
AN240
LIN Slave Node on a PIC16C433
INTRODUCTION
The PIC16C433 is a standard PIC16CXXX micro-
controller with a LIN (Local Interconnect Network)
transceiver integrated into the device. Therefore, the
microcontroller already has the necessary hardware to
easily integrate the device into a LIN system. This
application note provides a firmware base (driver) for
the system designer to use on the PIC16C433. The
driver utilizes the resources available, including the
Timer0 module, Timer0 prescaler, GPIO interrupt-on-
change or the external interrupt, and the LIN trans-
ceiver. In this document, significant effort is spent dem-
onstrating how to setup and use the driver. Some
general information and tips are also discussed to help
the designer build their application seamlessly in the
LIN environment. In addition, for the curious designer,
some additional details about the driver are provided
toward the end of the document.

The reader should note information in this application
note is presented with the assumption that the reader
is familiar with LIN specification v1.2, the most current
specification available at the initial release of this doc-
ument. Therefore, not all details about LIN are dis-
cussed. Refer to the references listed on page 14 for
additional information.

APPLICATIONS
The first question that must be asked is: “Will this driver
work for my application?” The next few sections are
written to help those who would like to know the answer
to this question and quickly decide whether this is the
appropriate driver implementation or device for the
application. The important elements that have signifi-
cant weight on the decision include available process
time, resource usage, and bit rate performance.

Process Time
Available process time is dictated predominately by bit
rate, clock frequency, and code execution. Since code
execution varies depending on the state within the LIN
driver and there being many states, generating a single
equation for process time is unrealistic. A much simpler
solution is to test the process time. Figure 1 shows the
approximate average available process time for FOSC
equal to the nominal internal oscillator frequency,
4 MHz.

FIGURE 1: AVAILABLE PROCESS TIME
(FOSC AT 4 MHZ)

When the LIN bus is IDLE, the driver uses significantly
less process time. Although dependent on the same
conditions stated above, the used process time is
extremely low. At 4 MHz, the average available
process time is greater than 98%.

Resource Usage
A few of the hardware resources are used to maintain
robust communications and precise timing. Timer0 is
used for maintaining communications timing and bus
activity time. Along with this, the timer prescaler is
adjusted under various conditions to simplify the code
and improve performance in many states of the driver.
An external interrupt is used for START edge detection
for each received byte, either the GPIO interrupt-on-
change or the INT pin can be configured as the
interrupt source.

Regarding memory usage, the driver consumes a small
portion of the memory resources. The bare driver only
consumes 15% of program memory of the PIC16C433
and 28% of the available data memory.

Bit Rate
The driver can achieve 14.4 Kbps using the internal
oscillator calibrated at its nominal operating frequency
of 4 MHz. As shown in Figure 2, higher bit rates are
also achievable by selecting HS mode and a higher
clock frequency. If the clock source meets the high
accuracy requirements defined in the LIN specification,
then a 15% adjustment can be made. Figure 2 shows
the lines dividing the operating regions for low
tolerance and high tolerance clock sources.

Author: Ross Fosler
Microchip Technology, Inc.

9600 14400

50%

70%

4800

15%

Bit Rate Time (bps)

Av
er

ag
e

Ti
m

e
Av

ai
la

bl
e

 2002 Microchip Technology Inc. DS00240A-page 1

AN240

FIGURE 2: RECOMMENDED OPERATING REGIONS

Summary
The driver is designed almost entirely in firmware. Only
the hardware peripherals standard to the PIC16CXXX
microcontroller are used. Thus, all communications
and timing required by the LIN specification are con-
trolled in firmware. This implies a certain percentage of
software resources are consumed, most importantly,
time. To put this into perspective, at 9600 bps using the
4 MHz internal oscillator, an average of 50% of the pro-
cess time is used by the driver. Also, given the intoler-
ance to uncertainty, interrupts should be restricted to
the LIN communications driver.

In summary, this means this driver is well suited for
applications that require only basic tasks. Thus, this
driver may not necessarily be the best choice for com-
plex timing critical applications, especially if the internal
oscillator is used. The PIC16C433 has an A/D con-
verter and up to 5 digital I/O pins with the LIN driver
active. Thus, some very useful applications include
simple motion control, on/off control, and sensor
feedback. For more complex applications, refer to other
Microchip LIN driver implementations that use
Microchip Microcontrollers with a hardware USART,
such as AN237, Implementing a LIN Slave Node on
PIC16F73 (DS00237).

FIRMWARE SETUP
Now that the decision has been made to use this driver,
it is time to setup the firmware and start building an
application. For example, a complete application pro-
vided in Appendix C, is built together with the LIN
driver. The code provided is a simple, yet functional
application, demonstrating control over a motor driven
mirror.

Here are the basic steps required to setup your project:

1. Setup a project in MPLAB® IDE. Make sure you
have the important driver files included in your
project: serial.asm, lin.asm, and
linevent.asm.

2. Include a main entry point in your project,
main.asm. Edit this file as required for the appli-
cation. Be certain that the interrupt is setup cor-
rectly. In addition, initialize the driver and ensure
any external symbols are included.

3. Edit linevent.asm to respond to the appropri-
ate IDs. This could be a table or simple compare
logic. Be certain to include any externally
defined symbols.

4. Add any additional application related modules.
The example uses idxx.asm for application
related functions connected to specific IDs.

5. Edit the lin.def file to setup the compile
time definitions of the driver. The definitions
determine how the driver functions.

C
lo

ck
 F

re
qu

en
cy

4MHz

6MHz

14k1.2k

Bit Rate

XT Mode Operation

XT and INTRC Mode Operation

No Operation

20k
2MHz

7.2k

HS Mode Operation

17k

F low_tol =
 .278 x B

Fhigh_tol =
 .236 x B
DS00240A-page 2 2002 Microchip Technology Inc.

AN240

Project Setup
The first step is to setup the project. Figure 3 shows an
example of what the project setup should look like. The
following files are required for the LIN driver to operate:

• lin.lkr - linker script file
• main.asm - the main entry point into the program
• serial.asm - the serial communications engine
• lin.asm - the LIN driver
• linevent.asm - LIN event handling table

Any additional files are defined by the system designer
for the specific application. For example, Figure 3 shows
these files labeled as idxx.asm, where xx represents
the LIN ID number. This is simply a programming style
that separates ID handling into individual objects, thus,
making the project format easier to understand. Other
objects could be added and executed through the main
module, main.asm, and the event handler.

