

<u>AN514</u>

Software Interrupt Techniques

INTRODUCTION

This application note describes a unique method for implementing interrupts in software on the PIC16C5X series of microcontrollers. This method takes advantage of the PIC16C5X's architecture which allows changing the program counter under software control. Up to eight interrupt lines are possible, but the practical limit for simple code generation is six interrupts, or 64 possible input conditions. The interrupt detection time is under software control and standard I/O pins are used as the interrupt lines.

THEORY OF OPERATION

SOFTWARE POLLING OF I/O LINES TO REPLACE HARDWARE INTERRUPTS

The interrupt conditions are determined by detecting changes on the I/O lines that have been selected to be the interrupt lines. These changes are used to create a jump table that allows a different program response to each interrupt condition. The interrupt response time is under software control and can be as short as ten to twenty microseconds, depending on main program and interrupt subroutine program length.

CREATING THE INTERRUPT SUBROUTINE JUMP TABLE

Each I/O condition may have its own unique subroutine to respond to changes on the interrupt lines. Direct access to these routines is achieved by using the PIC16C5X's ability to change the program counter under software control. Here is an example of how two I/O lines may be polled:

MOVF	CONDTN,W	;LOAD I/O CONDITION INTO W
		;REGISTER
ANDLW	3	;MASK OFF TOP 6 BITS
ADDWF	2,1	; ADD INPUT TO PROGRAM COUNTER
		;TO CREATE JUMP TABLE
GOTO	MAIN	;FOR NO CHANGE GOTO MAIN
		; PROGRAM
GOTO	INT1	FOR CHANGE IN BIT 0 GOTO INT1
GOTO	INT2	FOR CHANGE IN BIT 1 GOTO INT2
GOTO	INT3	;FOR BOTH CHANGES GOTO INT3

The changes to the I/O lines have been used to create a two bit number that is added to the program counter. The GOTO that is executed depends on the new program counter address.

CREATING CONSTANT TIME POLLING

In most applications requiring interrupts, it is important to poll the interrupt lines at fixed time intervals, usually only a few microseconds in length. Two techniques may be used on the PIC16C5X to achieve this timing. One divides the main program into multiple sections and the other implements an elapsed time counter (Figure 1). Both of these techniques use the same program jump table concept that was described earlier. In the first technique, the main program is divided into several sections based on the desired I/O polling time. When MAIN is called a branch register is added to the program counter. This determines which section of MAIN code should be executed next. At the end of execution the branch register is decremented so the next section of code will be executed after the next polling. If the branch register is zero, then the number of sections of main code is added into it to start the main program over again.

In the second technique, an elapsed time counter can be implemented using the Timer0 counter. At the beginning of I/O polling the TMR0 register is cleared. It then starts counting the instruction cycles. Then after the main program subsection has been executed, the TMR0 register value is subtracted from the desired polling time. This determines how many instructions need to be executed before the next polling. A jump table is then created to execute these instructions before the next polling. An example is shown below. This example assumes from zero to 15 additional instruction cycles are needed. Actual numbers need to be computed for each individual application.

MOVLW	POLL	;POLL=DESIRED POLL CYCLES-15
SUBWF	TMR0,W	;DETERMINE HOW MUCH TIME TO WAIT
ADDWF	2,1	; ADD WAIT TIME TO PROGRAM COUNTER
NOP		;15 ADDITIONAL INSTRUCTION CYCLES
:		
:		;TOTAL OF 15 NOP'S
NOP		;1 ADDITIONAL INSTRUCTION CYCLE
GOTO	START	;0 ADDITIONAL INSTRUCTION CYCLES

For example, if the desired instruction time is 50 cycles and the subsection we just executed has a consumed a total of 40 instruction cycles (including all overhead cycles) the value of:

TMR0(40) - POLL(50 - 15(= 35)) = 5

will be added to the program counter. The program will then jump to the sixth NOP. That NOP, plus the nine following it, will be executed for a total of ten more instruction cycles. Note that the final GOTO has two instruction cycles and these must be included in the program overhead.

Example

The following example (Figure 1 and Appendix A) is the core program for the software interrupt technique described previously. This program assumes four interrupt conditions, four main program sections, and eight additional elapsed time instructions.

