
 TERM {
 TERMNAME = pos_small;
 POINTS = (-50.000000, 0.000000),
 (0.196078, 0.000000),
 (10.000000, 1.000000),
 (10.392157, 1.000000),
 (32.745098, 0.000000),
 (50.000000, 0.000000);
 SHAPE = LINEAR;
 COLOR = RED (128), GREEN (0), BLUE (0);
DS00600B-page 12  1997 Microchip Technology Inc.

AN600

 }
 TERM {
 TERMNAME = pos_big;
 POINTS = (-50.000000, 0.000000),
 (26.470588, 0.000000),
 (39.803922, 1.000000),
 (50.000000, 1.000000);
 SHAPE = LINEAR;
 COLOR = RED (0), GREEN (128), BLUE (0);
 }
 } /* LVAR */
 LVAR {
 NAME = duty_cycle;
 BASEVAR = Duty_Cycle;
 LVRANGE = MIN(0.000000), MAX(255.000000),
 MINDEF(0), MAXDEF(255),
 DEFAULT_OUTPUT(0.000000);
 RESOLUTION = XGRID(0.000000), YGRID(1.000000),
 SHOWGRID (ON), SNAPTOGRID(ON);
 TERM {
 TERMNAME = very_slow;
 POINTS = (0.000000, 0.000000),
 (1.000000, 0.000000),
 (103.000000, 1.000000),
 (113.000000, 1.000000),
 (147.000000, 0.000000),
 (255.000000, 0.000000);
 SHAPE = LINEAR;
 COLOR = RED (255), GREEN (0), BLUE (0);
 }
 TERM {
 TERMNAME = slow;
 POINTS = (0.000000, 0.000000),
 (108.000000, 0.000000),
 (127.000000, 1.000000),
 (131.000000, 0.000000),
 (255.000000, 0.000000);
 SHAPE = LINEAR;
 COLOR = RED (0), GREEN (255), BLUE (0);
 }
 TERM {
 TERMNAME = med_slow;
 POINTS = (0.000000, 0.000000),
 (133.000000, 0.000000),
 (142.000000, 1.000000),
 (162.000000, 0.000000),
 (255.000000, 0.000000);
 SHAPE = LINEAR;
 COLOR = RED (0), GREEN (128), BLUE (128);
 }
 TERM {
 TERMNAME = medium;
 POINTS = (0.000000, 0.000000),
 (151.000000, 0.000000),
 (164.000000, 1.000000),
 (166.000000, 1.000000),
 (174.000000, 0.000000),
 (255.000000, 0.000000);
 SHAPE = LINEAR;
 COLOR = RED (0), GREEN (0), BLUE (255);
 }
 TERM {
 TERMNAME = med_fast;
 POINTS = (0.000000, 0.000000),
 (166.000000, 0.000000),
 (178.000000, 1.000000),
 1997 Microchip Technology Inc. DS00600B-page 13

AN600

 (193.000000, 0.000000),
 (255.000000, 0.000000);
 SHAPE = LINEAR;
 COLOR = RED (255), GREEN (0), BLUE (128);
 }
 TERM {
 TERMNAME = fast;
 POINTS = (0.000000, 0.000000),
 (189.000000, 0.000000),
 (202.000000, 1.000000),
 (232.000000, 0.000000),
 (255.000000, 0.000000);
 SHAPE = LINEAR;
 COLOR = RED (128), GREEN (0), BLUE (0);
 }
 TERM {
 TERMNAME = very_fast;
 POINTS = (0.000000, 0.000000),
 (206.000000, 0.000000),
 (255.000000, 1.000000);
 SHAPE = LINEAR;
 COLOR = RED (0), GREEN (128), BLUE (0);
 }
 } /* LVAR */
 LVAR {
 NAME = velocity;
 BASEVAR = Velocity;
 LVRANGE = MIN(-5.000000), MAX(5.000000),
 MINDEF(0), MAXDEF(255),
 DEFAULT_OUTPUT(0.000000);
 RESOLUTION = XGRID(0.000000), YGRID(1.000000),
 SHOWGRID (OFF), SNAPTOGRID(ON);
 TERM {
 TERMNAME = neg_big;
 POINTS = (-5.000000, 1.000000),
 (-3.784314, 1.000000),
 (-2.529412, 0.000000),
 (5.000000, 0.000000);
 SHAPE = LINEAR;
 COLOR = RED (255), GREEN (0), BLUE (0);
 }
 TERM {
 TERMNAME = neg_med;
 POINTS = (-5.000000, 0.000000),
 (-3.784314, 0.000000),
 (-2.529412, 1.000000),
 (-1.274510, 0.000000),
 (5.000000, 0.000000);
 SHAPE = LINEAR;
 COLOR = RED (0), GREEN (255), BLUE (0);
 }
 TERM {
 TERMNAME = neg_small;
 POINTS = (-5.000000, 0.000000),
 (-2.568627, 0.000000),
 (-1.313725, 1.000000),
 (-0.058824, 0.000000),
 (5.000000, 0.000000);
 SHAPE = LINEAR;
 COLOR = RED (0), GREEN (0), BLUE (255);
 }
 TERM {
 TERMNAME = zero;
 POINTS = (-5.000000, 0.000000),
 (-1.000000, 0.000000),
 (-0.019608, 1.000000),
DS00600B-page 14  1997 Microchip Technology Inc.

AN600

 (0.960784, 0.000000),
 (5.000000, 0.000000);
 SHAPE = LINEAR;
 COLOR = RED (128), GREEN (0), BLUE (0);
 }
 TERM {
 TERMNAME = pos_small;
 POINTS = (-5.000000, 0.000000),
 (-0.137255, 0.000000),
 (1.117647, 1.000000),
 (2.372549, 0.000000),
 (5.000000, 0.000000);
 SHAPE = LINEAR;
 COLOR = RED (0), GREEN (128), BLUE (0);
 }
 TERM {
 TERMNAME = pos_med;
 POINTS = (-5.000000, 0.000000),
 (1.078431, 0.000000),
 (2.333333, 1.000000),
 (3.588235, 0.000000),
 (5.000000, 0.000000);
 SHAPE = LINEAR;
 COLOR = RED (0), GREEN (0), BLUE (128);
 }
 TERM {
 TERMNAME = pos_big;
 POINTS = (-5.000000, 0.000000),
 (2.294118, 0.000000),
 (3.549020, 1.000000),
 (5.000000, 1.000000);
 SHAPE = LINEAR;
 COLOR = RED (255), GREEN (0), BLUE (128);
 }
 } /* LVAR */
 } /* VARIABLE_SECTION */

 OBJECT_SECTION {
 INTERFACE {
 INPUT = (current_height, FCMBF);
 POS = -213, -137;
 RANGECHECK = ON;
 }
 INTERFACE {
 INPUT = (delta_height, FCMBF);
 POS = -216, -83;
 RANGECHECK = ON;
 }
 INTERFACE {
 OUTPUT = (duty_cycle, COM);
 POS = 158, -79;
 RANGECHECK = ON;
 }
 RULEBLOCK {
 INPUT = current_height, delta_height, velocity;
 OUTPUT = duty_cycle;
 AGGREGATION = (MIN_MAX, PAR (0.000000));
 COMPOSITION = (GAMMA, PAR (0.000000));
 POS = -39, -113;
 RULES {
 IF current_height = very_lo
 AND delta_height = neg_big
 THEN duty_cycle = slow WITH 1.000;
 IF current_height = very_lo
 AND delta_height = neg_small
 THEN duty_cycle = med_slow WITH 1.000;
 1997 Microchip Technology Inc. DS00600B-page 15

