INTRODUCTION

The 24C01A is a 1K (128 x 8) Serial EEPROM which is currently offered by Microchip and Xicor. There are several important differences between the two devices which are discussed in this report. This report refers to the Microchip part as the 24C01A and the Xicor part as the X24C01. It is intended to assist in designing a memory subsystem which is compatible with either device.

COMPATIBILITY ISSUES

There are three major differences between Microchip’s 24C01A and Xicor’s X24C01 as detailed below.

1.1 PAGE MODE DIFFERENCES

The 24C01A was originally designed to work in the same socket as the PCD8572 which has a two-byte page mode. Therefore, its page buffer is two bytes deep. The X24C01 has a page mode of four bytes depth.

If more than two bytes are transmitted to the 24C01A during a page programming cycle, the 24C01A will terminate the write cycle.

In many applications where serial EEPROMs are used and speed is not a key issue, the byte write mode can be used without any loss of system performance. If only the byte write mode is used, there is no compatibility problem (other than the slave address software differences discussed in 1.2).

If the page write feature must be used, two different page mode algorithms can be transmitted by the master depending upon whose device is being used. The master will have to first do a polling routine to determine if it is interfacing with a 24C01A or X24C01. This polling technique is discussed in 1.2.

Interestingly, the 24C01A actually updates faster in the page mode even though it has one-half the page depth of the X24C01. This is due to the faster write cycle time of the 24C01A. The two devices are compared in Figure 1.

1.2 SOFTWARE DIFFERENCES

Microchip’s 24C01A is designed to share a 2-wire bus on which it resides with other devices. To support this, the first byte of each command sequence from the master to the 24C01A must be a slave address. The 24C01A monitors the 2-wire bus for its slave address and “wake-up” from standby mode if the address transmitted matches its address as defined by the voltage level (Vss or Vcc) on pins 1, 2 and 3. X24C01 does not support a multiple device bus and will always “wake-up” if a start condition is detected.

A slave address must be transmitted to the 24C01A at certain points during reading and writing. This slave address is not required by the X24C01. Transmitting a slave address to X24C01 will result in erroneous operation. This problem can be solved by having the master transmit the proper serial bit pattern to the slave, but first the master has to ascertain with which 24C01A it is communicating.

The master can do a simple polling routine before beginning serial communication with 24C01A or X24C01 to determine with which device it is working. The proper serial protocol for both devices must be contained in the master controller’s firmware. Once the master knows which 24C01A is on the bus, it can execute the proper serial commands.

FIGURE 1 - PAGE MODE DIFFERENCES

<table>
<thead>
<tr>
<th></th>
<th>Microchip</th>
<th>Xicor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max byte program time</td>
<td>1 ms</td>
<td>10 ms</td>
</tr>
<tr>
<td>Max page program time</td>
<td>2 ms (2 bytes)</td>
<td>10 ms (4 bytes)</td>
</tr>
<tr>
<td>Max time to program 4 bytes</td>
<td>4 ms</td>
<td>10 ms</td>
</tr>
<tr>
<td>Max time to rewrite device</td>
<td>128 ms</td>
<td>320 ms</td>
</tr>
</tbody>
</table>
24C01A Compatibility Issue

The polling consists of the pattern like the one shown below:

```
SDA LINE: | START BIT | 00000001 | ACKNOWLEDGE BIT | DATA 7...0 |
```

If an X24C01 is used on the 2-wire bus, an acknowledge bit and eight data bits will be returned whereas 24C01A will issue no response and will ignore the command.

2.3 HARDWARE DIFFERENCES

Unlike the X24C01, the 24C01A is designed to share a 2-wire bus with other devices. Chip address bits are included in the slave address for the 24C01A, and are incorporated into pins 1, 2 and 3 of the device. They must be connected to VCC or Vss for proper operation. Since pins 1, 2 and 3 of the Xicor part are NC (no connect) pins and they are not internally connected, they can be tied high or low.

Another hardware difference involves pin 7 which MUST be connected to Vss on the X24C01. The 24C01A can have pin 7 connected to Vss or Vcc.

If only one device is planned for the 2-wire bus, the board can be made compatible for either device by connecting pins 1, 2 and 3 to either Vss or Vcc and tying pin 7 to Vss.