Please check the Microchip BBS for the latest version of the source code. Microchip's Worldwide Web Address: www.microchip.com; Bulletin Board Support: MCHIPBBS using CompuServe[®] (CompuServe membership not required).

APPENDIX A: INTRUPT.ASM

MPASM 01.40 Release	d	IN	FRUPT.AS	M 1-16-1	12:37:20	PAGE 1
LOC OBJECT CODE VALUE	LINE	SOURCE	TEXT			
	00001		TITLE `	SOFTWARE 1	INTERRUPT PROGR	RAM REV 3-29-90'
	00002		LIST	P=16C54		
	00003					
	00004	;				
	00005	;*****	* * * * * * * *	*******	* * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *
	00006	;				
	00007	; 50	OFTWARE	INTERRUPT	APPLICATIONS	
	00008	; BI	RANCH IS	MAIN PROC	GRAM REGISTER	
	00009	;				
	00010	;	Progra	m:	OHMETER.ASM	
	00011	;	Revisi	on Date:		
	00012	;			1-13-97	Compatibility with MPASMWIN 1.40
	00013	;				
	00014	;****	* * * * * * * *	* * * * * * * * * *	* * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *
	00015	;		0		
0000008	00016	BRANCH	EQU	8		
00000009	00017	CNDTN	EQU	9		
0000000A	00018	TO	EQU	0A 0D		
0000008	00019	IEMP	ЕQU	0B		
0000 0069	00020	סדידיזס		CINIDUM		
0001 0004	00021	SEIUP	MOVIW	2		
0002 0028	00022		MOVWE	BRANCH	FOUR MAIN PRO	GRAM SECTIONS
0003 0008	00023		MOVIW	8	/10010 111110 1100	
0004 0002	00025		OPTION	-	;SET TMR0 TO C	ONE COUNT PER INSTRUCTION CYCLE
	00026					
0005 0061	00027	START	CLRF	1	;CLEAR TMR0 RE	EGISTER
0006 0206	00028		MOVF	б,W	;READ I/O	
0007 002A	00029		MOVWF	IO		
0008 0109	00030		IORWF	CNDTN,W	;THIS SECTION	OF CODE CALCULATES THE
0009 002B	00031		MOVWF	TEMP	;JUMP TABLE. A	ANY INPUT THAT CHANGES FROM
000A 0209	00032		MOVF.	CNDTN,W	A ZERO TO A C	DNE IS CONSIDERED AN INTERRUPT.
000B 00AB	00033		SUBWE	TEMP,I	THE EQUATION	15: 15:
	00034		MOVE	IU,W	WHERE TO TO C	N) - CNDIN = INIERROPI
000D 0029	00035		MOVE	TEMD W	CNDTN IS DEFU	UCHENI INPUT AND
000E 020B	00030		ANDLW	3	MASK OFF TOP	6 BITS
0010 01E2	00038		ADDWF	2.1	ADD INPUT TO	PC TO CREATE JUMP TABLE
0011 0A1B	00039		GOTO	MAIN	FOR INPUT=00	
0012 0A15	00040		GOTO	INT1	;FOR INPUT=01	
0013 0A17	00041		GOTO	INT2	;FOR INPUT=10	
0014 0A19	00042		GOTO	INT3	;FOR INPUT=11	
	00043					
0015 0000	00044	INT1	NOP		;INTERRUPT LIN	JE 1 CODE
0016 0A05	00045		GOTO	START		
0017 0000	00046	INT2	NOP		;INTERRUPT LIN	NE 2 CODE
0018 0A05	00047		GOTO	START		
0019 0000	00048	INT3	NOP		;INTERRUPT LIN	NES 1 AND 2 CODE
001A 0A05	00049		GOTO	START		
	00050					
UU1B 0208	00051	MAIN	MOVF	BRANCH,W		
UUIC UIEZ	00052		ADDWF	∠,⊥	; ADD BRANCH TO	D PC TO CREATE JUMP TABLE
UULD UUUU	00053		NOL	MA TN 4	• דוואוס חיזוי ד	יי זמגייי האיזיאיייטאייטאייי איינער איי
UULE UAZO	00054		GOID	MAIN4	JUUMP IABLE, L	NOI LIKOI ON DECKEMENI IABLE

