
AN235
Implementing a LIN Master Node Driver
on a PIC18 Microcontroller with USART
INTRODUCTION
Like most network protocols, the Local Interconnect
Network (LIN) as described in the official specification
is a multi-layered system. The levels vary from the
physical interface up to the high level application, with
logical data connections between nodes at various lay-
ers. This application note focuses on the implementa-
tion of an interface between the physical interface and
higher level application firmware, essentially a hard-
ware driver (the shaded blocks in Figure 1). Specifi-
cally, this document presents a Master node driver that
is designed for PIC18 microcontrollers with a standard
USART module.

FIGURE 1: BASIC LIN SYSTEM

This application note provides a high level view of how
the LIN driver is implemented, as well as examples of
the actual code. Those who are interested in getting
started right away may refer to “Setting Up and Using
the Firmware” (page 8) on how to create their own
software project.

It is assumed that the reader is familiar with the LIN
specification. Therefore, not all of the details about LIN
are discussed. Refer to the references listed at the end
of this document for additional information.

Users interested in the implementation of LIN Slave
nodes (not discussed in this document) are
encouraged to visit the Microchip web site
(www.microchip.com) for additional application notes
and other information.

OVERVIEW OF THE DRIVER
There are five functions found in the associated example
firmware that control the operation of the LIN interface:

• The LIN Transmit/Receive Daemon
• LIN Timekeeper
• LIN Transmit
• LIN Receive
• Hardware Initialization

The Transmit/Receive Daemon
The USART module is the key element used for LIN
communications. Using the USART module as the
serial engine for LIN has certain advantages. One par-
ticular advantage is that it puts serial control in the
hardware rather than in software; thus, miscellaneous
processing can be performed while data is being trans-
mitted or received. With this in mind, the Master Node
LIN Protocol Driver is designed to run in the back-
ground, basically as a “daemon”. The user needs only
to initiate the daemon through the transmit or receive
functions.

The daemon is interrupt driven via the USART receive
interrupt. Because of the physical feedback nature of
the LIN bus (Figure 2), a USART receive interrupt will
occur regardless of transmit or receive operations. Bit
flags are used to retain information about various
states within the daemon between interrupts. In addi-
tion, status flags are maintained to indicate errors
during transmit or receive operations.

FIGURE 2: SIMPLIFIED LIN
TRANSCEIVER

Author: Ross M. Fosler
Microchip Technology Inc.

LIN Single Wire Bus

Higher Level

Transceiver

USART

LIN Protocol Driver

Applications

Slave Devices

Master

VBAT

Open Drain

PIC18
TX

RX

Buffer

LIN bus
 2002 Microchip Technology Inc. DS00235A-page 1

AN235

STATES AND STATE FLAGS

The LIN daemon uses state flags to remember where it
is between interrupts. When an interrupt occurs, the
daemon uses these flags to decide what is the next
unexecuted state, then jumps to that state. Figure 3
and Figure 4 outline the program flow through the
different states, which are listed and defined below.

STATUS AND ERROR FLAGS

Within various states, status flags may be set depend-
ing on certain conditions. For example, if the transmit-
ted break is not received as a break within the read
back state, then a bit error is indicated through a status
flag. Unlike state flags, status flags are not reset auto-
matically. Status flags are left for the LIN system
designer to act upon within the higher levels of the
firmware.

FIGURE 3: LIN HEADER FLOW CHART

Interrupt

Busy TX or
RX?

Test for Wake-up
Condition

Sent Break? Slow Bit Rate
and Send 00h

Sent Sync? Reset Bit Rate
and Send 55h

Sent ID? Calculate Parity
and Send ID

Yes

Read Back
Ready?

Test for Bit Error

No

Yes

Yes

No

No

Yes

Yes

No

No

Return

Reset Bus Timer

A
from Interrupt

(to “LIN Message Flow Chart”)
DS00235A-page 2  2002 Microchip Technology Inc.

AN235

FIGURE 4: LIN MESSAGE FLOW CHART

COUNT, ID, AND MESSAGE

The daemon requires a data count, an identifier byte,
and a pointer to a message area to function properly.
The checksum and parity are automatically calculated;
however, the data count is not. Although the specifica-
tion defines the message size for most of the IDs, the
Extended Frame ID is not defined. The data count of
this ID is left for the user to define.

The LIN Timekeeper Function
The LIN specification dictates maximum frame times
and bus IDLE times. For this reason, a timekeeping
function is implemented. This function works together

with the daemon and the transmit and receive func-
tions. Essentially, the daemon and the transmit and
receive functions update the appropriate time, bus and
frame time when called. Figure 3 and Figure 4 show
where the timers are updated.

Although the timekeeping function is implemented, the
timing base is not, since there are numerous ways of
generating a time-base on a PIC18 microcontroller.
This is left for the LIN system designer. The example
firmware for this application note uses Timer0 to
generate a time-base.

Get a Byte Sent

Sent
Checksum?

Send ChecksumRESET States

Return

No

Yes

Yes

Received

Get Checksum

Yes

NoNo

TX or RX?
RX TX

A

Increment
Pointer

Decrement
Counter

Add to
Checksum

all Data?all Data? Send a Byte

Increment
Pointer

Decrement
Counter

Add to
Checksum

from Interrupt

(from “LIN Header Flow Chart”)
 2002 Microchip Technology Inc. DS00235A-page 3

AN235

Transmit and Receive Functions
Although the transmit and receive functions are called
separately, they are very nearly the same function.
They differ only by one state flag. These functions basi-
cally initiate the first state for either a LIN frame transmit
or receive operation. Once initiated, the daemon takes
control via a receive interrupt. The program flow is
outlined in Figure 5.