Mobility For Memory Upgrade And Expansion

In system applications where the master device needs to address more than one serial EEPROM on a 2-wire bus, the Microchip 24C01A offers the flexibility. Up to eight 24C01A’s can be connected to the 2-wire bus. More than one Xicor X24C01 connected to the bus may result in bus contention.

If memory upgrade is required, the Microchip 24C01A can be upgraded to the 24C02A (256 x 8) or the 24C04A (512 x 8) in the same IC socket with NO change in hardware. Using the Xicor X24C01, both software and hardware would have to be reconfigured to accommodate the changes.

Author: Bruce Negley
Memory Products Division
WORLDWIDE SALES & SERVICE

AMERICAS

Corporate Office
Microchip Technology Inc.
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 602 786-7200 Fax: 602 786-7277
Technical Support: 602 786-7627
Web: http://www.mchipe.com/microchip

Atlanta
Microchip Technology Inc.
500 Sugar Mill Road, Suite 200B
Atlanta, GA 30350
Tel: 770 640-0034 Fax: 770 640-0307

Boston
Microchip Technology Inc.
5 Mount Royal Avenue
Marlborough, MA 01752
Tel: 508 480-9990 Fax: 508 480-8575

Chicago
Microchip Technology Inc.
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 708 285-0071 Fax: 708 285-0075

Dallas
Microchip Technology Inc.
14651 Dallas Parkway, Suite 816
Dallas, TX 75240-8809
Tel: 214 991-7177 Fax: 214 991-8588

Dayton
Microchip Technology Inc.
35 Rockridge Road
Englewood, OH 45322
Tel: 513 832-2543 Fax: 513 832-2841

Los Angeles
Microchip Technology Inc.
18201 Von Karman, Suite 455
Irvine, CA 92715
Tel: 714 263-1888 Fax: 714 263-1338

New York
Microchip Technology Inc.
150 Motor Parkway, Suite 416
Hauppauge, NY 11788
Tel: 516 273-5305 Fax: 516 273-5335

AMERICAS (continued)

San Jose
Microchip Technology Inc.
2107 North First Street, Suite 590
San Jose, CA 95131
Tel: 408 436-7950 Fax: 408 436-7955

ASIA/PACIFIC

Hong Kong
Microchip Technology
Unit No. 3002-3004, Tower 1
Metropolis
223 Hing Fong Road
Kwai Fong, N.T. Hong Kong
Tel: 852 2 401 1200 Fax: 852 2 401 3431

Korea
Microchip Technology
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku, Seoul, Korea
Tel: 82 2 554 7200 Fax: 82 2 558 5934

Singapore
Microchip Technology
200 Middle Road
#10-03 Prime Centre
Singapore 188980
Tel: 65 334 8870 Fax: 65 334 8850

Taiwan
Microchip Technology
10F-1C 207
Tung Hua North Road
Taipei, Taiwan, ROC
Tel: 886 2 717 7175 Fax: 886 2 545 0139

EUROPE

United Kingdom
Arizona Microchip Technology Ltd.
Unit 6, The Courtyard
Meadow Bank, Furlong Road
Bourne End, Buckinghamshire SL8 5AJ
Tel: 44 0 1628 851077 Fax: 44 0 1628 850259

France
Arizona Microchip Technology SARL
2 Rue du Buisson aux Fraises
91300 Massy, France
Tel: 33 1 69 53 63 20 Fax: 33 1 69 30 90 79

Germany
Arizona Microchip Technology GmbH
Gustav-Heinemann-Ring 125
D-81739 Muenchen, Germany
Tel: 49 89 627 144 0 Fax: 49 89 627 144 44

Italy
Arizona Microchip Technology SRL
Centro Direzionale Colleoni
Palazzo Pegaso Ingresso No. 2
Via Paracelso 23, 20041
Agrate Brianza (MI), Italy
Tel: 39 039 689 9939 Fax: 39 039 689 9883

JAPAN

Microchip Technology Intl. Inc.
Benex S-1 6F
3-18-20, Shin Yokohama
Kohoku-Ku, Yokohama
Kanagawa 222 Japan
Tel: 81 45 471 6166 Fax: 81 45 471 6122

All rights reserved. © 1995, Microchip Technology Incorporated, USA.