AN514

001F	0A26	00055		GOTO	MAIN3	
0020	0A24	00056		GOTO	MAIN2	
0021	0A22	00057		GOTO	MAIN1	
		00058				
0022	0000	00059	MAIN1	NOP		; MAIN PROGRAM CODE BANK ONE
0023	0A2A	00060		GOTO	BRNCHK	
0024	0000	00061	MAIN2	NOP		;MAIN PROGRAM CODE SECTION TWO
0025	0A2A	00062		GOTO	BRNCHK	
0026	0000	00063	MAIN3	NOP		;MAIN PROGRAM CODE SECTION THREE
0027	0A2A	00064		GOTO	BRNCHK	
0028	0000	00065	MAIN4	NOP		;MAIN PROGRAM CODE SECTION FOUR
0029	0A2A	00066		GOTO	BRNCHK	
		00067				
002A	02E8	00068	BRNCHK	DECFSZ	BRANCH,1	; DECREMENT BRANCH REGISTER AND CHECK FOR ZERO
002B	0A2E	00069		GOTO	TIMCHK	
002C	0C04	00070		MOVLW	4	
002D	0028	00071		MOVWF	BRANCH	;RELOAD BRANCH WITH 4 AT END OF MAIN
		00072				
002E	0C29	00073	TIMCHK	MOVLW	D'41'	;CHECK TO SEE IF TMRO HAS REACHED 50(50-7)
002F	0081	00074		SUBWF	1,W	;DETERMINE WAIT TIME
0030	01E2	00075		ADDWF	2,1	;ADD WAIT TIME TO PC
0031	0000	00076		NOP		
0032	0000	00077		NOP		
0033	0000	00078		NOP		
0034	0000	00079		NOP		
0035	0000	00080		NOP		
0036	0000	00081		NOP		
0037	0000	00082		NOP		
0038	0A05	00083		GOTO	START	
		00084		END		
0000	: xxxxxxxxxxxx	XXXX XX	xxxxxxx	xxxxxxx	XXXXXXXXX	XXXXXXX XXXXXXXX
All d	other memory blo	ocks ur	nused.			
Progi	ram Memory Words	Used	: 57			

Program Memory Words Free: 455

0 suppressed 0 suppressed

Errors : 0 Warnings : 0 reported, Messages : 0 reported,

Note the following details of the code protection feature on PICmicro[®] MCUs.

- The PICmicro family meets the specifications contained in the Microchip Data Sheet.
- Microchip believes that its family of PICmicro microcontrollers is one of the most secure products of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the PICmicro microcontroller in a manner outside the operating specifications contained in the data sheet. The person doing so may be engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
 mean that we are guaranteeing the product as "unbreakable".
- Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our product.

If you have any further questions about this matter, please contact the local sales office nearest to you.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, FilterLab, KEELOQ, microID, MPLAB, PIC, PICmicro, PICMASTER, PICSTART, PRO MATE, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, microPort, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, MXDEV, PICC, PICDEM, PICDEM.net, rfPIC, Select Mode and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A.

Serialized Quick Turn Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2002, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999. The Company's quality system processes and procedures are QS-9000 compliant for its PICmicro® 8-bit MCUs, KEELoq® code hopping devices, Serial EEPROMs and microperipheral products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001 certified.

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: 480-792-7627 Web Address: http://www.microchip.com

Rocky Mountain

2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7966 Fax: 480-792-7456

Atlanta

500 Sugar Mill Road, Suite 200B Atlanta, GA 30350 Tel: 770-640-0034 Fax: 770-640-0307

Boston

2 Lan Drive, Suite 120 Westford, MA 01886 Tel: 978-692-3848 Fax: 978-692-3821

Chicago

333 Pierce Road, Suite 180 Itasca, IL 60143 Tel: 630-285-0071 Fax: 630-285-0075

Dallas

4570 Westgrove Drive, Suite 160 Addison, TX 75001

Tel: 972-818-7423 Fax: 972-818-2924 Detroit

Tri-Atria Office Building 32255 Northwestern Highway, Suite 190 Farmington Hills, MI 48334 Tel: 248-538-2250 Fax: 248-538-2260 Kokomo