Hardware Initialization Function
An initialization function is provided to configure
USART operation. The state and status flags are also
cleared. Flags related to hardware interrupts and
timers are not modified.

FIGURE 5: TRANSMIT AND RECEIVE FUNCTION FLOW

TX or RX Start

Bus Busy?

Reset Frame Timer
and Set BUSY Flag

Bus Sleeping?

Send a Break Send a Wake-up

Finish

Yes

No

No

Yes
DS00235A-page 4  2002 Microchip Technology Inc.

AN235
IMPLEMENTING THE DRIVER
The core of the firmware is written in an assembly mod-
ule to provide good execution performance and use
less program memory. However, the examples pro-
vided in this section use the C file definitions, with the
core being linked into a C programming environment.
Both the assembly and C include files that are provided
with the example firmware.

Setup and Initialization
Before attempting to execute the LIN firmware, the
related registers and hardware must be initialized. The
l_init_hw function is provided for this reason. Its
three key tasks are:

• Initialize the daemon (starts the LIN driver)
• Initialize registers (sets known values)
• Set up a timer (sets and starts a time-base)

This function has one static parameter: l_bit_rate.
The bit rate value for PIC18 devices is calculated using
the baud rate equation for standard USARTs:

where B is the bit rate in bits per second, X is the value
of the SPBRG register, and FOSC is the clock frequency
(in Hz).

The initialization function also acts as a RESET. Thus,
executing this function will clear all errors, including
errors related to the USART.

EXAMPLE 1: SETUP EXAMPLE

Setting Up Timing
The LIN specification sets limits on the frame time and
the maximum bus IDLE time. For this reason, a time
function, l_time_update, is provided. This function
must be called once per bit time. Any time source can
be used to perform this operation; the firmware
provided with this application note uses Timer0 as the
time-base (see Example 3, Example 4 and
Example 5).

Setting Up and Using the Daemon
After initiating a LIN transmit or a receive operation, the
daemon must be called several times to transmit or
receive data. It is possible to continuously call
l_txrx_daemon, as shown in Example 2. The
daemon only acts when data is in the receive FIFO.

EXAMPLE 2: BASIC POLLING
EXAMPLE

The most convenient and transparent way to do this,
however, is through the USART receive interrupt.
Example 3 shows how the driver could be polled by
calling the daemon every bit time. Since the daemon
checks the RCIF bit before doing anything, calling the
l_txrx_daemon function will not cause a problem.

EXAMPLE 3: USART INTERRUPT
POLLING EXAMPLE

FOSC
16 (X + 1)

B =

void main()
{

l_bit_rate = 25; // Start lin_d at
l_init_hw(); // 9600 @ 4MHz

l_data_count = 1; // Init some
l_data = DUMMY; // registers
l_id = 0;

T0CON = 0xC0; // Enable timer0
INTCONbits.TMR0IF = 0;
INTCONbits.TMR0IE = 1;

//PIE1bits.RCIE = 1; // Optional for
//INTCONbits.PEIE = 1; // interrupt

// driven driver

INTCONbits.GIEH = 1; // Enable
 // interrupts

while(1) { // Main program
}

}

while (1) { // Main loop
l_txrx_daemon(); // Check for data.

// Put code
// to test
// for finish and
// errors.

}

void InterruptHandlerHigh()
{

if (INTCONbits.TMR0IF
 && INTCONbits.TMR0IE) {

l_time_update();
TMR0L = TMR0L + 0x99;
INTCONbits.TMR0IF = 0;

l_txrx_daemon(); // Polled driver
}

}

 2002 Microchip Technology Inc. DS00235A-page 5

AN235

In Example 4, the USART receive interrupt is used to
update the LIN daemon. This method is extremely sim-
ple, but it does not allow any interbyte space. Some
slave nodes may not be able to function well without
interbyte space, especially if the bus is saturated with
data. Example 5 shows a combined interrupt method to
allow for interbyte space. The code in this example
inserts one extra bit time between each byte.

EXAMPLE 4: UPDATE VIA USART
INTERRUPT EXAMPLE

EXAMPLE 5: INTERBYTE SPACE
EXAMPLE

Using State Flags
State flags dictate where the daemon is in the process
of transmitting or receiving data. Thus, it is possible to
prematurely terminate transmit and receive operations
by simply clearing the state flags. Likewise, it is possi-
ble to artificially enter a state by setting certain state
flags. This is useful for handling errors and debugging
the system.

Sending and Receiving Frames
Frames are sent or received by calling l_tx_frame or
l_rx_frame. There are three static parameters that
must be passed to either function: l_id,
l_data_count, and l_data. Example 6 demonstrates
the operation.

The data count and pointer are modified during the
operation, so it is important to load these registers
before any operation is started. Modifying these during
an operation may lead to unexpected results. When the
daemon is finished, l_data points to the RAM location
after the last received or transmitted byte. And the data
in register l_data_count equals 00h.

EXAMPLE 6: TRANSMIT EXAMPLE

Handling Error Flags
Error flags are set by the daemon at the time of occur-
ance. These flags do not affect the operation of the
daemon if they are received. It is left up to the LIN sys-
tem designer to determine how to handle the flags. To
catch errors immediately, they must be tested after the
daemon has finished each cycle. The code in
Example 7 shows an example of how errors can be
captured.

EXAMPLE 7: HANDLING ERRORS

void InterruptHandlerHigh()
{

if (INTCONbits.TMR0IF
 && INTCONbits.TMR0IE) {

l_time_update();
TMR0L = TMR0L + 0x99;
INTCONbits.TMR0IF = 0;

}
if (PIE1bits.RCIE) {

l_txrx_daemon();
}

}

void InterruptHandlerHigh()
{

if (INTCONbits.TMR0IF &&
INTCONbits.TMR0IE) {

l_time_update();
TMR0L = TMR0L + 0x6F;
INTCONbits.TMR0IF = 0;

if (!PIE1bits.RCIE) {
l_txrx_daemon(); // Update
PIE1bits.RCIE = 1; // Enable int

 }
}

if (PIE1bits.RCIE &&
PIR1bits.RCIF) {
TMR0L = 0x6F; // Sync
INTCONbits.TMR0IF = 0;
PIE1bits.RCIE = 0; // Stop int

}
}

l_id = 0x02; // Load the ID.
l_data_count = 2; // Load the count.
l_data = MyData; // Set pointer to

// a char array.
l_tx_frame(); // Send the array.

void InterruptHandlerHigh()
{

//Some interrupt handler code w/ daemon
// see Example 5.

if (LIN_ERROR_FLAGS) {
if (l_error_flags.LE_BIT){

// Handle bit error
}

// Handle other errors

LIN_ERROR_FLAGS = 0; // Clear
}

}

DS00235A-page 6  2002 Microchip Technology Inc.

AN235

Globals and Their Definitions
The key core globals and their meanings are described
in Table 1 through Table 3, below.

TABLE 1: LIN FIRMWARE FUNCTIONS

TABLE 2: LIN FIRMWARE REGISTERS

TABLE 3: FLAGS DEFINED IN THE FIRMWARE REGISTERS

Function Name Purpose

l_txrx_daemon The background LIN transmit/receive handler. This function can be called from a receive
interrupt or polled periodically.

l_rx_frame Initiates a receive from the LIN bus.
l_tx_frame Initiates a transmit to the LIN bus.
l_time_update Updates the frame and bus timers. It should be called once per bit time.
l_init_hw Initializes all flags and resets the hardware used by LIN.

Register Name Purpose

l_id LIN identifier byte to be transmitted. The parity bits (two Most Significant bits) are
pre-calculated before being transmitted.

l_data_count Holds the number of bytes to be transmitted. The count will automatically decrease as
data is transmitted or received.

l_data 16-bit pointer to the LIN data in memory. The pointer will automatically increase as data is
transmitted or received.

l_bit_rate Holds the bit rate of the LIN bus.
l_state_flags Flags used to control the state of the LIN daemon.
l_status_flags Contains status information.
l_error_flags Contains error information.

Flag Name Register Purpose

L_TXRX l_state_flags Indicates transmit or receive operation (state flag).
L_RBACK l_state_flags Indicates a read back is pending (state flag).
L_BREAK l_state_flags Indicates a break has been sent (state flag).
L_SYNC l_state_flags Indicates a sync byte has been sent (state flag).
L_ID l_state_flags Indicates the identifier has been sent (state flag).
L_DATA l_state_flags Indicates all data has been sent or received (state flag).
L_CHKSM l_state_flags Indicates the checksum has been sent or received (state flag).
L_BUSY l_status_flags Indicates a LIN transmit or receive is in progress (state flag). This bit can be

polled to determine when a LIN operation has completed.
L_SLEEP l_status_flags Indicates the LIN bus is inactive (state flag). It is up to the LIN system

designer to set this flag at the appropriate time.
L_RWAKE l_status_flags Indicates a wake-up has been requested by a slave (status flag).
LE_BIT l_error_flags Indicates a bit error (status flag).
LE_CHKSM l_error_flags Indicates a checksum error during a receive (status flag).
LE_FTO l_error_flags Indicates the frame has exceeded its maximum time (status flag).
LE_BTO l_error_flags Indicates the bus IDLE time limit has been exceeded (status flag). This

could be used as an error or a warning to set L_SLEEP.
 2002 Microchip Technology Inc. DS00235A-page 7

AN235
SETTING UP AND USING THE
FIRMWARE
As noted, the code accompanying this application note
includes both assembly and C files. The examples in C
are targeted for the Microchip PICC 18TM C compiler.
Adjustments for other compilers may be necessary.

Setting Up the Project
For the project to build correctly, it is necessary to
include all of the required files in the development envi-
ronment, including header and definition files. A typical
project for Microchip’s MPLAB® 32, showing the hierar-
chical relationship of the necessary files, is shown in
Figure 6. All of the required files are included in the Zip
archive accompanying this application note.

The key files to include are the lin_d.asm and
main.c (or some other entry file) as source files, as
well as a linker script appropriate for the microcontrol-
ler. The listings for the source files are presented in
Appendix B and Appendix A, respectively.

USING THE HEADER FILES

Header files for both PICC 18 and MPASMTM are pro-
vided. The header files lin.inc and lin.h contain all
the necessary symbols used in the core lin_d.asm
module. Either of these should be included in each
application module that uses the daemon, lin.inc for
MPASM modules and lin.h for PICC 18 modules.

SETTING THE DEFINITIONS

The file lin.def contains all the important definitions
for the lin_d.asm file and any other objects that use
the state, status, or error flags. For most situations, this
file will not need to be edited. Like the include file, this
must be included in all assembly modules that use any
part of the daemon (i.e., uses LIN flags or functions).

MEMORY USAGE
The core module is 188 words long. It is written entirely
in a relative coding scheme and thus, can be placed
anywhere in the program memory map, regardless of
its assembled location. The code is also written as a
module, so it can be easily linked with C source code.

The core module consumes 12 bytes of data memory
when active.

REFERENCES
LIN Consortium, “LIN Protocol Specification,
Revision 1.2”, November 2000,
http://www.lin-subbus.org.

MPASMTM User’s Guide with MPLINKTM and MPLIBTM,
Microchip Technology Incorporated, 1999.

MPLAB®-CXX User’s Guide, Microchip Technology
Incorporated, 2000.

FIGURE 6: PROJECT SETUP (MPLAB 32)
DS00235A-page 8  2002 Microchip Technology Inc.

AN235

Software License Agreement
The software supplied herewith by Microchip Technology Incorporated (the “Company”) for its PICmicro® Microcontroller is
intended and supplied to you, the Company’s customer, for use solely and exclusively on Microchip PICmicro Microcontroller prod-
ucts.
The software is owned by the Company and/or its supplier, and is protected under applicable copyright laws. All rights are reserved.
Any use in violation of the foregoing restrictions may subject the user to criminal sanctions under applicable laws, as well as to civil
liability for the breach of the terms and conditions of this license.
THIS SOFTWARE IS PROVIDED IN AN “AS IS” CONDITION. NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATU-
TORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
APPENDIX A: LIN TEST PROGRAM (main.c)
//***
// LIN Test Program By Ross Fosler
// 04/24/02

#include <p18cxxx.h>
#include "lin_d.h" // Include LIN functions

//***

#pragma udata TestSection

unsigned char LINDATA[8];
unsigned char LINDATACOUNT;

#pragma udata access TestSection2
near union {

struct {
unsigned EO1:1; // Even or odd flag
unsigned EO2:1;
unsigned EO3:1;

} Bit;
near unsigned char Byte;
} MYCOUNT;

void main(void);
void InterruptHandlerHigh(void);

#pragma code
//***
// Main routine
void main()
{

l_bit_rate = 71; // 9600 @ 11.059MHz
l_init_hw();

T0CON = 0xC0; // Enable timer0
INTCONbits.TMR0IF = 0;
INTCONbits.TMR0IE = 1;

PIE1bits.RCIE = 1;
INTCONbits.PEIE = 1;
INTCONbits.GIEH = 1; // Enable interrupts

LINDATA[0] = 24;
LINDATA[1] = 43;
l_data = LINDATA;
while(1) {
 2002 Microchip Technology Inc. DS00235A-page 9

AN235

if (!PORTDbits.RD1) {

l_data = LINDATA; // Receive data from slave
l_data_count = 2;
l_id = 3;
l_rx_frame();
while (!PORTDbits.RD1) {
}

}
if (!PORTDbits.RD3) {

l_data = LINDATA; // Transmit data to slave
l_data_count = 2;
l_id = 2;

 l_tx_frame();
 while (!PORTDbits.RD3) {

}
}

}
}
//***
// High priority interrupt vector

#pragma code InterruptVectorHigh = 0x08
void InterruptVectorHigh(void)
{

_asm
bra InterruptHandlerHigh // jump to interrupt routine

_endasm
}
//***
// High priority interrupt routine

#pragma code
#pragma interrupt InterruptHandlerHigh

void InterruptHandlerHigh()
{

if (INTCONbits.TMR0IF && INTCONbits.TMR0IE) {
if(PIR1bits.RCIF) { // Keep a count for interbyte space

MYCOUNT.Byte++;
}
l_time_update();
TMR0L = TMR0L + 0x71;
INTCONbits.TMR0IF = 0;

if(l_status_flags.LE_SLAVE) {
LIN_STATUS_FLAGS = 0;
LIN_STATE_FLAGS = 0;
}

}
 if(PIE1bits.RCIE) { // check for recv int

 if (MYCOUNT.Bit.EO2) { // Use counter to add interbyte space
 l_txrx_daemon();
 MYCOUNT.Byte = 0;
 }
}
if (l_status_flags.LE_TOUT) { // Put code to check flags

if (!l_status_flags.L_BUSY) {
l_data = LINDATA; // Transmit a 'keep alive' packet
l_data_count = 2;
l_id = 0;
l_tx_frame();

 }
l_status_flags.LE_TOUT = 0;
}

}
//***
DS00235A-page 10  2002 Microchip Technology Inc.

AN235
APPENDIX B: LIN CORE FUNCTIONS (lin_d.asm)
;**
; Core Functions for a LIN Master Node on a PIC18
; by Ross M. Fosler 04/18/02
;
;**

; ***
#include DEVICES.INC
#include lindefs.inc
; ***

; ***
_LINDATA UDATA_ACS

l_readback
LIN_READ_BACK res 1 ; LIN readback compare register

GLOBAL l_readback
GLOBAL LIN_READ_BACK

l_id
LIN_IDENT res 1 ; LIN Identifier
l_data_count
LIN_DATA_COUNT res 1 ; LIN Data count
l_data
LIN_POINTER_L res 1 ; Pointer to the data
LIN_POINTER_H res 1
l_chksum
LIN_CHKSUM res 1 ; LIN checksum

GLOBAL l_id, l_data_count
GLOBAL l_data, l_chksum
GLOBAL LIN_IDENT
GLOBAL LIN_DATA_COUNT
GLOBAL LIN_POINTER_H
GLOBAL LIN_POINTER_L
GLOBAL LIN_CHKSUM

l_state_flags
LIN_STATE_FLAGS res 1 ; Some flags
l_status_flags
LIN_STATUS_FLAGS res 1

GLOBAL l_state_flags
GLOBAL l_status_flags
GLOBAL LIN_STATE_FLAGS
GLOBAL LIN_STATUS_FLAGS

l_bit_rate
LIN_SPBRG res 1 ; LIN bit rate

GLOBAL l_bit_rate
GLOBAL LIN_SPBRG

l_frame_time
LIN_FRAME_TIME res 1
l_bus_time
LIN_BUS_TIME_L res 1
LIN_BUS_TIME_H res 1

GLOBAL l_frame_time
GLOBAL l_bus_time
GLOBAL LIN_FRAME_TIME
GLOBAL LIN_BUS_TIME_L
GLOBAL LIN_BUS_TIME_H

; ***
 2002 Microchip Technology Inc. DS00235A-page 11

AN235

; ***
; This is the transmit/receive daemon. This function should be called
; from an interrupt handler function after the USART receive
; interrupt. Alternatively, this function could be called
; periodically.

_LINDAEMON CODE
l_txrx_daemon

GLOBAL l_txrx_daemon
btfss LINIF ; Do nothing unless data is ready
return
movlw high BUS_WARN_TIME ; Update the bus timer
movwf LIN_BUS_TIME_H
movlw low BUS_WARN_TIME
movwf LIN_BUS_TIME_L
btfsc L_BUSY ; If not actively doing something
bra l_test_readback ; data might be a wakeup request.

; ***
l_test_wake

movf LINRX, W
andlw b'00111111'
btfsc STATUS, Z
bsf L_RWAKE ; Indicate wakeup has been requested
return

; ***

; ***
l_test_readback

btfss L_RBACK
bra l_tx_break
movf LINRX, W ; Compare the data
xorwf LIN_READ_BACK, W
btfss STATUS, Z
bsf LE_BIT ; Indicate a bit error
bcf L_RBACK

; ***

; ***
l_tx_break

btfsc L_BREAK ; Has a break been sent yet?
bra l_tx_sync
bcf STATUS, C
rrcf LIN_SPBRG, W ; Reset the TX rate to 1.5x
addwf LINBRG, F
movlw b'00000000' ; Send sync break
movwf LINTX
movwf LIN_READ_BACK ; Setup for readback test
bsf L_RBACK ; Set the readback flag
bsf L_BREAK ; Set the break flag
return

; ***

; ***
l_tx_sync

btfsc L_SYNC
bra l_tx_id
movff LIN_SPBRG, LINBRG ; Reset the bit rate
movlw 0x55
movwf LINTX ; Send sync
movwf LIN_READ_BACK ; Setup for readback test
bsf L_RBACK ; Set the readback flag
bsf L_SYNC ; Set the sync flag
return

; ***
DS00235A-page 12  2002 Microchip Technology Inc.

AN235

; ***
l_tx_id

btfsc L_ID
bra l_txrx_test
movlw b'00111111' ; Strip off 2 MSBits
andwf LIN_IDENT
swapf LIN_IDENT, W ; Get (ID0 xor ID4), (ID1 xor ID5)
xorwf LIN_IDENT, W
movwf LIN_CHKSUM ; Store in Checksum
rrncf WREG, F
rrncf WREG, F
xorwf LIN_CHKSUM, F ; Get (ID0 xor ID2 xor ID4), (ID1 xor ID3 xor ID5)
rrncf LIN_IDENT, W ; Get (ID0 ID1 ID2 ID4), (ID1 ID3 ID4 ID5)
xorwf LIN_CHKSUM
bsf LIN_IDENT, 7 ; Set P1
btfsc LIN_CHKSUM, 3
bcf LIN_IDENT, 7
bsf LIN_IDENT, 6 ; Set P0
btfss LIN_CHKSUM, 0
bcf LIN_IDENT, 6
movf LIN_IDENT, W
movwf LINTX ; Transmit the ID
movwf LIN_READ_BACK ; Setup for readback test
clrf LIN_CHKSUM ; Init the checksum
bsf L_RBACK ; Set the readback flag
bsf L_ID ; Set the ID flag
return

; ***

; ***
l_txrx_test

btfss L_TXRX
bra l_rx_msg

; ***

; ***
l_tx_msg

btfsc L_DATA
bra l_tx_chksum
movff LIN_POINTER_H, FSR0H ; Setup pointer to memory
movff LIN_POINTER_L, FSR0L
movf INDF0, W ; Get the data
movwf LINTX ; Send the data
movwf LIN_READ_BACK ; Setup for readback test
addwf LIN_CHKSUM, F ; Adjust the checksum
btfsc STATUS, C
incf LIN_CHKSUM, F
infsnz LIN_POINTER_L, F ; Adjust pointer to next byte
incf LIN_POINTER_H, F
dcfsnz LIN_DATA_COUNT, F ; Adjust the data count
bsf L_DATA
bsf L_RBACK ; Set the readback flag
return

; ***

; ***
l_tx_chksum

btfsc L_CHKSM
bra l_cleanup
comf LIN_CHKSUM, W ; Send the checksum
movwf LINTX
movwf LIN_READ_BACK ; Setup for readback test
bsf L_RBACK ; Set the readback flag
bsf L_CHKSM
return

; ***
 2002 Microchip Technology Inc. DS00235A-page 13

AN235

; ***
l_rx_msg

btfsc L_DATA
bra l_rx_chksum
btfss LINIF ; Do nothing unless data is ready
return
movff LIN_POINTER_H, FSR0H ; Setup pointer to memory
movff LIN_POINTER_L, FSR0L
movf LINRX, W
movwf INDF0
addwf LIN_CHKSUM, F ; Adjust the checksum
btfsc STATUS, C
incf LIN_CHKSUM, F
infsnz LIN_POINTER_L, F ; Adjust pointer to next byte
incf LIN_POINTER_H, F
dcfsnz LIN_DATA_COUNT, F ; Adjust the data count
bsf L_DATA
return

; ***

; ***
l_rx_chksum

btfsc L_CHKSM
return
comf LINRX, W ; Get the data
xorwf LIN_CHKSUM, W ; Test the checksum
btfss STATUS, Z
bsf LE_CHKSM
bsf L_CHKSM

; ***

; ***
l_cleanup

clrf LIN_STATE_FLAGS ; Reset all states
bcf L_BUSY ; Clear the busy flag
return

; ***

; ***
; These are the transmit and receive routines. Use these functions
; to initiate LIN activity.

l_rx_frame
GLOBAL l_rx_frame
btfsc L_BUSY ; Do nothing unless LIN bus is open
return
bcf L_TXRX ; Clear for rx
bra l_txrx

l_tx_frame
GLOBAL l_tx_frame
btfsc L_BUSY ; Do nothing unless LIN bus is open
return
bsf L_TXRX ; Set for TX

l_txrx
; Setup the frame timer

rlncf LIN_DATA_COUNT, W ; REG = C x 8
rlncf WREG, F
rlncf WREG, F
andlw b'11111000'
movwf LIN_FRAME_TIME
rlncf LIN_DATA_COUNT, W ; REG = (C x 2) + (C x 8)
bcf WREG, 0
addwf LIN_FRAME_TIME, F
movlw d'44' ; REG = (C x 2) + (C x 8) + 44
addwf LIN_FRAME_TIME
rrncf LIN_FRAME_TIME, W ; REG = REG + REG/4
rrncf WREG, F
DS00235A-page 14  2002 Microchip Technology Inc.

AN235

andlw b'11111100'
addwf LIN_FRAME_TIME
rrncf WREG, F ; REG = REG + REG/8
bcf WREG, 7
addwf LIN_FRAME_TIME
bsf L_BUSY ; Indicate LIN bus is now busy
btfss L_SLEEP ; Test for sleep
bra l_tx_break
bcf L_SLEEP
movlw 0x00 ; Send a wakeup
movwf LINTX
movwf LIN_READ_BACK ; Setup for readback test
bsf L_RBACK ; Set the readback flag
return

; ***

; ***
; The LIN timers are updated here. This function should be called
; once every bit time. The specification requires that bus time
; and frame time are measured.

l_time_update
GLOBAL l_time_update
btfss L_BUSY
bra TestBusTime
btfsc LE_SLAVE ; Do not update if already timed out
bra TestBusTime
dcfsnz LIN_FRAME_TIME ; Test the frame timer
bsf LE_SLAVE

TestBusTime
btfsc LE_TOUT ; Do not update if already timed out
return
movlw 0x01 ; Test the bus timer
subwf LIN_BUS_TIME_L, F
btfsc STATUS, C
return
subwf LIN_BUS_TIME_H, F
btfsc STATUS, C
return
bsf LE_TOUT ; Bus time out flag
return

; ***

; ***
; Initialize the hardware for LIN.

l_init_hw
GLOBAL l_init_hw
clrf LIN_DATA_COUNT ; Reset the message data counter
clrf LIN_STATUS_FLAGS ; Clear all flags
clrf LIN_STATE_FLAGS
bsf LATC, TX ; These are set to prevent glitches
bsf LATC, RX ; when changing SPBRG on the fly
bcf TRISC, TX ; Setup transmit pin
bsf TRISC, RX ; Setup receive pin
movff LIN_SPBRG, SPBRG ; Set the bit rate
clrf TXSTA
movlw b'00100100' ; Setup transmit
movwf TXSTA
clrf RCSTA
movlw b'10010000' ; Setup receive
movwf RCSTA
movf RCREG, W ; Empty the buffer
movf RCREG, W
return

; ***
END
 2002 Microchip Technology Inc. DS00235A-page 15

AN235
APPENDIX C: C HEADER
extern near unsigned char l_readback;
extern near unsigned char _id; // Identifier byte
extern near unsigned char l_data_count; // Data count (bytes in the message)
extern unsigned char *l_data; // Pointer to data
extern near unsigned char l_chksum; // Checksum calculation area
extern near unsigned char l_bit_rate; // Desired bit-rate (used w/ USART SPBRG)
extern near unsigned char l_frame_time;
extern near unsigned int l_bus_time;
extern void l_txrx_daemon(void); // Send a sync break signal
extern void l_rx_frame(void); // Send a sync signal
extern void l_tx_frame(void); // Send the ID byte
extern void l_time_update(void); // Send the calculated checksum
extern void l_init_hw(void); // Receive and compare to the calculated checksum
extern near unsigned char LIN_STATE_FLAGS;
extern near struct {

unsigned L_TXRX:1;
unsigned L_RBACK:1;
unsigned L_BREAK:1;
unsigned L_SYNC:1;
unsigned L_ID:1;
unsigned L_DATA:1;
unsigned L_CHKSM:1;

} l_state_flags;
extern near unsigned char LIN_STATUS_FLAGS;
extern near struct {

unsigned L_BUSY:1;
unsigned L_SLEEP:1;
unsigned L_RWAKE:1;
unsigned LE_BIT:1;
unsigned LE_CHKSM:1;
unsigned LE_SLAVE:1;
unsigned LE_TOUT:1;

} l_status_flags;

APPENDIX D: ASSEMBLY DEFINITIONS
; ***
#define BUS_WARN_TIME d'25000'
#define LINRX RCREG
#define LINTX TXREG
#define LINBRG SPBRG
#define LINIF PIR1,RCIF
#define L_TXRX LIN_STATE_FLAGS,0
#define L_RBACK LIN_STATE_FLAGS,1
#define L_BREAK LIN_STATE_FLAGS,2
#define L_SYNC LIN_STATE_FLAGS,3
#define L_ID LIN_STATE_FLAGS,4
#define L_DATA LIN_STATE_FLAGS,5
#define L_CHKSM LIN_STATE_FLAGS,6
#define L_BUSY LIN_STATUS_FLAGS,0
#define L_SLEEP LIN_STATUS_FLAGS,1
#define L_RWAKE LIN_STATUS_FLAGS,2
#define LE_BIT LIN_STATUS_FLAGS,3
#define LE_CHKSM LIN_STATUS_FLAGS,4
#define LE_SLAVE LIN_STATUS_FLAGS,5
#define LE_TOUT LIN_STATUS_FLAGS,6
; ***
DS00235A-page 16  2002 Microchip Technology Inc.

