
AN215
A Simple CAN Node Using the MCP2515 and PIC12C672
INTRODUCTION

This application note describes the design, development
and implementation of a smart, low-cost, stand-alone
Controller Area Network (CAN) node. It combines the
Microchip 8-pin PIC12C672 microcontroller and the
Microchip 18-pin MCP2515 Stand-Alone CAN controller.
This creates a fully autonomous CAN node, which
supports both “time-based” and “event driven” message
transmission.

The node is interrupt driven, capable of monitoring five
external inputs (two analog and three digital) and
automatically generating messages based upon their
value. The node also controls two digital outputs,
responding to message requests via the CAN network
and generating a repeating, time-based message.

The system supports a maximum CAN bus speed of
125 Kbits per second and both standard or extended
frames. The system is presented using standard
frames and some code changes would be required to
implement extended frames.

This application note focuses on the design and
development of the node from the system level. No
discussion of the nature of the analog signals is
presented and the digital inputs are simply switch
contacts, whose purpose is left for the reader to define.
This application note concentrates on the unique
requirements of implementing the CAN node functions
using an I/O limited microcontroller and a Stand-Alone
CAN protocol controller.

SYSTEM DESCRIPTION

Overview

Figure 1 shows the block diagram of the overall
system. There are two functional blocks. The first is the
Control Logic block. This function is performed by the
PIC12C672 microcontroller. The PIC12C672 was
chosen because of the low pin count and powerful
feature set, including an internal oscillator, on-board,
multi-channel, 8-bit Analog-to-Digital Converter (ADC),
multiple interrupt sources and low-power Sleep mode.
The second is the CAN interface block. This block is
comprised of the MCP2515 CAN controller and the
MCP2551 transceiver. The MCP2515 provides a full
CAN 2.0 implementation with message filtering, which
relieves the host microcontroller from having to perform
any CAN bus related overhead. This is a key feature
given the limited available code space of the
PIC12C672.

FIGURE 1: CAN NODE BLOCK
DIAGRAM

Author: Rick Stoneking,
Anadigics, Inc.

PIC12C672 MCP2515

Control Logic CAN Interface

MCP2551

CAN bus
 2010 Microchip Technology Inc. DS00215C-page 1

AN215
Communication between the Control Logic block and
the CAN interface block makes use of the MCP2515
device’s built-in support for the SPI protocol. The
PIC12C672 does not have a hardware SPI interface, so
the necessary functions are implemented in firmware.

Two external analog signals are tied directly to the
analog input pins of the PIC12C672. An A/D conver-
sion is performed automatically for the Analog
Channel 0 (AN0), based upon the internal timer setup,
and the value is automatically transmitted over the
CAN bus when the conversion is completed.

The node also utilizes the MCP2515 device’s multiple
filters to respond to four additional CAN Message Identi-
fiers received via the CAN bus. The masks and filters are
set to accept messages into Receive Buffer 1 only. The
identifiers are interpreted as one of the following,
depending upon which filter is matched:

• Read Analog Channel 1

- Perform A/D conversion for Analog
Channel 1 (AN1) and initiate transmission of
the value, back to the requesting node.

• Read Digital Inputs

- Read the value of the MCP2515 input pins and
transmit the value back to the requesting node.

• Update Digital Output 1

- Write the received value to the MCP2515
Digital Output 1.

• Update Digital Output 2

- Write the received value to the MCP2515
Digital Output 2.

Since only Receive Buffer 1 is to be used, in order to
take advantage of the greater number of filters
associated with that receive buffer, the Mask registers
for Receive Buffer 0 must all be set to a ‘1’. The filter
bits must then be set to match an unused message
identifier (typically all ‘0’ or all ‘1’).

Message Identifier Format

As presented, the system requires that the messages
intended for the node have a standard identifier, which
has a value of 0x3F0 to 0x3F3, with each of the four
filters configured to accept one of these messages. For
the messages that the node transmits back, it uses the
same identifier as the received message, with the
exception that the ID3 bit is set to a ‘1’. Therefore, when
the ‘Read Analog Channel 1’ message is received
(ID = 0x3F0), the node transmits the data back using a
message ID of 0x3F8. The time-based message for the
value of Analog Channel 0 is transmitted with an
identifier of 0x3FE. In the event of a system error being
detected, the system error message uses the identifier,
0x3FF. Table 1 summarizes the various transmit and
receive message identifiers used. All transmitted
messages use data byte 1 of the CAN message to hold
the data to be sent.