2767 S. Albright Road

Kokomo, Indiana 46902 Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles

18201 Von Karman, Suite 1090 Irvine, CA 92612

Tel: 949-263-1888 Fax: 949-263-1338 New York

150 Motor Parkway, Suite 202 Hauppauge, NY 11788 Tel: 631-273-5305 Fax: 631-273-5335

San Jose

Microchip Technology Inc. 2107 North First Street, Suite 590 San Jose, CA 95131 Tel: 408-436-7950 Fax: 408-436-7955

Toronto

6285 Northam Drive, Suite 108 Mississauga, Ontario L4V 1X5, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Australia

Microchip Technology Australia Pty Ltd Suite 22, 41 Rawson Street Epping 2121, NSW Australia

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 China - Beijing

Microchip Technology Consulting (Shanghai) Co., Ltd., Beijing Liaison Office Unit 915 Bei Hai Wan Tai Bldg. No. 6 Chaoyangmen Beidajie Beijing, 100027, No. China Tel: 86-10-85282100 Fax: 86-10-85282104

China - Chengdu

Microchip Technology Consulting (Shanghai) Co., Ltd., Chengdu Liaison Office Rm. 2401, 24th Floor, Ming Xing Financial Tower No. 88 TIDU Street Chengdu 610016, China Tel: 86-28-6766200 Fax: 86-28-6766599

China - Fuzhou

Microchip Technology Consulting (Shanghai) Co., Ltd., Fuzhou Liaison Office Unit 28F, World Trade Plaza No. 71 Wusi Road Fuzhou 350001, China Tel: 86-591-7503506 Fax: 86-591-7503521 China - Shanghai

Microchip Technology Consulting (Shanghai) Co., Ltd. Room 701, Bldg. B Far East International Plaza No. 317 Xian Xia Road Shanghai, 200051 Tel: 86-21-6275-5700 Fax: 86-21-6275-5060

China - Shenzhen

Microchip Technology Consulting (Shanghai) Co., Ltd., Shenzhen Liaison Office Rm. 1315, 13/F, Shenzhen Kerry Centre, Renminnan Lu Shenzhen 518001, China Tel: 86-755-2350361 Fax: 86-755-2366086 Hong Kong Microchip Technology Hongkong Ltd. Unit 901-6, Tower 2, Metroplaza

223 Hing Fong Road Kwai Fong, N.T., Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431

India

Microchip Technology Inc. India Liaison Office **Divvasree Chambers** 1 Floor, Wing A (A3/A4) No. 11, O'Shaugnessey Road Bangalore, 560 025, India Tel: 91-80-2290061 Fax: 91-80-2290062

Japan

Microchip Technology Japan K.K. Benex S-1 6F 3-18-20, Shinyokohama Kohoku-Ku, Yokohama-shi Kanagawa, 222-0033, Japan Tel: 81-45-471- 6166 Fax: 81-45-471-6122 Korea Microchip Technology Korea 168-1, Youngbo Bldg. 3 Floor Samsung-Dong, Kangnam-Ku Seoul, Korea 135-882 Tel: 82-2-554-7200 Fax: 82-2-558-5934 Singapore Microchip Technology Singapore Pte Ltd. 200 Middle Road #07-02 Prime Centre Singapore, 188980 Tel: 65-6334-8870 Fax: 65-6334-8850 Taiwan Microchip Technology Taiwan 11F-3, No. 207 Tung Hua North Road Taipei, 105, Taiwan Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE

Denmark

Microchip Technology Nordic ApS **Regus Business Centre** Lautrup hoj 1-3 Ballerup DK-2750 Denmark Tel: 45 4420 9895 Fax: 45 4420 9910 France Microchip Technology SARL Parc d'Activite du Moulin de Massy 43 Rue du Saule Trapu Batiment A - ler Etage 91300 Massy, France Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 Germany Microchip Technology GmbH

Gustav-Heinemann Ring 125 D-81739 Munich, Germany Tel: 49-89-627-144 0 Fax: 49-89-627-144-44 Italy

Microchip Technology SRL Centro Direzionale Colleoni Palazzo Taurus 1 V. Le Colleoni 1 20041 Agrate Brianza Milan, Italy Tel: 39-039-65791-1 Fax: 39-039-6899883

United Kinadom

Arizona Microchip Technology Ltd. 505 Eskdale Road Winnersh Triangle Wokingham Berkshire, England RG41 5TU Tel: 44 118 921 5869 Fax: 44-118 921-5820

03/01/02