AN600

 IF current_height = very_lo
 AND delta_height = zero
 THEN duty_cycle = medium WITH 1.000;
 IF current_height = very_lo
 AND delta_height = pos_small
 THEN duty_cycle = fast WITH 1.000;
 IF current_height = very_lo
 AND delta_height = pos_big
 THEN duty_cycle = very_fast WITH 1.000;
 IF current_height = lo
 AND delta_height = neg_big
 THEN duty_cycle = slow WITH 1.000;
 IF current_height = lo
 AND delta_height = neg_small
 THEN duty_cycle = med_slow WITH 1.000;
 IF current_height = lo
 AND delta_height = zero
 THEN duty_cycle = medium WITH 1.000;
 IF current_height = lo
 AND delta_height = pos_small
 THEN duty_cycle = fast WITH 1.000;
 IF current_height = lo
 AND delta_height = pos_big
 THEN duty_cycle = very_fast WITH 1.000;
 IF current_height = medium
 AND delta_height = neg_big
 THEN duty_cycle = very_slow WITH 1.000;
 IF current_height = medium
 AND delta_height = neg_small
 THEN duty_cycle = med_slow WITH 1.000;
 IF current_height = medium
 AND delta_height = zero
 THEN duty_cycle = med_fast WITH 1.000;
 IF current_height = medium
 AND delta_height = pos_small
 THEN duty_cycle = fast WITH 1.000;
 IF current_height = medium
 AND delta_height = pos_big
 THEN duty_cycle = very_fast WITH 1.000;
 IF current_height = hi
 AND delta_height = neg_big
 THEN duty_cycle = very_slow WITH 1.000;
 IF current_height = hi
 AND delta_height = neg_small
 THEN duty_cycle = med_slow WITH 1.000;
 IF current_height = hi
 AND delta_height = zero
 THEN duty_cycle = med_fast WITH 1.000;
 IF current_height = hi
 AND delta_height = pos_small
 THEN duty_cycle = fast WITH 1.000;
 IF current_height = hi
 AND delta_height = pos_big
 THEN duty_cycle = very_fast WITH 1.000;
 IF current_height = very_hi
 AND delta_height = neg_big
 THEN duty_cycle = very_slow WITH 1.000;
 IF current_height = very_hi
 AND delta_height = neg_small
 THEN duty_cycle = slow WITH 1.000;
 IF current_height = very_hi
 AND delta_height = zero
 THEN duty_cycle = med_slow WITH 1.000;
 IF current_height = very_hi
 AND delta_height = pos_small
 THEN duty_cycle = medium WITH 1.000;
DS00600B-page 16  1997 Microchip Technology Inc.

AN600

 IF current_height = very_hi
 AND delta_height = pos_big
 THEN duty_cycle = very_fast WITH 1.000;
 IF current_height = very_lo
 AND delta_height = neg_small
 AND velocity = zero
 THEN duty_cycle = very_slow WITH 1.000;
 IF current_height = very_lo
 AND delta_height = neg_small
 AND velocity = pos_small
 THEN duty_cycle = very_slow WITH 1.000;
 IF current_height = very_lo
 AND delta_height = neg_small
 AND velocity = pos_med
 THEN duty_cycle = very_slow WITH 1.000;
 IF current_height = very_lo
 AND delta_height = neg_small
 AND velocity = pos_big
 THEN duty_cycle = very_slow WITH 1.000;
 IF current_height = very_lo
 AND delta_height = pos_small
 AND velocity = zero
 THEN duty_cycle = fast WITH 1.000;
 IF current_height = very_lo
 AND delta_height = pos_small
 AND velocity = neg_small
 THEN duty_cycle = fast WITH 1.000;
 IF current_height = very_lo
 AND delta_height = pos_small
 AND velocity = neg_med
 THEN duty_cycle = fast WITH 1.000;
 IF current_height = very_lo
 AND delta_height = pos_small
 AND velocity = neg_big
 THEN duty_cycle = fast WITH 1.000;
 IF current_height = lo
 AND delta_height = neg_small
 AND velocity = zero
 THEN duty_cycle = very_slow WITH 1.000;
 IF current_height = lo
 AND delta_height = neg_small
 AND velocity = pos_small
 THEN duty_cycle = very_slow WITH 1.000;
 IF current_height = lo
 AND delta_height = neg_small
 AND velocity = pos_med
 THEN duty_cycle = very_slow WITH 1.000;
 IF current_height = lo
 AND delta_height = neg_small
 AND velocity = pos_big
 THEN duty_cycle = very_slow WITH 1.000;
 IF current_height = lo
 AND delta_height = pos_small
 AND velocity = zero
 THEN duty_cycle = fast WITH 1.000;
 IF current_height = lo
 AND delta_height = pos_small
 AND velocity = neg_small
 THEN duty_cycle = fast WITH 1.000;
 IF current_height = lo
 AND delta_height = pos_small
 AND velocity = neg_med
 THEN duty_cycle = fast WITH 1.000;
 IF current_height = lo
 AND delta_height = pos_small
 AND velocity = neg_big
 1997 Microchip Technology Inc. DS00600B-page 17

