
 1997 Microchip Technology Inc. DS00576B-page 5-99

INTRODUCTION

This application note discusses four methods for
disabling global interrupts. The method best suited for
the application may then be used. All discussion will be
specific to the PIC16CXXX family of products, but
these concepts are also applicable to the PIC17C42,
and are shown in the even numbered examples. Note
that the PIC17C42’s global interrupt bit is called
GLINTD and has an inverse sense compared to the
GIE bit of the PIC16CXXX family.

To disable all interrupts, either the Global Interrupt
Enable (GIE) bit must be cleared or all the individual
interrupt enable bits must be cleared. An issue arises
when an instruction clears the GIE bit and an interrupt
occurs "simultaneously". For example, when a program
executes the instruction BCF INTCON, GIE (at
address PC), there is a possibility that an interrupt will
occur during this instruction. If an interrupt occurs dur-

Author: Mark Palmer
Microchip Technology Inc.
Contributions by Martin Burghardt
Manager Applications (Central Europe)

ing this instruction, the program would complete execu-
tion of this instruction, and then immediately branch to
the user’s interrupt service routine. This occurs
because the GIE bit was not clear (disabled) when the
interrupt occurred. Normally at the end of the interrupt
service routine is the RETFIE instruction. This instruc-
tion causes the program to return to the instruction at
PC + 1, but also sets the GIE bit (enabled). Therefore
the GIE bit is not cleared as expected, and unintended
program execution may occur.

One method to ensure that the GIE bit is cleared is
shown in Example 1 and Example 2, as well as in the
PIC16CXXX data sheets. This method tests the state
of the GIE bit, after clearing, to ensure that it was not
accidentally set in the user’s interrupt service routine by
the RETFIE instruction. If the GIE bit was accidentally
set, the program branches back to the instruction that
clears the GIE bit.

In this method, the time to ensure that the GIE bit is
cleared is indeterminate. Depending on the frequency
of the enabled interrupts during this code segment,
unexpected delays into the following code segment
may occur. For some applications, this may be
undesirable. The following three methods address this
issue.

EXAMPLE 1: CLEARING THE GIE BIT (DISABLING INTERRUPTS, METHOD 1, PIC16CXXX)

LOOP BCF INTCON, GIE ; Disable Global Interrupt
BTFSC INTCON, GIE ; Global Interrupt Disabled?
GOTO LOOP ; NO, try again
: ; YES, continue with program flow
:
BSF INTCON, GIE ; Re-enable Global Interrupt

EXAMPLE 2: SETTING THE GLINTD BIT (DISABLING INTERRUPTS, METHOD 1, PIC17C42)

:
LOOP BSF CPUSTA, GLINTD ; Disable Global Interrupt

BTFSS CPUSTA, GLINTD ; Global Interrupt Disabled?
GOTO LOOP ; NO, try again
: ; YES, continue with program flow
:
BCF CPUSTA, GLINTD ; Re-enable Global Interrupt

AN576
Techniques to Disable Global Interrupts

AN576

DS00576B-page 5-100  1997 Microchip Technology Inc.

The second method is to disable the individual interrupt
enable bits. If it is known which bits are enabled at this
point, it can easily be done. Example 3 and Example 4
show the disabling of interrupts, where it is known
which sources are enabled (some peripheral interrupts
and the T0CKI pin interrupt).

This method also requires the same number of
instructions for the disabling/enabling of interrupts, as
method 1, but requires a knowledge of which individual
interrupt enable bits need to be disabled and (more
importantly) re-enabled. The major advantage of this
method is that it can minimize the time delay entering
the code segment which follows the point where
interrupts are disabled.

EXAMPLE 3: CLEARING KNOWN INDIVIDUAL INTERRUPT ENABLE BITS
(METHOD 2, PIC16CXXX)

:
MOVLW b’10011111’ ; Disable Peripheral and T0CKI pin interrupts,
ANDWF INTCON, F ; All other bits unchanged
:
:
:
MOVLW b’01100000’ ; Re-enable Peripheral and T0CKI pin interrupts,
IORWF INTCON, F ; All other bits unchanged
:

EXAMPLE 4: CLEARING KNOWN INDIVIDUAL INTERRUPT ENABLE BITS
(METHOD 2, PIC17C42)

:
MOVLW b’11110011’ ; Disable Peripheral and T0CKI pin interrupts,
ANDWF INTSTA, F ; All other bits unchanged
:
:
:
MOVLW b’00001100’ ; Re-enable Peripheral and T0CKI pin interrupts,
IORWF INTSTA, F ; All other bits unchanged
:

 1997 Microchip Technology Inc. DS00576B-page 5-101

AN576

Method 3 can be used if the states of the individual
interrupt enable bits are unknown. A temporary byte of
data RAM is required to store the value of the INTCON
register. This method is shown in Example 5 and
Example 6.

This method also requires more instructions for the
disabling/enabling of interrupts than in method 1 or
method 2, and also a byte of data RAM to temporarily
store the value of the INTCON register. The major
advantage of this method is that it minimizes the time
delay into the code segment which follows the point
where interrupts are disabled.