AN235
APPENDIX E: ASSEMBLY HEADER

EXTERN LIN_READ_BACK ; Readback register for LIN tx functions
EXTERN LIN_IDENT ; LIN Identity
EXTERN LIN_DATA_COUNT ; Number of bytes to be sent or received
EXTERN LIN_POINTER_H ; Pointer to the data array
EXTERN LIN_POINTER_L
EXTERN LIN_CHKSUM ; LIN checksum
EXTERN LIN_STATE_FLAGS ; Flags to determine what state LIN is in
EXTERN LIN_STATUS_FLAGS ; LIN bus status flags
EXTERN LIN_SPBRG ; Bit rate
EXTERN LIN_FRAME_TIME ; Frame timer
EXTERN LIN_BUS_TIME_L ; Bus idle timer
EXTERN LIN_BUS_TIME_H
EXTERN l_txrx_daemon ; tx/rx daemon
EXTERN l_rx_frame ; Receive a frame
EXTERN l_tx_frame ; Transmit a frame
EXTERN l_time_update ; Update the timers
EXTERN l_init_hw ; Init the hardware
 2002 Microchip Technology Inc. DS00235A-page 17

AN235
APPENDIX F: SOURCE CODE FOR
THIS APPLICATION
NOTE

The complete source code for the LIN Master Node
Driver is available as a single WinZip archive file, which
contains all necessary header and include files. It may
be downloaded from the Microchip corporate web site
at:

www.microchip.com

DS00235A-page 18  2002 Microchip Technology Inc.

Note the following details of the code protection feature on PICmicro® MCUs.

• The PICmicro family meets the specifications contained in the Microchip Data Sheet.
• Microchip believes that its family of PICmicro microcontrollers is one of the most secure products of its kind on the market today,

when used in the intended manner and under normal conditions.
• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowl-

edge, require using the PICmicro microcontroller in a manner outside the operating specifications contained in the data sheet.
The person doing so may be engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.
• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not

mean that we are guaranteeing the product as “unbreakable”.
• Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of

our product.
If you have any further questions about this matter, please contact the local sales office nearest to you.
Information contained in this publication regarding device
applications and the like is intended through suggestion only
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
No representation or warranty is given and no liability is
assumed by Microchip Technology Incorporated with respect
to the accuracy or use of such information, or infringement of
patents or other intellectual property rights arising from such
use or otherwise. Use of Microchip’s products as critical com-
ponents in life support systems is not authorized except with
express written approval by Microchip. No licenses are con-
veyed, implicitly or otherwise, under any intellectual property
rights.
 2002 Microchip Technology Inc.
Trademarks

The Microchip name and logo, the Microchip logo, KEELOQ,
MPLAB, PIC, PICmicro, PICSTART and PRO MATE are
registered trademarks of Microchip Technology Incorporated
in the U.S.A. and other countries.

FilterLab, microID, MXDEV, MXLAB, PICMASTER, SEEVAL
and The Embedded Control Solutions Company are
registered trademarks of Microchip Technology Incorporated
in the U.S.A.

dsPIC, dsPICDEM.net, ECONOMONITOR, FanSense,
FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP,
ICEPIC, microPort, Migratable Memory, MPASM, MPLIB,
MPLINK, MPSIM, PICC, PICDEM, PICDEM.net, rfPIC, Select
Mode and Total Endurance are trademarks of Microchip
Technology Incorporated in the U.S.A. and other countries.

Serialized Quick Turn Programming (SQTP) is a service mark
of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2002, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

 Printed on recycled paper.
DS00235A - page 19

Microchip received QS-9000 quality system
certification for its worldwide headquarters,
design and wafer fabrication facilities in
Chandler and Tempe, Arizona in July 1999
and Mountain View, California in March 2002.
The Company’s quality system processes and
procedures are QS-9000 compliant for its
PICmicro® 8-bit MCUs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals,
non-volatile memory and analog products. In
addition, Microchip’s quality system for the
design and manufacture of development
systems is ISO 9001 certified.

DS00235A-page 20  2002 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200 Fax: 480-792-7277
Technical Support: 480-792-7627
Web Address: http://www.microchip.com
Rocky Mountain
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7966 Fax: 480-792-4338