AN600

 THEN duty_cycle = fast WITH 1.000;
 IF current_height = medium
 AND delta_height = neg_small
 AND velocity = zero
 THEN duty_cycle = slow WITH 1.000;
 IF current_height = medium
 AND delta_height = neg_small
 AND velocity = pos_small
 THEN duty_cycle = slow WITH 1.000;
 IF current_height = medium
 AND delta_height = neg_small
 AND velocity = pos_med
 THEN duty_cycle = slow WITH 1.000;
 IF current_height = medium
 AND delta_height = neg_small
 AND velocity = pos_big
 THEN duty_cycle = slow WITH 1.000;
 IF current_height = medium
 AND delta_height = pos_small
 AND velocity = zero
 THEN duty_cycle = fast WITH 1.000;
 IF current_height = medium
 AND delta_height = pos_small
 AND velocity = neg_small
 THEN duty_cycle = fast WITH 1.000;
 IF current_height = medium
 AND delta_height = pos_small
 AND velocity = neg_med
 THEN duty_cycle = fast WITH 1.000;
 IF current_height = medium
 AND delta_height = pos_small
 AND velocity = neg_big
 THEN duty_cycle = fast WITH 1.000;
 IF current_height = hi
 AND delta_height = neg_small
 AND velocity = zero
 THEN duty_cycle = med_slow WITH 1.000;
 IF current_height = hi
 AND delta_height = neg_small
 AND velocity = pos_small
 THEN duty_cycle = med_slow WITH 1.000;
 IF current_height = hi
 AND delta_height = neg_small
 AND velocity = pos_med
 THEN duty_cycle = med_slow WITH 1.000;
 IF current_height = hi
 AND delta_height = neg_small
 AND velocity = pos_big
 THEN duty_cycle = med_slow WITH 1.000;
 IF current_height = hi
 AND delta_height = pos_small
 AND velocity = zero
 THEN duty_cycle = very_fast WITH 1.000;
 IF current_height = hi
 AND delta_height = pos_small
 AND velocity = neg_small
 THEN duty_cycle = very_fast WITH 1.000;
 IF current_height = hi
 AND delta_height = pos_small
 AND velocity = neg_med
 THEN duty_cycle = very_fast WITH 1.000;
 IF current_height = hi
 AND delta_height = pos_small
 AND velocity = neg_big
 THEN duty_cycle = very_fast WITH 1.000;
 IF current_height = very_hi
DS00600B-page 18  1997 Microchip Technology Inc.

AN600

 AND delta_height = neg_small
 AND velocity = zero
 THEN duty_cycle = medium WITH 1.000;
 IF current_height = very_hi
 AND delta_height = neg_small
 AND velocity = pos_small
 THEN duty_cycle = medium WITH 1.000;
 IF current_height = very_hi
 AND delta_height = neg_small
 AND velocity = pos_med
 THEN duty_cycle = medium WITH 1.000;
 IF current_height = very_hi
 AND delta_height = neg_small
 AND velocity = pos_big
 THEN duty_cycle = medium WITH 1.000;
 IF current_height = very_hi
 AND delta_height = pos_small
 AND velocity = zero
 THEN duty_cycle = very_fast WITH 1.000;
 IF current_height = very_hi
 AND delta_height = pos_small
 AND velocity = neg_small
 THEN duty_cycle = very_fast WITH 1.000;
 IF current_height = very_hi
 AND delta_height = pos_small
 AND velocity = neg_med
 THEN duty_cycle = very_fast WITH 1.000;
 IF current_height = very_hi
 AND delta_height = pos_small
 AND velocity = neg_big
 THEN duty_cycle = very_fast WITH 1.000;
 } /* RULES */
 }
 INTERFACE {
 INPUT = (velocity, FCMBF);
 POS = -211, -29;
 RANGECHECK = ON;
 }
 } /* OBJECT_SECTION */
 } /* MODEL */
} /* PROJECT */
TERMINAL {
 BAUDRATE = 9600;
 STOPBITS = 1;
 PROTOCOL = NO;
 CONNECTION = PORT1;
 INPUTBUFFER = 4096;
 OUTPUTBUFFER = 1024;
} /* TERMINAL */
 1997 Microchip Technology Inc. DS00600B-page 19

AN600

APPENDIX B: MYMAIN.ASM TEMPLATE FOR THE PIC16CXXX FAMILY

PROCESSOR 16C71
; ---
;- USER MAIN FILE -
; ---

CODE_START EQU 0x100 ;code startadr for 16C71
RESET_ADR EQU 0x000 ;reset vector
FUZZY_RAM_START EQU 0x00C ;first free RAM location for 16C71

include "myproj.var" ;include preassembler variables
CBLOCK ;starts after fuzzy ram locations

user1 ;reserve 1 byte (example)
ENDC
ORG CODE_START ;example start adress for code

mymain
call initmyproj ;call init once

main_loop
movlw 000 ;example
movwf lv0_Input_1 ;set 1st crisp input
movlw 0A0 ;example
movwf lv1_Input_2 ;set 2nd crisp input
call myproj ;call preassembler code
movf invalidflags,W
btfss Z ;test if the project is completely defined
goto case_no_fire

case_fire
;proj OK
movf lv2_Output,W ;fetch crisp output
;user code
goto main_loop

case_no_fire
;no rule defined for this input combination
;call default_handling_routine
;user code
goto main_loop
INCLUDE "myproj.asm" ;include preassembler code

; ---
;- RESET VECTOR -
; ---

ORG RESET_ADR
goto mymain ;jump to program code
END ;end for assembler (only here)

Note: Refer to the "Integration" section for the number descriptions.