Main Object
The main.asm module contains the entry point into the
program. This is where the driver, hardware, and vari-
ables should be initialized. To initialize the driver, call
the l_init function. The firmware in Appendix C
demonstrates this.

Also included in this module is the interrupt vector. The
serial function is interrupt based and must be included
in the interrupt vector routine. This is demonstrated in
the code in Example 1.

FIGURE 3: PROJECT SETUP

EXAMPLE 1: INTERRUPT CODE

Definitions
There are numerous compile time definitions, all of
them located in lin.def, that are used to setup the
system. Table 1 lists and describes these definitions.
Likewise, the definitions are also listed in Appendix B.
Only five of these definitions are critical for getting a
system running. They are:

• MAX_BIT_TIME
• NOM_BIT_TIME
• MIN_BIT_TIME
• USE_GP_CHANGE
• RX_ADVANCE (or RX_DELAY)
The first three definitions, the bit time definitions, setup
the baud rate and its boundary for communication. The
next item depends on your application hardware
design. Setup an external START edge detection
source; the two options for the PIC16C433 are the INT
pin or the GPIO interrupt-on-change. The last, yet very
important definition, is the receive advance or delay.
The receive advance or delay is used to advance or
delay the time-base to align to the center of the next bit
after the START bit.

_INTERRUPT_V CODE 0x0004
InterruptHandler

movwf W_TEMP ;Save
swapf STATUS, W
clrf STATUS
movwf STATUS_TEMP

call SerialEngine

swapf STATUS_TEMP, W ;Restore
movwf STATUS
swapf W_TEMP, F
swapf W_TEMP, W

retfie
 2002 Microchip Technology Inc. DS00240A-page 3

AN240

TABLE 1: COMPILE TIME DEFINITIONS

Definition Name Value Description

LIN_IDLE_TIME_PS b'10010110' This is the value loaded into the option register when the LIN bus is
IDLE. A prescaler setting of 128x is the desired choice for the prescaler.

LIN_ACTVE_TIME_PS b'10001000' This is the value loaded into the option register when the slave is
actively receiving or transmitting on the LIN bus. A prescaler value of 1x
is ideal for bit rates between 4800 and 14400 bps at 4 MHz.

LIN_SYNC_TIME_PS b'10010010' This is the value loaded into the option register when the slave is
capturing the sync byte. A prescaler setting of 8x is the desired choice
for the prescalar.

MAX_BIT_TIME d’118’ This is the upper bound bit time for synchronization. This should equal
((FOSC x 1.15) / 4) /(bit rate) – 2.

NOM_BIT_TIME d’102’ This is the nominal bit time for synchronization. This should equal
(FOSC / 4) /(bit rate) – 2.

MIN_BIT_TIME d’87’ This is the lower bound bit time for synchronization. This should equal
((FOSC x 0.85) / 4) /(bit rate) – 2.

MAX_IDLE_TIME d’195’ This defines the maximum bus IDLE time. The specification defines this
to be 25000 bit times. The value equals 25000 / 128. The 128 comes
from the LIN_IDLE_TIME_PS definition.

MAX_HEADER_TIME d’39’ This is the maximum allowable time for the header. This value equals
((34 + 1) x 1.4) – 10. This should not be changed unless debugging.

MAX_TIME_OUT d’128’ This specifies the maximum time-out between wake-up requests. The
specification defines this to be 128 bit times.

RC_OSC NA This definition enables synchronization. Do not use this definition if
using a crystal or resonator.

USE_GP_CHANGE NA Use this definition to configure the external interrupt to be a GPIO
interrupt-on-change. The alternative is to use the INT pin.

BRK_THRESHOLD d’11’ This value sets the receive break threshold. For low tolerance oscillator
sources, this value should be ‘11’. For high tolerance sources, this value
should be ‘9’, as defined in the LIN specification.

RX_DELAY 0xF0 This is the receive delay. Use this to adjust center sampling for low bit
rates, less than 7400 bps at 4 MHz. For lower bit rates, the delay should
be longer. Note, this value is complimented (i.e., 0xF0 is a delay of 16
cycles). This must not be used in conjunction with RX_ADVANCE.

RX_ADVANCE 0x10 This is the receive advance. Use this to adjust center sampling for high
bit rates, 7400 bps or greater at 4 MHz. This must not be used in
conjunction with RX_DELAY.
DS00240A-page 4 2002 Microchip Technology Inc.

AN240

LIN Events
The LIN event function decodes the ID to determine the
next step, what to transmit, receive, and how much.
The designer should edit or modify the event function
to handle specific LIN IDs. Refer to Appendix C for an
example. One possibility is to setup a jump table.
Another option is to setup some simple compare logic.
The example firmware uses simple compare logic.

ID Modules
The application firmware must be developed some-
where in the project. It can be in main or in separate
modules; from a functional perspective, it does not mat-
ter. The example firmware uses separate ID modules
for individual handling of IDs and their associated func-
tions. The most important part is to remember to
include all the external symbols that are used. The
symbols used by the driver are in lin.inc, which should
be included in every application module.

DRIVER USAGE
After setting up a project with the LIN driver’s neces-
sary files, it is time to start using the driver. This section
presents pertinent information about using the driver.
The important information addressed is:

• Using the l_rxtx_driver function
• Handling error flags
• Handling finish flags
• State flags within the driver
• LIN ID events
• Bus wake-up

The source code provided is a simple, yet nice
example, on using the LIN driver in an application.

LIN Slave Driver
The LIN slave driver is a state machine written for fore-
ground processing. Being in the foreground implies the
function must be called often enough to retrieve data
from the receive buffer within the serial engine. Typi-
cally, the best place to call the driver is in the main pro-
gram loop, and it should be called as often as possible.
Thus, if some application level tasks are sufficiently
long, then the driver function will most likely need to be
called more than once in the main loop.

Example 2 demonstrates what the main program loop
might look like with the call to the l_txrx_driver
function.

EXAMPLE 2: MAIN APPLICATION LOOP
Main ; Main application loop

call l_txrx_driver

call l_id_02_function ; Check for ID02 (tx)

btfsc LF_RX
call l_id_00_function ; Check for ID00 (rx)

movf LIN_STATUS_FLAGS, W ; Handle errors
btfsc STATUS, Z
goto Main

btfsc LE_BTO ; Was the bus time exceeded?
goto PutLINToSleep

clrf LIN_STATUS_FLAGS ; Reset any errors
goto Main
 2002 Microchip Technology Inc. DS00240A-page 5

AN240

Finish Flags
Two flags indicate when the driver has successfully
transmitted or received data, the receive and the trans-
mit flags. The receive flag is set when data has been
received without error. The flag must be cleared by the
user after it is handled. Likewise, the transmit flag indi-
cates when data has been successfully transmitted
without error. It must also be cleared by the user when
it is handled. Example 2 gives an example of this.

Error Flags
Certain error flags are set when expected conditions
are not met. For example, if the slave failed to generate
bit timing within the defined range, a sync error flag
(LE_SYNC) will get set in the driver. Refer to
Appendix B for a list of all errors.

Errors are considered fatal until they are handled and
cleared. Thus, if the error is never cleared, the driver
will ignore incoming data. Example 2 demonstrates this
and tests the bus time-out error.

Notice that the errors are all contained within a single
register, so the LIN_STATUS_FLAGS register can be
checked for zero to determine if any errors did occur.

Driver State Flags
The LIN driver uses state flags to remember where it is
between received bytes. After a byte is received, the
driver uses these flags to decide what is the next unex-
ecuted state, then jumps to that state. One very useful
flag is the LS_BUSY flag. This bit indicates when the
driver is active on the bus, thus, this flag could be used
in applications that synchronize to the communications
on the bus. The other flags indicate what has been
received and what state the bus is in. Refer to
Appendix B for descriptions of the state flags. For most
situations, these flags will not need to be used within
the application.

ID Events and Functions
For each ID, there is an event function. The event func-
tion is required to tell the driver how to respond to the
data following the ID. For example, “Does the driver
need to prepare to receive or transmit data?” In addi-
tion, “How much data is expected to be received or
transmitted?”

For successful operation, three variables must be ini-
tialized: a pointer to data memory, frame time, and the
count. Example 3 shows an example.

EXAMPLE 3: VARIABLE INITIALIZATION

The pointer to memory, LIN_POINTER, tells the driver
where to store data for receiving, or where to retrieve
data for sending. The frame time, FRAME_TIME, is the
adjusted time, based on the amount of bytes to expect.
Typically, the frame time register will already have time
left over from the header, so time should be added to
the register. For two bytes, this would be an additional
(30 + 1) * 1.4 bit times, or 43; the value 30 is the total
bits of data, START bits, and STOP bits and the check-
sum bits. The counter, LIN_COUNT, simply tells the
driver how much data is needed to operate.

Bus Wake-up
A LIN bus wake-up function, l_tx_wakeup, is pro-
vided for applications that need the ability to wake-up
the bus. Calling this function will broadcast the wake-up
request character.

l_id_00
GLOBAL l_id_00

movlw ID00_BUFF ; Set the pointer
movwf LIN_POINTER

movlw 0x20 ; Adjust the frame time
addwf FRAME_TIME, F
movlw 0x02 ; Setup the data count
movwf LIN_COUNT
retlw 0x00 ; Read

Note: The count must always be initialized to
something greater than zero for the driver
to function properly.
DS00240A-page 6 2002 Microchip Technology Inc.

AN240
GENERAL INFORMATION

Additional Interrupts
It is possible to add extra interrupts, however, it is defi-
nitely not recommended. The driver uses an external
interrupt to synchronize timing to the START edge. If
additional interrupts are added, then uncertainty is
added to the received START edge. Uncertainty in
receiving the START edge can severely degrade the
maximum bit rate.

There is a finite amount of uncertainty that is accept-
able for a given bit rate and clock frequency, defined as
follows:

Without going into too much detail, this equation
derives the maximum number of instructions related to
uncertainty in terms of the ideal bit rate and frequency,
which is discussed later in this document. The real
question is: what instructions can be counted in this
uncertainty, and the answer is: it depends on the way
the code is written for the application. It is also
important to note that some uncertainty is already
assumed.

To be safe (i.e., not sacrifice reliability), avoid adding
any extra code to the interrupt unless your instruction
rate to bit rate ratio is greater than 200, or the number
of instructions added is extremely small.

Read-Modify-Write on GPIO
When writing code that uses the GPIO port, be aware
of problems that arise when using read-modify-write
instructions, bsf and bcf. The LINRX bit in GPIO is
physically an open drain output pin connected to the
LIN transceiver. If data is being received via the inter-
rupt driven serial engine and a bsf or bcf instruction
is executed, it is possible that a low bit could be written
back to the RXPIN and actively pull the received data
low. Although the serial engine is designed to always
return the RXPIN to a recessive high state, this type of
condition should be avoided whenever possible.

Prescaler Definitions
The prescaler definitions are set to achieve bit rates
between 4800 and 14400 bps, using a 4 MHz clock
source. It is possible to adjust these to achieve lower bit
rates. For example, multiplying all the prescale values
by two would yield much lower bit rates, if desired.

LIN Event Handler
Event handling should be as short as possible. If the
event handler is long, unacceptable interbyte space
may be seen between receiving the ID byte and trans-
mitting data from the slave to the master. Thus, choose
the best method for decoding in your application. If you
are only responding to a few IDs, then simple XOR log-
ical compares will suffice. If any more IDs are
responded to, then use a jump table. A complete jump
table uses a significant amount of program memory;
however, it is very quick to decode IDs.

Driver Call
The driver is not a true background task, only the serial
communications are. Thus, the driver function must be
called frequently. There are two potential problems if the
driver function is not called frequently enough. The
receive buffer could be overrun, which means the entire
packet would be corrupted. Another problem is unac-
ceptable interbyte space during slave to master trans-
missions. To be safe, insure the driver function is called
at least four times for every byte. The driver function will
execute very quickly if there is no action required.

IMPLEMENTATION
There are five functions found in the associated example
firmware that control the operation of the LIN interface:

• LIN Transmit/Receive Driver
• LIN Serial Engine
• LIN Timekeeper
• LIN Hardware Initialization
• LIN Wake-up

Serial Engine
The serial engine is interrupt driven firmware. It han-
dles all bit level communications and synchronization.
The function requires an external interrupt source con-
figurable to either GPIO interrupt-on-change, or the INT
pin. In addition, Timer0 is used to control asynchronous
communications.

SYNCHRONIZATION
Synchronization is performed by stretching the bit rate
clock and using the external interrupt to count the edges
of the sync byte. After the last falling edge of the sync
byte, the time is captured and compared to the maxi-
mum and minimum bit time tolerances specified. If within
the tolerance, the value is used as the new time-base.