EXAMPLE 5: CLEARING THE INDIVIDUAL INTERRUPT ENABLE BITS (METHOD 3, PIC16CXXX)
:

MOVF INTCON, W ; Move the value in INTCON to
MOVWF S_INTCON ; a shadow register
MOVLW b’10000111’ ; Disable all individual interrupts,
ANDWF INTCON, F ; All other bits unchanged
:
:
:
MOVF S_INTCON, W ; Restore the INTCON register
IORWF INTCON, F ;
:

EXAMPLE 6: CLEARING THE INDIVIDUAL INTERRUPT ENABLE BITS (METHOD 3, PIC17C42)

:
MOVPF INTSTA, S_INTSTA ; Move the value in INTSTA to a shadow register
MOVLW b’11110000’ ; Disable all individual interrupts,
ANDWF INTSTA, F ; All other bits unchanged
:
:
:
MOVFP S_INTSTA, W ; Restore the INTSTA register
IORWF INTSTA, F ;
:

AN576

DS00576B-page 5-102  1997 Microchip Technology Inc.

The final method is to use a RAM location to “shadow”
the value of the GIE bit. This shadow bit can then be
used in the interrupt service routine to determine which
return instruction to use. That is, either the RETURN or
the RETFIE (which enables the GIE bit) instruction.
Example 7 and Example 8 show this implementation,
which require that a general purpose bit be available to
hold the “shadow“ GIE value. In these examples, the
shadow GIE (S_GIE) bit is contained in the register
FLAG_REG. If an interrupt occurs during the clearing
of the shadow GIE, the interrupt is responded to. At the
end of the interrupt service routine, the shadow GIE bit
is cleared so the RETURN instruction is executed. The
GIE bit remains disabled and program execution
returns to the instruction which tries to clear the GIE bit

(disable). No interrupts can occur during this instruction
since the GIE bit was not re-enabled after the interrupt
service routine.

This method also requires more instructions for the
disabling/enabling of interrupts than in method 1 or
method 2, and a single bit of data RAM to temporarily
store the value of the desired GIE value, and increases
the interrupt service routine execution time by one
instruction cycle, for most occurrences of interrupts
(two cycles worst case). The major advantage of this
method is that it minimizes the time delay into the code
segment which follows the point where interrupts are
disabled. Also, the individual interrupt enable bits need
not be modified.

EXAMPLE 7: THE “SHADOW” GIE BIT (METHOD 4, PIC16CXXX)
:

org 0x004
INT_SERVICE_ROUTINE

:
:
BTFSC FLAG_REG, S_GIE ; Is the S_GIE bit enabled?
RETFIE ; YES, the GIE should be enabled
RETURN ; NO, the GIE should be disabled

END_INT_SERVICE_ROUTINE
;
MAIN:

:
:
BCF FLAG_REG, S_GIE ; Clear the shadow GIE bit
BCF INTCON, GIE ; Disable interrupts by clearing the GIE bit
:
:
:
BSF FLAG_REG, S_GIE ; Set the shadow GIE bit
BSF INTCON, GIE ; Enable interrupts by setting the GIE bit
:
:
END

EXAMPLE 8: THE “SHADOW” GLINTD BIT (METHOD 4, PIC17C42)
:

org 0x004
INT_SERVICE_ROUTINE

:
:
BTFSS FLAG_REG, S_GLINTD ; Is the S_GLINTD bit enabled?
RETFIE ; YES, the GLINTD should be enabled
RETURN ; NO, the GLINTD should be disabled

END_INT_SERVICE_ROUTINE
;
MAIN:

:
:
BSF FLAG_REG, S_GLINTD ; Set the shadow GLINTD bit
BSF CPUSTA, GLINTD ; Disable interrupts by setting the GLINTD bit
:
:
:
BCF FLAG_REG, S_GLINTD ; Clear the shadow GLINTD bit
BCF CPUSTA, GLINTD ; Enable interrupts by clearing the GLINTD bit
:
:
END

 1997 Microchip Technology Inc. DS00576B-page 5-103

AN576

CONCLUSION

In conclusion, different methods exist to ensure that all
interrupts are disabled. The requirement(s) of the
application determines which of the methods is the best
fit. A comparison of the different methods is shown in
Table 1.

TABLE 1: COMPARISON OF DIFFERENT METHODS

Cycle Delay (TCY)

Program Memory Data Memory Best Case Worst Case

Method 1 2 words * N  2 Indeterminate

Method 2 2 words * N  1 1 + TISR

Method 3 - PIC16CXXX 4 words * N 1 byte 3 3 + TISR

 - PIC17C42 3 words * N 1 byte 2 2 + TISR

Method 4 2 words * N + 2 words 1 bit 1† 1 + (TISR + 2)

Legend: N - Number of occurrences to disable / re-enable interrupts.
TISR - Time to execute the interrupt service routine.
† This method increases the interrupt service routine time (TISR) by 1 cycle for most

occurrences (2 cycles worst case).

AN576

DS00576B-page 5-104  1997 Microchip Technology Inc.

NOTES:

