
AN237
Implementing a LIN Slave Node on a PIC16F73
INTRODUCTION
This application note presents a LIN slave driver for the
PIC16F73 using the standard hardware USART. There
are many details to this firmware design; however, this
application note focuses mainly on how to setup and
use the driver. Therefore, the LIN system designer
should be able to get an application running on LIN
quickly, without spending a significant amount of time
on the details of LIN.

Fortunately, the details are not completely absent.
Some information about the firmware design is pro-
vided at the end of this document for the curious
designer who wants to learn a little more about LIN and
this driver implementation.

The information in this application note is presented
with the assumption that the reader is familiar with LIN
specification v1.2, the most current specification avail-
able at the time this document was written. Therefore,
not all details about LIN are discussed. Refer to the
References section of this document for additional
information.

APPLICATIONS
The first question that must be asked is: “Will this driver
work for my application?” The next few sections can
help those who would like to know the answer to this
question and quickly decide whether this is the appro-
priate driver implementation or device for their applica-
tion. The important elements that have significant
weight on this decision include available process time,
resource usage, and bit rate performance.

Process Time
Available process time is dictated predominately by bit
rate, clock frequency, and code execution. Fortunately,
the driver implementation for the PIC16F73 uses the
USART module. This hardware resource puts more
processing in hardware and less demand for firmware.
Thus, the average available process time is relatively
high. Figure 1 shows the approximate average
available process time for FOSC equal to 4 MHz.

FIGURE 1: AVAILABLE PROCESS TIME

When the LIN bus is IDLE, the driver uses even less
process time, approximately 98% at 4 MHz.

Resource Usage
The resource usage is minimal on the PIC16F73. Only
two hardware modules are used. The USART module
is used for communications, and the Timer0 module is
used for bus and frame timing.

Similarly, the driver consumes only a small portion of
the memory resources. The bare driver consumes 5%
of program memory of the PIC16F73 and 10% of the
available data memory.

Bit Rate
The driver is designed to achieve the maximum bit rate
defined by the LIN specification: 20000 bps. However,
the oscillator selection must be selected to achieve the
application’s designed bit rate with a 0.5% tolerance.
Figure 2 shows the recommended operating region.

Summary
The LIN Slave driver takes advantage of the USART
module to handle most of the otherwise demanding
processing, so process time is of little concern. Timer0
is the only other resource, and it interrupts at the bit
rate. Therefore, the driver can run virtually transparent
in the background without significant interference to the
application. This means there is plenty of time for firm-
ware dominant applications. In addition, the PIC16F73
has additional hardware features such as PWM, CCP,
A/D, and multiple timers.

Since most of the resources, including process time,
are available, this driver is well suited for high demand,
high process time applications. Some examples
include complex motor controls, instrumentation,
multiple feedback applications, and possibly, low to
moderate speed engine controls.

Author: Ross M. Fosler
Microchip Technology Inc.

9600

93%

96%

4800

85%

2400
 2002 Microchip Technology Inc. DS00237A-page 1

AN237

FIGURE 2: RECOMMENDED OPERATING REGIONS

SETTING UP THE DRIVER
Now that the decision has been made to use this driver,
it is time to set up the firmware and start building an
application. For an example, a complete application
provided in the appendixes, is built together with the
LIN driver. The code provided is actually a simple, yet
functional application, demonstrating controlling a
motor driven mirror.

Here are the basic steps required to set up your project:

1. Set up a project in MPLAB® IDE. Make sure you
have the important driver files included in your
project:
lin.asm, timer.asm, and linevent.asm.

2. Include a main entry point in your project,
main.asm. Edit this file as required for the appli-
cation. Make sure that the interrupt is setup cor-
rectly, and initialize the driver. Also, ensure any
external symbols are included.

3. Edit linevent.asm to respond to the appropri-
ate IDs. This could be a table or some simple
compare logic. Be certain to include any
externally defined symbols.

4. Add any additional application related modules.
The example uses idxx.asm for application
related functions related to specific IDs.

5. Edit the lin.def file to setup the compile time
definitions of the driver. The definitions
determine how the driver functions.

The Project
The first step is to setup the project in MPLAB IDE.
Figure 3 shows an example of what the project setup
should look like. The following files are required for the
LIN driver to operate:

• lin.lkr - linker script file
• main.asm - the main entry point into the program
• timer.asm - Timer0 control
• lin.asm - the LIN driver
• linevent.asm - LIN event handling table

Any additional files are defined by the system designer
for the specific application. For example, Figure 3 lists
these project files as idxx.asm, where xx represents
the LIN ID number. This is simply a programming style
that separates ID handling into individual objects, thus,
making the project format easier to understand. Other
objects could be added and executed through the main
module, main.asm and the event handler.

C
lo

ck
 F

re
qu

en
cy

2 MHz

4 MHz

6 MHz

8 MHz

9.6k1.2k
Bit Rate

HS, XT Mode Operation

Precise Clock only, F = (X+1)(16)(B)

No Operation

(F X=25)

20k
DS00237A-page 2  2002 Microchip Technology Inc.

AN237

FIGURE 3: PROJECT SETUP The Main Object

The main.asm module contains the entry point into the
program, which is where the driver, hardware, and vari-
ables should be initialized. To initialize the driver, call
the l_init_hw function (refer to Appendix B for an
example).

Within the main object is the interrupt vector. This is
where the driver function, l_txrx_driver, must be
called as shown in Example 1. Within the function, the
interrupt flag for the USART module is automatically
checked.

The timer function is also placed in the interrupt. The
example firmware uses Timer0 for bit timing; however,
the LIN designer can choose any timer and write the
appropriate code. Again, Example 1 shows the place-
ment within the interrupt. Refer to Appendix B for
details about the UpdateTimer function.

EXAMPLE 1: INTERRUPT VECTOR CODE EXAMPLE
_INTERRUPT_V CODE 0x0004
 movwf W_TEMP ; Save important registers
 swapf STATUS, W
 clrf STATUS
 movwf STATUS_TEMP
 movf FSR, W
 movwf FSR_TEMP

 call UpdateTimer ; Update time
 call l_txrx_driver ; Check for any incoming data

 movf FSR_TEMP, W ; Restore important registers
 movwf FSR
 swapf STATUS_TEMP, W
 movwf STATUS
 swapf W_TEMP, F
 swapf W_TEMP, W
 retfie
 2002 Microchip Technology Inc. DS00237A-page 3

AN237

Definitions
There are a few compile time definitions, all of them
located in lin.def, that are used to setup the system.
Table 1 lists and describes these definitions. The
definitions are also listed in Appendix A.

TABLE 1: COMPILE TIME DEFINITIONS

LIN Events
LIN event functions are where the ID is decoded to
determine what to do next, transmit, receive, and how
much. The designer should edit or modify the event
function to handle specific LIN IDs (refer to Appendix B,
for an example). One possibility is to set up a jump
table, which is useful for applications that require
responding to multiple IDs. Another option is to setup
some simple compare logic.

ID Modules
The application firmware must be developed some-
where in the project. The firmware can be in main or in
separate modules; however, from a functional perspec-
tive, it does not matter. The example firmware uses
separate ID modules for individual handling of IDs and
their associated functions. The most important part to
remember is to include all of the external symbols that
are used. The symbols used by the driver are in
lin.inc, which should be included in every
application module.

The modules that are setup in the example have two
parts. One part is the handler for the ID Event. This
small function is used to setup the driver to handle the
data. Any other functions are part of the application.

USING THE DRIVER
After setting up a project with the LIN driver’s neces-
sary files, it is time to start using the driver. This section
presents pertinent information about using the driver.
The important information addressed is:

• Handling finish flags
• Handling error flags
• State flags within the driver
• LIN ID events
• Bus wake-up

The source code provided is a simple yet nice example
on using the LIN driver in an application.

Finish Flags
There are two flags that indicate when the driver has
successfully transmitted or received data. The receive
flag is set when data has been received without error.
This flag must be cleared by the user after it is handled.
Likewise, the transmit flag indicates when data has
been successfully transmitted without error. The trans-
mit flag must also be cleared by the user after it is han-
dled. Refer to Appendix A for the list of flags and their
definitions.

Definition Name Value Description

FOSC d’4000000' This value is the frequency of the oscillator source.

BIT_RATE d’9600' This value is the bit rate for the slave node.

MAX_IDLE_TIME d’25000' This value is the maximum IDLE bus time. The LIN specification
defines this to be 25000.

MAX_HEADER_TIME d’39’ This value is the maximum allowable header time. The specification
defines this to be 49; however, timing doesn’t start until after the first
byte (break), so it is actually 39 (10 less than the definition).

MAX_TIME_OUT d’128’ This is the maximum time allowed to wait after the wake-up request has
been made.
DS00237A-page 4  2002 Microchip Technology Inc.

AN237

Error Flags
Certain error flags are set when expected conditions
are not met. For example, if the slave failed to generate
bit timing within the defined range, a sync error flag will
get set in the driver.

Errors are considered fatal until they are handled and
cleared. Thus, if the error is never cleared, then the
driver will ignore incoming data.

The following code, shown in Example 2, demon-
strates how to handle errors within the main program
loop. This example only shows a response to a bus
time-out error. This same concept can be applied to
other types of errors.

EXAMPLE 2: ERROR HANDLING

Notice that the errors are all contained within a single
register. So the LIN_STATUS_FLAGS register can be
checked for zero to determine if any errors did occur.

Driver State Flags
The LIN driver uses state flags to remember where it is
between received bytes. After a byte is received, the
driver uses these flags to decide what is the next unex-
ecuted state, then jumps to that state. One very useful
flag is the LS_BUSY flag. This bit indicates when the
driver is active on the bus, so this flag could be used in
applications that synchronize to the communications
on the bus. The other flags indicate what has been
received and what state the bus is in. Refer to
Appendix A for descriptions of the state flags.

ID Events and Functions
For each ID there is an event function. The event func-
tion is required to tell the driver how to respond to the
data following the ID. For example, does the driver
need to prepare to receive or transmit data. Also, how
much data is expected to be received or transmitted.

For successful operation, three variables must be ini-
tialized: a pointer to data memory, frame time, and the
count, as shown in Example 3.

EXAMPLE 3: VARIABLE
INITIALIZATION

The pointer to memory tells the driver where to store
data or where to retrieve data. The frame time is the
adjusted time based on the amount of bytes to expect.
Typically, the frame time register will already have time
left over from the header, so time should be added to
the register. For two bytes this would be an additional
(30 + 1) * 1.4 bit times, or 43; the value 30 is the total
bits of data, START bits, and STOP bits plus the check-
sum bits. The counter simply tells the driver how much
data to operate on. Note that the count must always be
initialized to something greater than zero for the driver
to function properly.

Waking the Bus
A LIN bus wake-up function, l_tx_wakeup, is pro-
vided for applications that need the ability to wake the
bus up. Calling this function will broadcast the wake-up
request character.

 .
 .
 movf LIN_STATUS_FLAGS, W; Any errors?
 btfsc STATUS, Z
 goto Main

 btfsc LE_BTO ; Was the
 goto PutToSleep ; bus time exceeded?

 clrf LIN_STATUS_FLAGS ; Reset any
 goto Main ; errors

 movlw ID00_BUFF ; Set the pointer
 movwf LIN_POINTER

 movlw d’43’ ; Adjust the frame time
 addwf FRAME_TIME, F
 movlw 0x02 ; Setup the data count
 movwf LIN_COUNT

 retlw 0x00 ; Read
 2002 Microchip Technology Inc. DS00237A-page 5

AN237
IMPLEMENTATION
There are four functions found in the associated
example firmware that control the operation of the LIN
interface:

• LIN Transmit/Receive Driver
• LIN Timekeeper
• LIN Hardware Initialization
• LIN Wake-up

The Driver
The USART module is the key element used for LIN
communications. Using the USART module as the
serial engine for LIN has certain advantages. One par-
ticular advantage is it puts serial control in the hard-
ware, rather than in the software. Thus, miscellaneous
processing can be performed while data is being trans-
mitted or received. With this in mind, the Slave Node
LIN Protocol Driver is designed to run in the
background, basically as a daemon.

The driver is interrupt driven via the USART receive
interrupt. Because of the physical feedback nature of
the LIN bus (Figure 4), a USART receive interrupt will
occur regardless of transmit or receive operations. Bit
flags are used to retain information about various
states within the driver between interrupts. In addition,
status flags are maintained to indicate errors during
transmit or receive operations.

FIGURE 4: SIMPLIFIED LIN
TRANSCEIVER

STATES AND STATE FLAGS

The LIN driver uses state flags to remember where it is
between interrupts. When an interrupt occurs, the
driver uses these flags to decide what is the next unex-
ecuted state, then jumps to that state. Figure 5 and
Figure 6 outline the program flow through the different
states. The states are listed and defined later in this
document.

SYNCHRONIZATION

Synchronization is the second normal state and is han-
dled two different ways. Synchronization can be
enabled for poor tolerance clock sources or it can be
disabled for clock sources with good precision. If
enabled, the break and sync byte are received
together, as shown in Figure 5.

TX/RX TABLE

A transmit/receive table is provided to determine how
to handle data after the node has successfully received
the ID byte. The table returns information to the driver
about data size and direction.

STATUS FLAGS

Within various states, status flags may be set depend-
ing on certain conditions. For example, if the slave
receives a corrupted checksum, then a checksum error
is indicated through a status flag. Unlike state flags,
status flags are not reset automatically. Status flags are
left for the LIN system designer to act upon within the
higher levels of the firmware.

LIN Timers
The LIN specification identifies maximum frame times
and bus IDLE times. For this reason, a timekeeping
function is implemented. The timekeeping function
works together with the driver and the transmit and
receive functions. Essentially, the driver and the trans-
mit and receive functions update the appropriate time,
bus and frame time, when called. Figure 5 and Figure 7
show where the timers are updated.

The timekeeping function is implemented independent
of a timing source. All that is required is that the time-
keeping function be called at least once per bit time.
The example firmware provided (see Appendix B) uses
the Timer0 module; however, it is possible to use any
other time source. Some examples include using
Timer1, Timer2, or even an external time source into an
interrupt pin.

Hardware Initialization
An initialization function is provided to set up the nec-
essary hardware settings, basically the USART. Also,
the state and status flags are all cleared. Flags related
to hardware interrupts and timers are not modified.

Wake-up
The only time the slave can transmit to the bus without
a request is when the bus is sleeping. Basically, any
slave can transmit a wake-up signal. For this reason, a
wake-up function is defined, and it sends a wake-up
signal when called.

VBAT

Open Drain

PIC16
TX

RX

Buffer

LIN bus
DS00237A-page 6  2002 Microchip Technology Inc.

AN237

FIGURE 5: RECEIVE HEADER PROGRAM FLOW

Interrupt

Requesting
Wake-up?

No

Yes

Update Bus Timer

Have Break? No

Yes

Test Break, Set
Flags

Read Back Test,
Set Flags

Build Option

Have Sync? No

Yes

Measure and
Test, Set Flags

Have ID? No

Yes

Test ID, Determine
RX or TX,

Determine Data
Count, Set Frame
Timer, Set Flags

TX or RX?TX RX

FinishA (To LIN Message Flow Chart)
 2002 Microchip Technology Inc. DS00237A-page 7

AN237

FIGURE 6: TRANSMIT/RECEIVE MESSAGE PROGRAM FLOW

TX or RX?

Read Back?

Finish

RX TX

Got Whole
Message?

YesYes

No NoTest, Set Flags

Read State Flags

Sent Whole
Message?

Sent
Checksum?

Yes

Test, Set Flags

No

No

Test, Set Flags

Test, Set Flags

Read Checksum

Yes

A (From LIN Header Flow Chart)
DS00237A-page 8  2002 Microchip Technology Inc.

AN237

FIGURE 7: TIMEKEEPING PROGRAM FLOW

DETERMINING OPERATING REGION
It is important to understand the relationship between
bit rate and clock frequency when designing a slave
node in a LIN network. This section focuses on devel-
oping this understanding based on the LIN specifica-
tion. It is assumed that the physical limits defined in the
LIN specification are reasonable and accurate; there-
fore, this section merely uses the defined physical lim-
its and does not present any analysis of the limits
defined for the physical interface to the LIN bus. Essen-
tially, the focus of this section is to analyze the firmware
and its performance based on the defined conditions in
LIN Protocol Specification v1.2.

General Information
Some general information used throughout the
analysis is provided here.

DATA RATE VS. SAMPLING RATE

There are essentially two rates to compare, the incom-
ing data rate and the sampling rate. The slave node
only has control of the sampling rate. Therefore, for this
discussion, the logical choice for a reference is the
incoming data rate, BI. The equations that follow
assume BI is the ideal data rate of the system.

BASE EQUATIONS

The frequency/bit rate relationship of the USART
module is defined as:

The value X represents the 8-bit value loaded in the
SPBRG register. A more useful form of the equation is
as follows:

This shows bit rate as a function of frequency and X.

SAMPLING

The USART does a three sample majority detect of the
incoming signal, shown in Figure 8. Analytically, this
looks like a single sample at the center with some noise
immunity and this is assumed in the analysis.

FIGURE 8: MAJORITY DETECT

Start

LIN bus
Sleeping?

No

Active TX/RX? Yes
Update Frame
Time, Test for

Time-out

Update Bus Time,

No

Test for Time-out

Yes

Finish

X Fosc
16B
------------ 1–=

B Fosc
16 X 1+()
------------------------=
 2002 Microchip Technology Inc. DS00237A-page 9

AN237

RELATING CLOCK FREQUENCY ERROR TO
BIT ERROR

The LIN Protocol Specification v1.2 refers to clock
frequency error rather than bit error. Because of this,
technically, the LIN system designer must design the
system with like clock sources, which is rather imprac-
tical. It is more feasible to have clock sources designed
for the individual needs of the node. For this reason, all
of the equations in this section refer to bit error rather
than frequency error. The following equation relates
frequency error to bit rate error.

For very low clock frequency errors, the bit rate error
can be approximated by:

Thus, a ±2% frequency error is nearly the same bit rate
error.

Acceptable Bit Rate Error
The LIN Protocol Specification v1.2 allows for a ±2%
error for master - slave communications. This section
evaluates this tolerance based on specified worst case
conditions (slew rate, voltage, and threshold) and the
USART module design.

IDEAL SAMPLING WINDOW

It is relatively easy to see the maximum allowed error
in the ideal situation. Ideal is meant by infinite slew rate
with a purely symmetrical signal, like the signal shown
in Figure 9.

FIGURE 9: IDEAL WINDOW

If the data sampling is greater or less than half of one
bit time, TE, over nine bits, the last bit in one byte will be
interpreted incorrectly. Figure 10 depicts how data may
be misinterpreted because the incoming bit rate is
misaligned with the sampling bit rate.

FIGURE 10: DATA VS. SAMPLING

The two equations that give the maximum and
minimum bit rates based on time shifting TE = ±1/(2B)
are:

SHORTENED WINDOW DUE TO SLEW RATE

Although the ideal sampling window may be a useful
approximation at very low bit rates, slew rate and
threshold must be accounted for at higher rates. Thus,
the ideal analysis serves as a base for more realistic
analysis.

The LIN specification defines a tolerable slew rate
range and threshold. The worst case is the minimum
slew rate at the maximum voltage, 1V/µs and 18V,
according to LIN Protocol Specification v1.2. The
threshold is above 60% and below 40% for valid data.
Figure 11 shows the basic measurements.

FIGURE 11: ADJUSTED BIT TIME
ERROR

Taking the difference of the ideal maximum time and
the slight adjustment due to specified operating
conditions, yields the following equation:

Thus, TE is slightly smaller than the ideal case. The
minimum and maximum equations in the previous
section yield slightly narrower range for bit rate.

1
1 EF+
---------------- 1– EB=

E– F EB≈

TE

VBAT

Ideal

Fast

Slow

1
B

TE
9
------– 1

Bmax
------------= 1

B

TE
9
------+ 1

Bmin
-----------=

and

TES
TEI

VBAT

40%
60%

TEI TES– 1
2B
------- 0.5V 0.4V–()

Vd() td()⁄ min
---------------------------------– TE= =
DS00237A-page 10  2002 Microchip Technology Inc.

AN237

OFFSET DUE TO SLEW RATE

Not only does the slew rate and thresholds contribute
to a slightly smaller window, they affect offset of all
samples after the first synchronous edge, the START
bit.

An offset affects the symmetry of the sampling window
rather than the range. Figure 12 shows how this offset
favors a negative bit rate error more than a positive bit
rate error.

The offset is added to both minimum and maximum
equations:

FIGURE 12: OFFSET FROM START EDGE DUE TO SLEW RATE & THRESHOLD

OFFSET DUE TO SAMPLING ERROR

Sampling error of the START edge is very similar to the
slew rate offset described above. The design of the
USART module dictates what the magnitude of this off-
set is. In this case, the error is simply one cycle of the
clock. It is added to the minimum and maximum bit rate
equations:

and

OFFSET DUE TO CIRCUIT DELAY

Offsets related to circuit conditions also affect the min-
imum and maximum error. Since this application note
does not describe the physical interface, hardware
delays are ignored in this analysis.

Minimum SPBRG Value
Given a finite bit rate error range and finite control of the
bit rate, this leads to areas where the slave cannot
operate. These are basically gaps where the error is
outside the defined bit rate error range for a particular
SPBRG value. This section provides the mathematical
basis for these gaps. The equations developed in this
section are provided to help the LIN designer build a
robust network.

FREQUENCY RANGE

The following equation determines the clock frequency
as a function of SPBRG, bit rate, and oscillator error.

OVERLAPPING OPERATION

For most SPBRG values, operating range overlaps
each other from one SPBRG to the next. Therefore, the
slave will communicate with the master for most of the
common conditions. Except for a particular error range
and some clock frequencies, it is possible to never
have a valid SPBRG value.

TES
9
--------- 1

B

TE
9
------+ + 1

Bmin
-----------= and

TES
9
--------- 1

B

TE
9
------–+ 1

Bmax
------------=

VBAT

40%

60%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1

TES

1
9FOSC

TES
9
--------- 1

B

TE
9
------+ + + 1

Bmin
-----------=

1
9FOSC

TES
9
---------+ 1

B

TE
9
------–+ 1

Bmax
------------=

FOSC EB 1+() X 1+() 16() B()=
 2002 Microchip Technology Inc. DS00237A-page 11

AN237

To approach this problem, the maximum frequency for
a particular SPBRG value must be compared to the
minimum frequency of the next SPBRG. Where they
are equal is the border between continuous and
discontinuous operation for any given input frequency.

Solving this equation yields:

Therefore, for any given frequency and a defined error,
a good SPBRG value will always be above Xlow. Of
course, the frequency and baud rate must be selected
such that SPBRG is less than or equal to 255, the larg-
est value supported by SPBRG. For example, for a 2%
error, the lowest SPBRG value before certain clock fre-
quencies become a problem is 25. If the theoretical
minimum and maximum are used, about ±5% from the
previous sections, then a SPBRG value below 10 is a
problem. Therefore, for master - slave communica-
tions, a SPBRG value above 10 will work. However, to
be within the specification, the SPBRG should be
above 25.

Summary of Operating Regions
Figure 2 summarizes the various operating regions
based on the typical device specifications and informa-
tion provided. The LIN designer should consult the
graph in Figure 2 to find the best operating region for
the application.

MEMORY USAGE
The firmware code size depends on the build condi-
tions. As it is currently built, the core module only
requires 333 words of program memory and 12 bytes
of data memory.

REFERENCES
LIN Protocol Specification v1.2,
http://www.lin-subbus.org/

MPASM™ User’s Guide with MPLINK™ and MPLIB™,
Microchip Technology Incorporated, 1999

MPLAB®-CXX User’s Guide, Microchip Technology
Incorporated, 2000

EBH 1+() X() 16() B() EBL 1+() X 1+() 16() B()=

Xlow
EBL 1+()

EBH 1+() EBL 1+()–
--=
DS00237A-page 12  2002 Microchip Technology Inc.

AN237
APPENDIX A: SYMBOLS AND THEIR DEFINITIONS

TABLE A-1: COMPILE TIME DEFINITIONS

TABLE A-2: FUNCTIONS

TABLE A-3: VARIABLES

Definition Name Value Description

FOSC d’4000000' The frequency of the oscillator source.

BIT_RATE d’9600' The bit rate for the slave node.

MAX_IDLE_TIME d’25000' The maximum IDLE bus time. The LIN specification defines this to be 25000.

MAX_HEADER_TIME d’39’ The maximum allowable header time. The specification defines this to be 49;
however, timing doesn’t start until after the first byte (break), so it is actually 39
(10 less than the definition).

MAX_TIME_OUT d’128’ The maximum time allowed to wait after the wake-up request has been made.

Function Name Purpose
l_init_hw Initializes or resets the hardware associated to the LIN interface.
l_txrx_daemon Core transmit and receive function. This function manages transmit and receive operations to the bus.

State flags are set and cleared within this function. Status flags are also set based on certain conditions,
i.e., errors.

l_txrx_table Called by the driver after the identifier byte has been received. Message length and direction is returned to
the driver. Within the table, pointers could be setup for different identifies.

l_tx_wakeup Wake-up function. Call this to wake-up the bus if asleep.
l_update_timers Used to update the bus and frame timers. This should be called once per bit time.

Variable Name Purpose
BUS_TIME_H Most Significant Byte of the bus timer.
BUS_TIME_L Least Significant Byte of the bus timer.
FRAME_TIME 8-bit frame timer register.
HEADER_TIME Same as FRAME_TIME.
LIN_COUNT Used by the driver to maintain a message data count.
LIN_CHKSUM Used by the driver to calculate checksum for transmit and receive.
LIN_FINISH_FLAGS Contains flags indicating completion of transmit and receive data.
LIN_ID Holding register for the received identifier byte. It is used in the l_txrx_table function to determine how

the node should react.
LIN_POINTER Pointer to a storage area used by the driver. Data is either loaded into or read from memory depending on

the identifier.
LIN_READBACK Holding register for transmitted data to be compared with received data for bit error detection.
LIN_STATE_FLAGS Flags to indicate what state the LIN bus is in.
LIN_STATE_FLAGS2 Additional flags to indicate what state the LIN bus is in.
LIN_STATUS_FLAGS Contains status information about the LIN bus.
 2002 Microchip Technology Inc. DS00237A-page 13

AN237

TABLE A-4: FLAGS

Flag Name Register Purpose
LE_BIT LIN_STATUS_FLAGS Status flag indicating a bit error.
LE_BTO LIN_STATUS_FLAGS Status flag indicating a bus activity time-out error.
LE_CHKSM LIN_STATUS_FLAGS Status flag indicating a checksum error during a receive.
LE_FTO LIN_STATUS_FLAGS Status flag indicating a frame time-out error.
LE_PAR LIN_STATUS_FLAGS Status flag indicating a parity error.
LE_SYNC LIN_STATUS_FLAGS Status flag indicating a synchronization tolerance error.
LF_RX LIN_FINISH_FLAGS Finish flag indicating data has been received.
LF_TX LIN_FINISH_FLAGS Finish flag indicating data has been sent.
LS_BRK LIN_STATE_FLAGS State flag indicating a break has been received.
LS_BUSY LIN_STATE_FLAGS State flag indicating the LIN bus is busy.
LS_CHKSM LIN_STATE_FLAGS State flag indicating a checksum error has been sent or received.
LS_DATA LIN_STATE_FLAGS State flag indicating all data has been sent or received.
LS_ID LIN_STATE_FLAGS State flag indicating the identifier has been received.
LS_RBACK LIN_STATE_FLAGS State flag indicating a read back is pending.
LS_SLPNG LIN_STATE_FLAGS State flag indicating the LIN bus is sleeping.
LS_SYNC LIN_STATE_FLAGS State flag indicating a sync byte has been received.
LS_TXRX LIN_STATE_FLAGS State flag indicating a transmit or receive operation.
LS_WAKE LIN_STATE_FLAGS State flag indicating a wake-up has been requested (this node only).
DS00237A-page 14  2002 Microchip Technology Inc.

AN237
APPENDIX B: SOURCE CODE
Due to size considerations, the complete source code
for this application note is not included in the text. A
complete version of the source code, with all required
support files, is available for download as a Zip archive
from the Microchip web site, at:

www.microchip.com
 2002 Microchip Technology Inc. DS00237A-page 15

AN237

NOTES:
DS00237A-page 16  2002 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:
• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowl-
edge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products.
Information contained in this publication regarding device
applications and the like is intended through suggestion only
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
No representation or warranty is given and no liability is
assumed by Microchip Technology Incorporated with respect
to the accuracy or use of such information, or infringement of
patents or other intellectual property rights arising from such
use or otherwise. Use of Microchip’s products as critical com-
ponents in life support systems is not authorized except with
express written approval by Microchip. No licenses are con-
veyed, implicitly or otherwise, under any intellectual property
rights.
 2002 Microchip Technology Inc.
Trademarks

The Microchip name and logo, the Microchip logo, KEELOQ,
MPLAB, PIC, PICmicro, PICSTART and PRO MATE are
registered trademarks of Microchip Technology Incorporated
in the U.S.A. and other countries.

FilterLab, microID, MXDEV, MXLAB, PICMASTER, SEEVAL
and The Embedded Control Solutions Company are
registered trademarks of Microchip Technology Incorporated
in the U.S.A.

dsPIC, dsPICDEM.net, ECONOMONITOR, FanSense,
FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP,
ICEPIC, microPort, Migratable Memory, MPASM, MPLIB,
MPLINK, MPSIM, PICC, PICDEM, PICDEM.net, rfPIC, Select
Mode and Total Endurance are trademarks of Microchip
Technology Incorporated in the U.S.A. and other countries.

Serialized Quick Turn Programming (SQTP) is a service mark
of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2002, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

 Printed on recycled paper.
DS00237A - page 17

Microchip received QS-9000 quality system
certification for its worldwide headquarters,
design and wafer fabrication facilities in
Chandler and Tempe, Arizona in July 1999
and Mountain View, California in March 2002.
The Company’s quality system processes and
procedures are QS-9000 compliant for its
PICmicro® 8-bit MCUs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals,
non-volatile memory and analog products. In
addition, Microchip’s quality system for the
design and manufacture of development
systems is ISO 9001 certified.

DS00237A-page 18  2002 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200 Fax: 480-792-7277
Technical Support: 480-792-7627
Web Address: http://www.microchip.com

Rocky Mountain
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7966 Fax: 480-792-4338

Atlanta
500 Sugar Mill Road, Suite 200B
Atlanta, GA 30350
Tel: 770-640-0034 Fax: 770-640-0307

Boston
2 Lan Drive, Suite 120
Westford, MA 01886
Tel: 978-692-3848 Fax: 978-692-3821

Chicago
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071 Fax: 630-285-0075

Dallas
4570 Westgrove Drive, Suite 160
Addison, TX 75001
Tel: 972-818-7423 Fax: 972-818-2924

Detroit
Tri-Atria Office Building
32255 Northwestern Highway, Suite 190
Farmington Hills, MI 48334
Tel: 248-538-2250 Fax: 248-538-2260

Kokomo
2767 S. Albright Road
Kokomo, Indiana 46902
Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles
18201 Von Karman, Suite 1090
Irvine, CA 92612
Tel: 949-263-1888 Fax: 949-263-1338

San Jose
Microchip Technology Inc.
2107 North First Street, Suite 590
San Jose, CA 95131
Tel: 408-436-7950 Fax: 408-436-7955

Toronto
6285 Northam Drive, Suite 108
Mississauga, Ontario L4V 1X5, Canada
Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC
Australia
Microchip Technology Australia Pty Ltd
Suite 22, 41 Rawson Street
Epping 2121, NSW
Australia
Tel: 61-2-9868-6733 Fax: 61-2-9868-6755
China - Beijing
Microchip Technology Consulting (Shanghai)
Co., Ltd., Beijing Liaison Office
Unit 915
Bei Hai Wan Tai Bldg.
No. 6 Chaoyangmen Beidajie
Beijing, 100027, No. China
Tel: 86-10-85282100 Fax: 86-10-85282104
China - Chengdu
Microchip Technology Consulting (Shanghai)
Co., Ltd., Chengdu Liaison Office
Rm. 2401, 24th Floor,
Ming Xing Financial Tower
No. 88 TIDU Street
Chengdu 610016, China
Tel: 86-28-86766200 Fax: 86-28-86766599
China - Fuzhou
Microchip Technology Consulting (Shanghai)
Co., Ltd., Fuzhou Liaison Office
Unit 28F, World Trade Plaza
No. 71 Wusi Road
Fuzhou 350001, China
Tel: 86-591-7503506 Fax: 86-591-7503521
China - Shanghai
Microchip Technology Consulting (Shanghai)
Co., Ltd.
Room 701, Bldg. B
Far East International Plaza
No. 317 Xian Xia Road
Shanghai, 200051
Tel: 86-21-6275-5700 Fax: 86-21-6275-5060
China - Shenzhen
Microchip Technology Consulting (Shanghai)
Co., Ltd., Shenzhen Liaison Office
Rm. 1315, 13/F, Shenzhen Kerry Centre,
Renminnan Lu
Shenzhen 518001, China
Tel: 86-755-82350361 Fax: 86-755-82366086
China - Hong Kong SAR
Microchip Technology Hongkong Ltd.
Unit 901-6, Tower 2, Metroplaza
223 Hing Fong Road
Kwai Fong, N.T., Hong Kong
Tel: 852-2401-1200 Fax: 852-2401-3431
India
Microchip Technology Inc.
India Liaison Office
Divyasree Chambers
1 Floor, Wing A (A3/A4)
No. 11, O’Shaugnessey Road
Bangalore, 560 025, India
Tel: 91-80-2290061 Fax: 91-80-2290062

Japan
Microchip Technology Japan K.K.
Benex S-1 6F
3-18-20, Shinyokohama
Kohoku-Ku, Yokohama-shi
Kanagawa, 222-0033, Japan
Tel: 81-45-471- 6166 Fax: 81-45-471-6122
Korea
Microchip Technology Korea
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea 135-882
Tel: 82-2-554-7200 Fax: 82-2-558-5934
Singapore
Microchip Technology Singapore Pte Ltd.
200 Middle Road
#07-02 Prime Centre
Singapore, 188980
Tel: 65-6334-8870 Fax: 65-6334-8850
Taiwan
Microchip Technology (Barbados) Inc.,
Taiwan Branch
11F-3, No. 207
Tung Hua North Road
Taipei, 105, Taiwan
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE
Austria
Microchip Technology Austria GmbH
Durisolstrasse 2
A-4600 Wels
Austria
Tel: 43-7242-2244-399
Fax: 43-7242-2244-393
Denmark
Microchip Technology Nordic ApS
Regus Business Centre
Lautrup hoj 1-3
Ballerup DK-2750 Denmark
Tel: 45 4420 9895 Fax: 45 4420 9910
France
Microchip Technology SARL
Parc d’Activite du Moulin de Massy
43 Rue du Saule Trapu
Batiment A - ler Etage
91300 Massy, France
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79
Germany
Microchip Technology GmbH
Steinheilstrasse 10
D-85737 Ismaning, Germany
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44
Italy
Microchip Technology SRL
Centro Direzionale Colleoni
Palazzo Taurus 1 V. Le Colleoni 1
20041 Agrate Brianza
Milan, Italy
Tel: 39-039-65791-1 Fax: 39-039-6899883
United Kingdom
Microchip Ltd.
505 Eskdale Road
Winnersh Triangle
Wokingham
Berkshire, England RG41 5TU
Tel: 44 118 921 5869 Fax: 44-118 921-5820

10/18/02

WORLDWIDE SALES AND SERVICE

	Introduction
	Applications
	Process Time
	FIGURE 1: Available process time

	Resource Usage
	Bit Rate
	Summary
	FIGURE 2: Recommended Operating Regions

	Setting up the Driver
	The Project
	FIGURE 3: Project setup

	The Main Object
	EXAMPLE 1: Interrupt Vector Code Example

	Definitions
	TABLE 1: Compile Time Definitions

	LIN Events

	Using the Driver
	Finish Flags
	Error Flags
	EXAMPLE 2: Error Handling

	Driver State Flags
	ID Events and Functions
	EXAMPLE 3: Variable Initialization

	Waking the Bus

	Implementation
	The Driver
	FIGURE 4: Simplified LIN Transceiver
	States and State Flags
	Synchronization
	TX/RX Table
	Status Flags

	LIN Timers
	Hardware Initialization
	Wake-up
	FIGURE 5: Receive Header Program Flow
	FIGURE 6: Transmit/Receive Message Program Flow
	FIGURE 7: TimeKeeping Program Flow

	Determining Operating Region
	General Information
	Data Rate vs. Sampling Rate
	Base Equations
	Sampling
	FIGURE 8: Majority Detect

	Relating Clock Frequency Error to Bit Error

	Acceptable Bit Rate Error
	Ideal Sampling Window
	FIGURE 9: Ideal Window
	FIGURE 10: Data vs. Sampling

	Shortened Window Due to Slew Rate
	FIGURE 11: Adjusted Bit time Error

	Offset Due to Slew Rate
	FIGURE 12: Offset from Start Edge Due to Slew Rate & Threshold

	Offset Due to Sampling Error
	Offset Due to Circuit Delay
	Frequency Range
	Overlapping Operation

	Summary of Operating Regions

	Memory Usage
	References
	Appendix A: Symbols and their Definitions
	TABLE A-1: Compile Time Definitions
	TABLE A-2: Functions
	TABLE A-3: Variables
	TABLE A-4: Flags

	Appendix B: Source Code
	Worldwide Sales and Service