2

3
4

6

7

7
8

9

5

1

DS00600B-page 20  1997 Microchip Technology Inc.

 2002 Microchip Technology Inc.

Information contained in this publication regarding device
applications and the like is intended through suggestion only
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
No representation or warranty is given and no liability is
assumed by Microchip Technology Incorporated with respect
to the accuracy or use of such information, or infringement of
patents or other intellectual property rights arising from such
use or otherwise. Use of Microchip’s products as critical com-
ponents in life support systems is not authorized except with
express written approval by Microchip. No licenses are con-
veyed, implicitly or otherwise, under any intellectual property
rights.

Trademarks

The Microchip name and logo, the Microchip logo, FilterLab,
KEELOQ, microID, MPLAB, PIC, PICmicro, PICMASTER,
PICSTART, PRO MATE, SEEVAL and The Embedded Control
Solutions Company are registered trademarks of Microchip Tech-
nology Incorporated in the U.S.A. and other countries.

dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB,
In-Circuit Serial Programming, ICSP, ICEPIC, microPort,
Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM,
MXDEV, PICC, PICDEM, PICDEM.net, rfPIC, Select Mode
and Total Endurance are trademarks of Microchip Technology
Incorporated in the U.S.A.

Serialized Quick Turn Programming (SQTP) is a service mark
of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2002, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

 Printed on recycled paper.

Microchip received QS-9000 quality system
certification for its worldwide headquarters,
design and wafer fabrication facilities in
Chandler and Tempe, Arizona in July 1999. The
Company’s quality system processes and
procedures are QS-9000 compliant for its
PICmicro® 8-bit MCUs, KEELOQ® code hopping
devices, Serial EEPROMs and microperipheral
products. In addition, Microchip’s quality
system for the design and manufacture of
development systems is ISO 9001 certified.

Note the following details of the code protection feature on PICmicro® MCUs.

• The PICmicro family meets the specifications contained in the Microchip Data Sheet.
• Microchip believes that its family of PICmicro microcontrollers is one of the most secure products of its kind on the market today,

when used in the intended manner and under normal conditions.
• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowl-

edge, require using the PICmicro microcontroller in a manner outside the operating specifications contained in the data sheet.
The person doing so may be engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.
• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not

mean that we are guaranteeing the product as “unbreakable”.
• Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of

our product.

If you have any further questions about this matter, please contact the local sales office nearest to you.

 2002 Microchip Technology Inc.

M
AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200 Fax: 480-792-7277
Technical Support: 480-792-7627
Web Address: http://www.microchip.com
Rocky Mountain
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7966 Fax: 480-792-7456

Atlanta
500 Sugar Mill Road, Suite 200B
Atlanta, GA 30350
Tel: 770-640-0034 Fax: 770-640-0307
Boston
2 Lan Drive, Suite 120
Westford, MA 01886
Tel: 978-692-3848 Fax: 978-692-3821
Chicago
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071 Fax: 630-285-0075
Dallas
4570 Westgrove Drive, Suite 160
Addison, TX 75001
Tel: 972-818-7423 Fax: 972-818-2924
Detroit
Tri-Atria Office Building
32255 Northwestern Highway, Suite 190
Farmington Hills, MI 48334
Tel: 248-538-2250 Fax: 248-538-2260
Kokomo
2767 S. Albright Road
Kokomo, Indiana 46902
Tel: 765-864-8360 Fax: 765-864-8387
Los Angeles
18201 Von Karman, Suite 1090
Irvine, CA 92612
Tel: 949-263-1888 Fax: 949-263-1338
New York
150 Motor Parkway, Suite 202
Hauppauge, NY 11788
Tel: 631-273-5305 Fax: 631-273-5335
San Jose
Microchip Technology Inc.
2107 North First Street, Suite 590
San Jose, CA 95131
Tel: 408-436-7950 Fax: 408-436-7955
Toronto
6285 Northam Drive, Suite 108
Mississauga, Ontario L4V 1X5, Canada
Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC
Australia
Microchip Technology Australia Pty Ltd
Suite 22, 41 Rawson Street
Epping 2121, NSW
Australia
Tel: 61-2-9868-6733 Fax: 61-2-9868-6755
China - Beijing
Microchip Technology Consulting (Shanghai)
Co., Ltd., Beijing Liaison Office
Unit 915
Bei Hai Wan Tai Bldg.
No. 6 Chaoyangmen Beidajie
Beijing, 100027, No. China
Tel: 86-10-85282100 Fax: 86-10-85282104
China - Chengdu
Microchip Technology Consulting (Shanghai)
Co., Ltd., Chengdu Liaison Office
Rm. 2401, 24th Floor,
Ming Xing Financial Tower
No. 88 TIDU Street
Chengdu 610016, China
Tel: 86-28-6766200 Fax: 86-28-6766599
China - Fuzhou
Microchip Technology Consulting (Shanghai)
Co., Ltd., Fuzhou Liaison Office
Unit 28F, World Trade Plaza
No. 71 Wusi Road
Fuzhou 350001, China
Tel: 86-591-7503506 Fax: 86-591-7503521
China - Shanghai
Microchip Technology Consulting (Shanghai)
Co., Ltd.
Room 701, Bldg. B
Far East International Plaza
No. 317 Xian Xia Road
Shanghai, 200051
Tel: 86-21-6275-5700 Fax: 86-21-6275-5060
China - Shenzhen
Microchip Technology Consulting (Shanghai)
Co., Ltd., Shenzhen Liaison Office
Rm. 1315, 13/F, Shenzhen Kerry Centre,
Renminnan Lu
Shenzhen 518001, China
Tel: 86-755-2350361 Fax: 86-755-2366086
Hong Kong
Microchip Technology Hongkong Ltd.
Unit 901-6, Tower 2, Metroplaza
223 Hing Fong Road
Kwai Fong, N.T., Hong Kong
Tel: 852-2401-1200 Fax: 852-2401-3431
India
Microchip Technology Inc.
India Liaison Office
Divyasree Chambers
1 Floor, Wing A (A3/A4)
No. 11, O’Shaugnessey Road
Bangalore, 560 025, India
Tel: 91-80-2290061 Fax: 91-80-2290062

Japan
Microchip Technology Japan K.K.
Benex S-1 6F
3-18-20, Shinyokohama
Kohoku-Ku, Yokohama-shi
Kanagawa, 222-0033, Japan
Tel: 81-45-471- 6166 Fax: 81-45-471-6122
Korea
Microchip Technology Korea
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea 135-882
Tel: 82-2-554-7200 Fax: 82-2-558-5934
Singapore
Microchip Technology Singapore Pte Ltd.
200 Middle Road
#07-02 Prime Centre
Singapore, 188980
Tel: 65-334-8870 Fax: 65-334-8850
Taiwan
Microchip Technology Taiwan
11F-3, No. 207
Tung Hua North Road
Taipei, 105, Taiwan
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE
Denmark
Microchip Technology Nordic ApS
Regus Business Centre
Lautrup hoj 1-3
Ballerup DK-2750 Denmark
Tel: 45 4420 9895 Fax: 45 4420 9910
France
Microchip Technology SARL
Parc d’Activite du Moulin de Massy
43 Rue du Saule Trapu
Batiment A - ler Etage
91300 Massy, France
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79
Germany
Microchip Technology GmbH
Gustav-Heinemann Ring 125
D-81739 Munich, Germany
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44
Italy
Microchip Technology SRL
Centro Direzionale Colleoni
Palazzo Taurus 1 V. Le Colleoni 1
20041 Agrate Brianza
Milan, Italy
Tel: 39-039-65791-1 Fax: 39-039-6899883
United Kingdom
Arizona Microchip Technology Ltd.
505 Eskdale Road
Winnersh Triangle
Wokingham
Berkshire, England RG41 5TU
Tel: 44 118 921 5869 Fax: 44-118 921-5820

01/18/02

WORLDWIDE SALES AND SERVICE

	INTRODUCTION
	PROJECT DESCRIPTION
	FUZZY DESIGN
	FUZZIFICATION
	FUZZY RULE BASE
	DEFUZZIFICATION
	DEBUGGING
	Integration
	Summary
	Appendix A: Fuzzy Technology Language File
	Appendix B: MYMAIN.ASM Template for the PIC16CXXX ...
	Worldwide Sales & Service