READ BACK TRANSMISSION

The software UART handles asynchronous communi-
cations much like a hardware UART; it receives data
and generates errors under various conditions.
Because the LIN physical layer has a feedback path for
data (see Figure 4), the UART also reads back
transmitted data.

1
BI
----- TE1 low() TE2 high() 2TES+ +()– Tw

4NINS
FOSC
---------------= =
 2002 Microchip Technology Inc. DS00240A-page 7

AN240

FIGURE 4: SIMPLIFIED LIN TRANSCEIVER

The UART is designed to pre-sample before transmit-
ting to capture feedback information. Transmit opera-
tions take 11 bit times to accurately capture the last bit
in the transmission.

SERIAL STATUS FLAGS

There are a few flags within the software UART to con-
trol its operation, and to feed status information to func-
tions outside the UART. Appendix B lists and defines
these flags.

Transmit/Receive Driver
The l_rxtx_driver is a state machine. Bit flags are
used to retain information about various states within
the driver. In addition, status flags are maintained to
indicate errors during transmit or receive operations.

STATES AND STATE FLAGS

The LIN driver uses state flags to remember where it is
between received bytes. After a byte is received, the
driver uses these flags to decide what is the next unex-
ecuted state, and then jumps to that state. Figure 5 and
Figure 6 outline the program flow through the different
states. The states are listed and defined in Appendix B.

TX/RX TABLE

A transmit/receive table is provided to determine how
to handle data after the node has successfully received
the ID byte. The table returns information to the
transmit/receive driver about data size and direction.

STATUS FLAGS

Within various states, status flags may be set depend-
ing on certain conditions. For example, if the slave
receives a corrupted checksum, then a checksum error
is indicated through a status flag. Unlike state flags,
status flags are not reset automatically. Status flags are
left for the LIN system designer to act upon within the
higher levels of the firmware.

LIN Timers
The LIN specification identifies maximum frame times
and bus IDLE times. For this reason, a timekeeping
function is implemented. The timekeeping function
works together with the transmit/receive driver and the
transmit and receive functions. Essentially, the driver
and the transmit and receive functions update the
appropriate time, bus, and frame time, when called. If
time-out conditions do occur, the status flags are set to
indicate the condition.

Hardware Initialization
An initialization function, l_init, is provided to setup
the necessary hardware settings. Also, the state and
status flags are all cleared. The function can also be
used to reset the LIN driver.

Wake-up
The only time the slave can transmit to the bus without
a request is when the bus is sleeping. Any slave can
transmit a wake-up signal. For this reason, a wake-up
function is defined, and it sends a wake-up signal when
called.

VBAT

Open Drain

PIC16C433
TX

RX

Buffer

LIN bus
DS00240A-page 8 2002 Microchip Technology Inc.

AN240

FIGURE 5: RECEIVE HEADER PROGRAM FLOW

Requesting

No

Test Break, SetGot Break?

Got Sync? No

Yes

No
Flags

Yes

Finish

Measure and
Test, Set Flags

Read Back Test,Yes Set Flags

Got ID?

Yes

TX or RX?

Wake-up?

Update Bus Timer

Build Option

Test ID, Determine
RX or TX,

Determine Data
Count, Set Frame
Timer, Set Flags

TX

No

A

B

 2002 Microchip Technology Inc. DS00240A-page 9

AN240

FIGURE 6: TRANSMIT/RECEIVE MESSAGE PROGRAM FLOW

TX or RX?

Yes

Test, Set FlagsRead Back?

Sent Whole No

Yes

No

Yes

Finish

Sent Checksum?

Yes

No

No

RX TX

Message?
Test, Set Flags

Test, Set Flags

Test, Set Flags Got Whole
Message?

Read Checksum

Reset State Flags

B

DS00240A-page 10 2002 Microchip Technology Inc.

AN240

FIGURE 7: TIMEKEEPING PROGRAM FLOW

OPERATING REGION EVALUATION
It is important to understand the relationship between
bit rate and clock frequency when designing a slave
node in a LIN network. Therefore, this section focuses
on developing this understanding based on the LIN
specification. It is assumed that the physical limits
defined in the LIN specification are reasonable and
accurate. This section uses the defined physical limits
and does not present any analysis of the limits defined
for physical interface to the LIN bus. Essentially, the
focus of this section is to analyze the firmware and its
performance based on the defined conditions in the LIN
specification.

General Information
Some general information used throughout the
analysis is provided here.

DATA RATE VS. SAMPLING RATE

There are essentially two rates to compare: the incom-
ing data rate and the sampling rate. The slave node
only has control of the sampling rate; therefore, for this
discussion, the logical choice for a reference is the
incoming data rate, BI. The equations that follow
assume BI is the ideal data rate of the system.

SAMPLING

The ideal sampling point is assumed as the center of
the incoming bit, as shown in Figure 8. The equations
presented in the following sections use this point as the
reference.

FIGURE 8: SAMPLING

Finish

Update Bus Time
Test for Time-out

LIN bus Sleeping?

No

No YesActive TX/RX?
Update Frame
Time, Test for

Time-out

Start

Yes
 2002 Microchip Technology Inc. DS00240A-page 11

AN240

CLOCK FREQUENCY ERROR TO BIT ERROR
RELATION

The LIN specification refers to clock frequency error,
rather than bit error. Because of this, the LIN system
designer must design the system with like clock
sources; however, this is rather impractical. It is more
feasible to have clock sources designed for the individ-
ual needs of the node. All of the equations in this sec-
tion refer to bit error, rather than frequency error. The
following equation relates frequency error to bit rate
error.

For low clock frequency errors, the bit rate error can be
approximated by:

Thus, a ±2% frequency error is nearly the same bit rate
error.

Acceptable Bit Rate Error
The LIN specification allows for a ±2% error for master/
slave communications. This section evaluates this tol-
erance based on specified worst case conditions (slew
rate, voltage, and threshold) and the implementation.

IDEAL SAMPLING WINDOW

It is relatively easy to see the maximum allowed error
in the ideal situation. Ideal is meant by infinite slew rate
with a purely symmetrical signal, like the signal shown
in Figure 9.

FIGURE 9: IDEAL WINDOW

If the data sampling is greater or less than half of one
bit time, TE, over nine bits, the last bit in the transmis-
sion will be interpreted incorrectly. Figure 10 graphi-
cally depicts how data may be misinterpreted because
of misaligned data and sampling rates.

FIGURE 10: DATA VS. SAMPLING

The following two equations give the maximum and
minimum bit rates based on shifting time by one-half of
one bit time, or TE = ±1/(2BI).

SHORTENED WINDOW DUE TO SLEW RATE

Although the ideal sampling window may be a useful
approximation at very low bit rates, slew rate and
threshold must be accounted for at higher rates. The
ideal analysis serves as a base for more realistic
analysis.

The LIN specification defines a tolerable slew rate
range and threshold. The worst case is the minimum
slew rate at the maximum voltage, 1V/µs and 18V,
according to the LIN specification. The threshold is
above 60% and below 40% for valid data. Figure 11
shows the basic measurements.

FIGURE 11: ADJUSTED BIT TIME ERROR

Taking the difference of the ideal maximum time and
the slight adjustment due to specified operating
conditions, yields the following error time adjustment:

Therefore, TE is slightly smaller than the ideal case,
and the minimum and maximum equations in the
previous section yield a slightly narrower range for bit
rate.

1
1 EF+
---------------- 1– EB=

E– F EB≈

TE

VBAT

Ideal

Fast

Slow

1
BI

TE
9
------– 1

Bmax
------------=

1
BI

TE
9
------+ 1

Bmin
-----------=

TES
TEI

VBAT

40%
60%

TEI TES– 1
2BI
-------- 0.5V 0.4V–()

Vd() td()⁄ min
---------------------------------– TE= =
DS00240A-page 12 2002 Microchip Technology Inc.

AN240

OFFSETS

An offset is a less than ideal sample point. For exam-
ple, it is possible for a software UART to take a sample
before or after the center point of an incoming bit, as
shown in Figure 12. This is related to an offset from the
START edge and ultimately shifts the bit rate error to
favor one side over the other. For example, if the
START edge detection is delayed for 10 µs from center
of a 9.6 Kbit transmission, the absolute range for bit
rate error is -4.1% and +6.9%.

FIGURE 12: OFFSET FROM CENTER

The example firmware leaves the Timer0 Interrupt
enabled at all times to maintain some basic time about
the LIN bus activity. A side effect of this is unpredictable
offset. For example, if a START edge occurs while pro-
gram execution is in an interrupt, the interrupt routine
must finish before the START edge can be Acknowl-
edged. Therefore, an undetermined offset from the
START edge occurs.

Although the exact offset cannot be determined when
interrupts are enabled, it is possible to determine a
maximum offset. The maximum offset is related to the
longest time through the interrupt when looking for a
START edge. Having the maximum offset leads to the
maximum bit rate.

The same equations apply as before; however, TE is
different for the maximum and minimum bit rate,
because there is no time symmetry.

TE1 and TE2 are related:

where:

Ultimately, the LIN specification requires that the slave
accept as much as a ±2% error between the incoming
bit rate (BI) and the sampling bit rate. TE1 and TE2 have
specific limits for offsets before and after the center
sampling point. They are:

With these times, the total window time shown in
Figure 13, can be calculated to determine the maxi-
mum allowable offset or the maximum interrupt
duration:

FIGURE 13: ABSOLUTE OFFSET WINDOW

The 4/FOSC term is the instruction time. Multiplying the
instruction time by the number of executed instructions
in the interrupt routine results in the total time through
the interrupt.

Substituting the time equations TE1(low), TE2(high), and
TES, and solving BI yields the maximum bit rate:

Adjusting this down by 15% to allow for synchronization
tolerances leads to maximum allowable bit rate. For
example, for a slave node operating at 4 MHz with a
maximum instruction count of 40 through an interrupt,
the maximum ideal bit rate would be about 14.2 kbps.
Beyond 14.2 kbps, there is a significant probability that
incoming data will be misinterpreted.

TEE

TEI

VBAT

40%
60%

TO

1
BI

TE1
9
---------– 1

Bmax
------------=

1
BI

TE2
9
---------+ 1

Bmin
-----------=

1
BI
----- 2TES– TE1 TE2+=

TE2 TEI TES– TO–=

TE1 TEI TES– TO+=

TE2 high()
9 0.02–()–
0.98() BI()
--------------------------=

TE1 low()
9 0.02()
1.02() BI()
--------------------------=

1
BI
----- TE1 low() TE2 high() 2TES+ +()– Tw

4NINS
FOSC
---------------= =

VBAT

40%
60%

TE1(low) TE2(high)Tw

0.6399
4N
F
------- 1.8µs–
---------------------------BI =
0.6399

4N
F
------- 1.8µs–

 2002 Microchip Technology Inc. DS00240A-page 13

AN240

Minimum Samples Per Bit
Given a finite bit rate error range and finite control of the
bit rate, this leads to areas where the slave cannot
operate. These are gaps where the error is outside the
defined bit rate error range for a particular number of
instructions per bit. This section provides the mathe-
matical basis for these gaps. The equations developed
in this section are provided to help the LIN designer
build a robust network.

FREQUENCY RANGE

The following equation determines the clock frequency
as a function of the number of instructions executed per
bit, bit rate, and bit rate error:

OPERATION OVERLAP

For a large number of instructions executed per bit, the
slave will synchronize and communicate well with the
master. However, for a particular error range, ±2%, with
higher bit rates and lower clock frequencies, the slave
may never synchronize and communicate.

To approach this problem, the minimum frequency for
a number of instructions, (EL+1)(N)(4)(BI), must be
compared to the maximum frequency for one less
number of instructions, (EH+1)(N-1)(4)(BI). Where
these are equal is the border between continuous and
discontinuous operation for any given input frequency:

Solving this equation yields:

Therefore, the minimum number of instructions, Nlow,
must be executed per bit to accept the defined error.
For example, for a ±2% error, the lowest number of
instructions accepted before certain clock frequency/bit
rate combinations become a problem is 26. Note that
the value of 26 is much lower than the number of
instructions through the interrupt.

MEMORY USAGE
The firmware code size depends on the build condi-
tions. As it is currently built with the example applica-
tion, the firmware occupies 412 words of program
memory and 46 bytes of data memory.

REFERENCES
1. LIN Specification Package Revision 1.2,

http://www.lin-subbus.org
2. MPASM™ User’s Guide with MPLINK™ and

MPLIB™, Microchip Technology Inc., 1999

FOSC EB 1+() N() 4() B()=

EL 1+() N() 4() BI() EH 1+() N 1–() 4() BI()=

Nlow
EH 1+()

EH 1+() EL 1+()–
--=
DS00240A-page 14 2002 Microchip Technology Inc.