Atlanta
500 Sugar Mill Road, Suite 200B
Atlanta, GA 30350
Tel: 770-640-0034 Fax: 770-640-0307
Boston
2 Lan Drive, Suite 120
Westford, MA 01886
Tel: 978-692-3848 Fax: 978-692-3821
Chicago
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071 Fax: 630-285-0075
Dallas
4570 Westgrove Drive, Suite 160
Addison, TX 75001
Tel: 972-818-7423 Fax: 972-818-2924
Detroit
Tri-Atria Office Building
32255 Northwestern Highway, Suite 190
Farmington Hills, MI 48334
Tel: 248-538-2250 Fax: 248-538-2260
Kokomo
2767 S. Albright Road
Kokomo, Indiana 46902
Tel: 765-864-8360 Fax: 765-864-8387
Los Angeles
18201 Von Karman, Suite 1090
Irvine, CA 92612
Tel: 949-263-1888 Fax: 949-263-1338
New York
150 Motor Parkway, Suite 202
Hauppauge, NY 11788
Tel: 631-273-5305 Fax: 631-273-5335
San Jose
Microchip Technology Inc.
2107 North First Street, Suite 590
San Jose, CA 95131
Tel: 408-436-7950 Fax: 408-436-7955
Toronto
6285 Northam Drive, Suite 108
Mississauga, Ontario L4V 1X5, Canada
Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC
Australia
Microchip Technology Australia Pty Ltd
Suite 22, 41 Rawson Street
Epping 2121, NSW
Australia
Tel: 61-2-9868-6733 Fax: 61-2-9868-6755
China - Beijing
Microchip Technology Consulting (Shanghai)
Co., Ltd., Beijing Liaison Office
Unit 915
Bei Hai Wan Tai Bldg.
No. 6 Chaoyangmen Beidajie
Beijing, 100027, No. China
Tel: 86-10-85282100 Fax: 86-10-85282104
China - Chengdu
Microchip Technology Consulting (Shanghai)
Co., Ltd., Chengdu Liaison Office
Rm. 2401, 24th Floor,
Ming Xing Financial Tower
No. 88 TIDU Street
Chengdu 610016, China
Tel: 86-28-86766200 Fax: 86-28-86766599
China - Fuzhou
Microchip Technology Consulting (Shanghai)
Co., Ltd., Fuzhou Liaison Office
Unit 28F, World Trade Plaza
No. 71 Wusi Road
Fuzhou 350001, China
Tel: 86-591-7503506 Fax: 86-591-7503521
China - Shanghai
Microchip Technology Consulting (Shanghai)
Co., Ltd.
Room 701, Bldg. B
Far East International Plaza
No. 317 Xian Xia Road
Shanghai, 200051
Tel: 86-21-6275-5700 Fax: 86-21-6275-5060
China - Shenzhen
Microchip Technology Consulting (Shanghai)
Co., Ltd., Shenzhen Liaison Office
Rm. 1315, 13/F, Shenzhen Kerry Centre,
Renminnan Lu
Shenzhen 518001, China
Tel: 86-755-82350361 Fax: 86-755-82366086
China - Hong Kong SAR
Microchip Technology Hongkong Ltd.
Unit 901-6, Tower 2, Metroplaza
223 Hing Fong Road
Kwai Fong, N.T., Hong Kong
Tel: 852-2401-1200 Fax: 852-2401-3431
India
Microchip Technology Inc.
India Liaison Office
Divyasree Chambers
1 Floor, Wing A (A3/A4)
No. 11, O’Shaugnessey Road
Bangalore, 560 025, India
Tel: 91-80-2290061 Fax: 91-80-2290062

Japan
Microchip Technology Japan K.K.
Benex S-1 6F
3-18-20, Shinyokohama
Kohoku-Ku, Yokohama-shi
Kanagawa, 222-0033, Japan
Tel: 81-45-471- 6166 Fax: 81-45-471-6122
Korea
Microchip Technology Korea
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea 135-882
Tel: 82-2-554-7200 Fax: 82-2-558-5934
Singapore
Microchip Technology Singapore Pte Ltd.
200 Middle Road
#07-02 Prime Centre
Singapore, 188980
Tel: 65-6334-8870 Fax: 65-6334-8850
Taiwan
Microchip Technology (Barbados) Inc.,
Taiwan Branch
11F-3, No. 207
Tung Hua North Road
Taipei, 105, Taiwan
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE
Austria
Microchip Technology Austria GmbH
Durisolstrasse 2
A-4600 Wels
Austria
Tel: 43-7242-2244-399
Fax: 43-7242-2244-393
Denmark
Microchip Technology Nordic ApS
Regus Business Centre
Lautrup hoj 1-3
Ballerup DK-2750 Denmark
Tel: 45 4420 9895 Fax: 45 4420 9910
France
Microchip Technology SARL
Parc d’Activite du Moulin de Massy
43 Rue du Saule Trapu
Batiment A - ler Etage
91300 Massy, France
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79
Germany
Microchip Technology GmbH
Steinheilstrasse 10
D-85737 Ismaning, Germany
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44
Italy
Microchip Technology SRL
Centro Direzionale Colleoni
Palazzo Taurus 1 V. Le Colleoni 1
20041 Agrate Brianza
Milan, Italy
Tel: 39-039-65791-1 Fax: 39-039-6899883
United Kingdom
Microchip Ltd.
505 Eskdale Road
Winnersh Triangle
Wokingham
Berkshire, England RG41 5TU
Tel: 44 118 921 5869 Fax: 44-118 921-5820

08/01/02

WORLDWIDE SALES AND SERVICE

	Introduction
	FIGURE 1: Basic LIN System

	Overview of the Driver
	The Transmit/Receive Daemon
	FIGURE 2: Simplified LIN Transceiver
	States and State Flags
	Status And Error Flags
	FIGURE 3: LIN Header Flow chart
	FIGURE 4: LIN Message Flow chart

	Count, ID, and Message

	The LIN Timekeeper Function
	Transmit and Receive Functions
	Hardware Initialization Function
	FIGURE 5: Transmit and Receive Function Flow

	Implementing the Driver
	Setup and Initialization
	EXAMPLE 1: Setup Example

	Setting Up Timing
	Setting Up and Using the Daemon
	EXAMPLE 2: Basic Polling Example
	EXAMPLE 3: USART Interrupt Polling Example
	EXAMPLE 4: Update via USART Interrupt Example
	EXAMPLE 5: Interbyte Space Example

	Using State Flags
	Sending and Receiving Frames
	EXAMPLE 6: Transmit Example

	Handling Error Flags
	EXAMPLE 7: Handling Errors

	Globals and Their Definitions
	TABLE 1: LIN Firmware Functions
	TABLE 2: LIN Firmware Registers
	TABLE 3: Flags Defined in the Firmware Registers

	Setting Up and Using the Firmware
	Setting Up the Project
	Using the Header Files
	Setting the Definitions

	Memory Usage
	References
	FIGURE 6: Project Setup (MPLAB 32)

	Appendix A: LIN Test Program (main.c)
	Appendix B: LIN Core Functions (lin_d.asm)
	Appendix C: C Header
	Appendix D: Assembly Definitions
	Appendix E: Assembly Header
	Appendix F: Source Code for this Application Note
	Worlwide Sales and Service