AN240
APPENDIX A: MOTOR CONTROL EXAMPLE SCHEMATIC

 1
1

 1
4 2 3 2
3

 2
2

12131691

O
U

T1
B

O
U

T2
B

O
U

T2
A

O
U

T1
A

V
B

B
FA

U
LT

1
FA

U
LT

2
EN

A
B

LE
1

PH
A

S
E

1
EN

A
B

LE
2

PH
A

S
E

2

U
1 A3976KLB

1 2 3 4 5 6 7 8J2

V
R

E
F+

1B2B2A1A

VR
E

F-
FB

2
FB

1

D
4

1 2 3

JP
1

 6 7 8 9

17118111213

B
A

C
T

LI
N

 b
us

V
B

A
T

G
P

2/
TO

C
K1

/A
N

2/
IN

T
G

P
1/

A
N

1/
V

R
E

F

G
P0

/A
N

0
G

P5
/O

S
C

1/
C

LK
I

G
P4

/O
S

C
2/

A
N

3/
C

LK
O

G
P3

/M
C

LR
/V

P
P

X X

U
2

PI
C

16
C

43
3

10

R
6

24
0Ω

C
3

.0
05

 µ
F

V
C

C

R
4

24
0Ω

C
2

.0
05

 µ
F

V
C

C

R
2

R
1

TB
D
Ω

TB
D
Ω

C
1

.0
1
µF

X X

V
B

B

IN
O

U
T

G
N

D

LM
29

37
IM

P
-5

.0
C

5

10
 µ

F

C
7

.0
1
µF

+

C
4

10
 µ

F

+

V
C

C

C
6

.0
05

 µ
F

LI
N

 b
us

D
3

IN
40

04

IN
47

50
 2

7V

1

2

3
B

at
te

ry
 +

12
V

N
C

N
C

 2002 Microchip Technology Inc. DS00240A-page 15

AN240
APPENDIX B: SYMBOLS

TABLE B-1: FUNCTIONS

TABLE B-2: REGISTERS

Function Name Purpose

l_txrx_table This function is called by the transmit/receive daemon after the identifier byte has been
received. Message length and direction is returned to the driver. Within the table, pointers
could be set up for different identifies.

l_txrx_driver The core transmit and receive function, which manages transmit and receive operations to
the bus. State flags are set and cleared within this function. Status flags are also set based
on certain conditions (i.e., errors).

UpdateTimer Used to update the bus and frame timers. Called within the serial engine.
SerialEngine This is the interrupt driven software UART.
l_init Call this function to initialize or reset the hardware associated to the LIN interface.
l_tx_wakeup Wake-up function. Call this function to wake-up the bus if asleep.

Variable Name Purpose

BRK_CNT Break counter.
BUS_TIME Bus timer.
FRAME_TIME 8-bit frame timer register.
HEADER_TIME Same as FRAME_TIME.
LIN_ID Holding register for the received identifier byte. This register is used in the l_txrx_table

function to determine how the node should react.
LIN_POINTER Pointer to a storage area used by the driver. Data is either loaded into or read from memory

depending on the identifier.
LIN_COUNT Used by the driver to maintain a message data count.
LIN_CHKSUM Used by the driver to calculate checksum for transmit and receive.
LIN_FINISH_FLAGS Flags to indicate a successful receive/transmit.
LIN_STATE_FLAGS Flags to indicate what state the LIN bus is in.
LIN_STATE_FLAGS2 Flags to indicate what state the LIN bus is in.
LIN_STATUS_FLAGS Contains status information about the LIN bus.
RXDATA_BUF Buffer for received data.
SYNC_CNT Sync counter.
TIME_BASE This register holds the time per bit based on the number of instructions.
TXSR The Most Significant Byte of the transmit shift register.
TXSR_2 The Least Significant Byte of the transmit shift register.
RXDATA The Least Significant Byte of the receive shift register. The data is also pulled from this

register after a complete receive.
RXSR_2 The Most Significant Byte of the receive shift register.
RXTX_COUNT Bit counter register for the software UART.
SERIAL_FLAGS This register holds the flags to control the software UART.
DS00240A-page 16 2002 Microchip Technology Inc.

AN240

TABLE B-3: FLAGS

Variable Name Purpose

LS_BUSY LIN_STATE_FLAGS Indicates the LIN bus is busy.
LS_TXRX LIN_STATE_FLAGS Indicates transmit or receive operation.
LS_RBACK LIN_STATE_FLAGS Indicates a read back is pending.
LS_BRK LIN_STATE_FLAGS Indicates a break has been received.
LS_SYNC LIN_STATE_FLAGS Indicates a sync byte has been received.
LS_ID LIN_STATE_FLAGS Indicates the identifier has been received.
LS_DATA LIN_STATE_FLAGS Indicates all data has been sent or received.
LS_CHKSM LIN_STATE_FLAGS Indicates the checksum has been sent or received.
LS_WAKE LIN_STATE_FLAGS2 Indicates a wake-up has been requested (this node only).
LS_SLPNG LIN_STATE_FLAGS2 Indicates the LIN bus is sleeping.
LE_BIT LIN_STATUS_FLAGS Indicates a bit error.
LE_PAR LIN_STATUS_FLAGS Indicates a parity error.
LE_CHKSM LIN_STATUS_FLAGS Indicates a checksum error during a receive.
LE_SYNC LIN_STATUS_FLAGS Indicates a synchronization tolerance error.
LE_GEN LIN_STATUS_FLAGS Indicates a general error, typically a framing error.
LE_FTO LIN_STATUS_FLAGS Indicates a frame time-out error.
LE_BTO LIN_STATUS_FLAGS Indicates a bus activity time-out error.
LF_RX LIN_STATUS_FLAGS Indicates data has been received.
LF_TX LIN_STATUS_FLAGS Indicates data has been sent.
S_BUSY SERIAL_FLAGS Indicates the software UART is busy receiving and/or transmitting.
S_TXRX SERIAL_FLAGS Indicates the UART is transmitting or receiving.
S_RXIF SERIAL_FLAGS Indicates data has been received.
S_FERR SERIAL_FLAGS Indicates an invalid STOP bit was received.
S_SYNC SERIAL_FLAGS Indicates serial communications is synching.
S_SSTRT SERIAL_FLAGS Indicates serial communications is waiting to start synching.
S_SYNCERR SERIAL_FLAGS Indicates a synchronization error has occurred.
 2002 Microchip Technology Inc. DS00240A-page 17

AN240

TABLE B-4: COMPILE TIME DEFINITIONS

Definition Name Value Description

LIN_IDLE_TIME_PS b'10010110' This is the value loaded into the option register when the LIN bus is
IDLE. A setting of 128x is the desired choice for the prescaler.

LIN_ACTVE_TIME_PS b'10001000' This is the value loaded into the option register when the slave is
actively receiving or transmitting on the LIN bus. A value of 1x is ideal
for bit rates between 4800 and 14400 bps at 4 MHz.

LIN_SYNC_TIME_PS b'10010010' This is the value loaded into the option register when the slave is
capturing the sync byte. A setting of 8x is the desired choice for the
prescalar.

MAX_BIT_TIME d’118’ This is the upper bound bit time for synchronization. This should equal
((FOSC x 1.15) / 4) /(bit rate) – 2.

NOM_BIT_TIME d’102’ This is the nominal bit time for synchronization. This should equal
(FOSC / 4) /(bit rate) – 2.

MIN_BIT_TIME d’87’ This is the lower-bound bit time for synchronization. This should equal
((FOSC x 0.85) / 4) /(bit rate) – 2.

MAX_IDLE_TIME d’195’ This defines the maximum bus IDLE time. The specification defines this
to be 25000 bit times. The value equals 25000 / 128. The 128 comes
from the LIN_IDLE_TIME_PS definition.

MAX_HEADER_TIME d’39’ This is the maximum allowable time for the header. This value equals
((34 + 1) x 1.4) – 10. This should not be changed unless debugging.

MAX_TIME_OUT d’128’ This specifies the maximum time-out between wake-up requests. The
specification defines this to be 128 bit times.

RC_OSC NA This definition enables synchronization. Do not use this definition if
using a crystal or resonator.

USE_GP_CHANGE NA Use this definition to configure the external interrupt to be a GPIO
interrupt-on-change. The alternative is to use the INT pin.

BRK_THRESHOLD d’11’ This value sets the receive break threshold. For low tolerance oscillator
sources, this value should be ‘11’. For high tolerance sources, this
value should be ‘9’, as defined in the LIN specification.

RX_DELAY 0xF0 This is the receive delay. Use this to adjust center sampling for low bit
rates, less than 7400 bps at 4 MHz. For lower bit rates, the delay
should be longer. Note, this value is complimented (i.e., 0xF0 is a delay
of 16 cycles). This must not be used in conjunction with RX_ADVANCE.

RX_ADVANCE 0x10 This is the receive advance. Use this to adjust center sampling for high
bit rates, 7400 bps or greater at 4 MHz. This must not be used in
conjunction with RX_DELAY.
DS00240A-page 18 2002 Microchip Technology Inc.

AN240
APPENDIX C: SOURCE CODE
Due to size considerations, the complete source code
for this application note is not included in the text.

A complete version of the source code, with all required
support files, is available for download as a Zip archive
from the Microchip web site, at:

www.microchip.com
 2002 Microchip Technology Inc. DS00240A-page 19

AN240

NOTES:
DS00240A-page 20 2002 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:
• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowl-
edge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products.
Information contained in this publication regarding device
applications and the like is intended through suggestion only
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
No representation or warranty is given and no liability is
assumed by Microchip Technology Incorporated with respect
to the accuracy or use of such information, or infringement of
patents or other intellectual property rights arising from such
use or otherwise. Use of Microchip’s products as critical com-
ponents in life support systems is not authorized except with
express written approval by Microchip. No licenses are con-
veyed, implicitly or otherwise, under any intellectual property
rights.
 2002 Microchip Technology Inc.
Trademarks

The Microchip name and logo, the Microchip logo, KEELOQ,
MPLAB, PIC, PICmicro, PICSTART and PRO MATE are
registered trademarks of Microchip Technology Incorporated
in the U.S.A. and other countries.

FilterLab, microID, MXDEV, MXLAB, PICMASTER, SEEVAL
and The Embedded Control Solutions Company are
registered trademarks of Microchip Technology Incorporated
in the U.S.A.

dsPIC, dsPICDEM.net, ECONOMONITOR, FanSense,
FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP,
ICEPIC, microPort, Migratable Memory, MPASM, MPLIB,
MPLINK, MPSIM, PICC, PICDEM, PICDEM.net, rfPIC, Select
Mode and Total Endurance are trademarks of Microchip
Technology Incorporated in the U.S.A. and other countries.

Serialized Quick Turn Programming (SQTP) is a service mark
of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2002, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

 Printed on recycled paper.
DS00240A - page 21

Microchip received QS-9000 quality system
certification for its worldwide headquarters,
design and wafer fabrication facilities in
Chandler and Tempe, Arizona in July 1999
and Mountain View, California in March 2002.
The Company’s quality system processes and
procedures are QS-9000 compliant for its
PICmicro® 8-bit MCUs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals,
non-volatile memory and analog products. In
addition, Microchip’s quality system for the
design and manufacture of development
systems is ISO 9001 certified.

DS00240A-page 22 2002 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200 Fax: 480-792-7277
Technical Support: 480-792-7627
Web Address: http://www.microchip.com

Rocky Mountain
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7966 Fax: 480-792-4338

Atlanta
500 Sugar Mill Road, Suite 200B
Atlanta, GA 30350
Tel: 770-640-0034 Fax: 770-640-0307

Boston
2 Lan Drive, Suite 120
Westford, MA 01886
Tel: 978-692-3848 Fax: 978-692-3821

Chicago
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071 Fax: 630-285-0075

Dallas
4570 Westgrove Drive, Suite 160
Addison, TX 75001
Tel: 972-818-7423 Fax: 972-818-2924

Detroit
Tri-Atria Office Building
32255 Northwestern Highway, Suite 190
Farmington Hills, MI 48334
Tel: 248-538-2250 Fax: 248-538-2260

Kokomo
2767 S. Albright Road
Kokomo, Indiana 46902
Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles
18201 Von Karman, Suite 1090
Irvine, CA 92612
Tel: 949-263-1888 Fax: 949-263-1338

San Jose
Microchip Technology Inc.
2107 North First Street, Suite 590
San Jose, CA 95131
Tel: 408-436-7950 Fax: 408-436-7955

Toronto
6285 Northam Drive, Suite 108
Mississauga, Ontario L4V 1X5, Canada
Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC
Australia
Microchip Technology Australia Pty Ltd
Suite 22, 41 Rawson Street
Epping 2121, NSW
Australia
Tel: 61-2-9868-6733 Fax: 61-2-9868-6755
China - Beijing
Microchip Technology Consulting (Shanghai)
Co., Ltd., Beijing Liaison Office
Unit 915
Bei Hai Wan Tai Bldg.
No. 6 Chaoyangmen Beidajie
Beijing, 100027, No. China
Tel: 86-10-85282100 Fax: 86-10-85282104
China - Chengdu
Microchip Technology Consulting (Shanghai)
Co., Ltd., Chengdu Liaison Office
Rm. 2401, 24th Floor,
Ming Xing Financial Tower
No. 88 TIDU Street
Chengdu 610016, China
Tel: 86-28-86766200 Fax: 86-28-86766599
China - Fuzhou
Microchip Technology Consulting (Shanghai)
Co., Ltd., Fuzhou Liaison Office
Unit 28F, World Trade Plaza
No. 71 Wusi Road
Fuzhou 350001, China
Tel: 86-591-7503506 Fax: 86-591-7503521
China - Shanghai
Microchip Technology Consulting (Shanghai)
Co., Ltd.
Room 701, Bldg. B
Far East International Plaza
No. 317 Xian Xia Road
Shanghai, 200051
Tel: 86-21-6275-5700 Fax: 86-21-6275-5060
China - Shenzhen
Microchip Technology Consulting (Shanghai)
Co., Ltd., Shenzhen Liaison Office
Rm. 1315, 13/F, Shenzhen Kerry Centre,
Renminnan Lu
Shenzhen 518001, China
Tel: 86-755-82350361 Fax: 86-755-82366086
China - Hong Kong SAR
Microchip Technology Hongkong Ltd.
Unit 901-6, Tower 2, Metroplaza
223 Hing Fong Road
Kwai Fong, N.T., Hong Kong
Tel: 852-2401-1200 Fax: 852-2401-3431
India
Microchip Technology Inc.
India Liaison Office
Divyasree Chambers
1 Floor, Wing A (A3/A4)
No. 11, O’Shaugnessey Road
Bangalore, 560 025, India
Tel: 91-80-2290061 Fax: 91-80-2290062

Japan
Microchip Technology Japan K.K.
Benex S-1 6F
3-18-20, Shinyokohama
Kohoku-Ku, Yokohama-shi
Kanagawa, 222-0033, Japan
Tel: 81-45-471- 6166 Fax: 81-45-471-6122
Korea
Microchip Technology Korea
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea 135-882
Tel: 82-2-554-7200 Fax: 82-2-558-5934
Singapore
Microchip Technology Singapore Pte Ltd.
200 Middle Road
#07-02 Prime Centre
Singapore, 188980
Tel: 65-6334-8870 Fax: 65-6334-8850
Taiwan
Microchip Technology (Barbados) Inc.,
Taiwan Branch
11F-3, No. 207
Tung Hua North Road
Taipei, 105, Taiwan
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE
Austria
Microchip Technology Austria GmbH
Durisolstrasse 2
A-4600 Wels
Austria
Tel: 43-7242-2244-399
Fax: 43-7242-2244-393
Denmark
Microchip Technology Nordic ApS
Regus Business Centre
Lautrup hoj 1-3
Ballerup DK-2750 Denmark
Tel: 45 4420 9895 Fax: 45 4420 9910
France
Microchip Technology SARL
Parc d’Activite du Moulin de Massy
43 Rue du Saule Trapu
Batiment A - ler Etage
91300 Massy, France
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79
Germany
Microchip Technology GmbH
Steinheilstrasse 10
D-85737 Ismaning, Germany
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44
Italy
Microchip Technology SRL
Centro Direzionale Colleoni
Palazzo Taurus 1 V. Le Colleoni 1
20041 Agrate Brianza
Milan, Italy
Tel: 39-039-65791-1 Fax: 39-039-6899883
United Kingdom
Microchip Ltd.
505 Eskdale Road
Winnersh Triangle
Wokingham
Berkshire, England RG41 5TU
Tel: 44 118 921 5869 Fax: 44-118 921-5820

10/18/02

WORLDWIDE SALES AND SERVICE

	Introduction
	Applications
	Process Time
	FIGURE 1: Available Process Time (Fosc at 4 MHz)

	Resource Usage
	Bit Rate
	FIGURE 2: Recommended Operating Regions

	Summary

	Firmware Setup
	Project Setup
	Main Object
	FIGURE 3: Project setup
	EXAMPLE 1: Interrupt Code

	Definitions
	TABLE 1: Compile Time Definitions

	LIN Events

	Driver Usage
	LIN Slave Driver
	EXAMPLE 2: Main Application Loop

	Finish Flags
	Error Flags
	Driver State Flags
	ID Events and Functions
	EXAMPLE 3: Variable Initialization

	Bus Wake-up

	General Information
	Additional Interrupts
	Read-Modify-Write on GPIO
	Prescaler Definitions
	LIN Event Handler
	Driver Call

	Implementation
	Serial Engine
	read back Transmission
	FIGURE 4: Simplified LIN Transceiver

	Serial Status Flags

	Transmit/Receive Driver
	States and State Flags
	TX/RX Table
	Status Flags

	LIN Timers
	Hardware Initialization
	Wake-up
	FIGURE 5: Receive Header Program Flow
	FIGURE 6: Transmit/Receive Message Program Flow
	FIGURE 7: TimeKeeping Program Flow

	Operating Region Evaluation
	General Information
	Data Rate vs. Sampling Rate
	Sampling
	FIGURE 8: Sampling

	Clock Frequency Error to Bit Error Relation

	Acceptable Bit Rate Error
	Ideal Sampling Window
	FIGURE 9: Ideal Window
	FIGURE 10: Data vs. Sampling

	Shortened Window Due to Slew Rate
	FIGURE 11: Adjusted Bit time Error

	Offsets
	FIGURE 12: Offset from center
	FIGURE 13: Absolute Offset Window

	Minimum Samples Per Bit
	Frequency Range
	Operation Overlap

	Memory Usage
	References
	Appendix A: Motor Control Example Schematic
	Appendix B: Symbols
	TABLE B-1: Functions
	TABLE B-2: Registers
	TABLE B-3: Flags
	TABLE B-4: Compile Time Definitions

	Appendix C: Source Code
	Worldwide Sales and Service