HARDWARE DESCRIPTION

Design/Performance Considerations

When designing a system, there are a number of
design considerations/trade-offs/limitations that must
be taken into account. Proper selection allows the
system to achieve optimal performance from the
available resources, and to determine if the desired
performance can be achieved. The overall
performance of the system is a function of several
things:

• The system clock rate

• The throughput of the SPI bus

• Interrupt latency

• External interrupt request frequency

System Clock

The PIC12C672 has only six available I/O pins, and all
of these are used, two for analog inputs and four (three
SPIs and one INT) to interface to the MCP2515. This
requires the system to take advantage of the internal RC
oscillator of the PIC12C672. The internal RC oscillator
provides a 4 MHz system clock to the microcontroller,
which translates to a 1 µs instruction cycle.

The instruction cycle time directly affects the achiev-
able speed of the SPI bus. This, in turn, determines the
interrupt latency time as the SPI communication makes
up the majority of the time required for the Interrupt
Service Routine (ISR).

SPI Bus

The standard SPI interface has been modified in this
application to use a common signal line for both Serial
In (SI) and Serial Out (SO) lines, isolated from each
other via a resistor. This method requires only three
I/O pins to implement the SPI interface, instead of the
usual four. Using this configuration does not support
the Full-Duplex mode of SPI communications, which is
not an issue in this application.

TABLE 1: MESSAGE IDENTIFIERS

ID Tx/Rx

3F0 Rx Read Analog Channel 1

3F1 Rx Read Digital Inputs

3F2 Rx Change Digital Output 1

3F3 Rx Change Digital Output 2

3F8 Tx Analog Channel 1 Value

3F9 Tx Current Values of Digital Inputs

3FA Tx 3F2 Command Acknowledgement

3FB Tx 3F3 Command Acknowledgement

3FE Tx Analog Channel 0 Value

3FF Tx System Error
DS00215C-page 2  2010 Microchip Technology Inc.

AN215
The system achieves an overall SPI bus rate of slightly
more than 80 kbps. The raw SPI clock rate averages
95 kbps. The clock low time is a fixed 5 µs, and the
clock high time is either 5 µs or 6 µs, depending upon
whether a ‘0’ or a ‘1’ is being sent/received, which gives
a worst case (sending the value 0xFF) of 90.9 kbps raw
clock rate. The overall effective speed achieved
includes the additional software overhead of
‘bit-banging’ the SPI protocol.

Interrupts

There are two interrupt sources in the system. The first
is the PIC12C672 Timer0 interrupt. This interrupt
occurs every 10.16 ms. The second interrupt source is
the INT pin of the PIC12C672. This pin is connected to
the INT output of the MCP2515. This interrupt occurs
any time a valid message is received or if the MCP2515
detects a CAN bus related error. This external interrupt
is completely asynchronous with respect to the rest of
the system.

Interrupt Latency

It is necessary to carefully consider the interrupt
latency requirements during the system design/
development phase. This system has two interrupt
sources: the internal timer interrupt, which occurs
approximately every 10 ms, and the external INT pin
interrupt, which is generated by the MCP2515 CAN
controller and may occur at any time. The latency time
for the timer ISR is essentially fixed. This parameter is
a function of the time it takes for the ADC to perform a
conversion on both channels, write the values to the
transmit buffer, and issue a Request to Send (RTS)
command to the MCP2515, via the SPI interface. This
takes approximately 428 µs to complete.

Digital Inputs and Outputs

The MCP2515 has three pins that can be configured as
general purpose inputs and two pins that can be
configured as digital outputs. Both of these are
implemented in this design. These are treated at their
simplest level within the scope of this application note.
The inputs as shown are connected to switch contacts
and the outputs to LED indicators. The MCP2515 inputs
have internal pull-up resistors and will read high when
the attached switch is open and low when it is closed.

The MCP2515 has two I/O pins (RX0BF and RX1BF)
that can be configured as general purpose outputs.
These pins are configured as outputs, and are
connected to LEDs to function as some type of
indicator lights, that are controlled via the CAN bus.

CAN Bus

The CAN bus is configured to run at 125 kbps. The
clock source for the MCP2515 is a standard, 8 MHz
crystal connected to the OSC1 and OSC2 inputs. The
CAN physical layer has been implemented using an
industry standard CAN transceiver chip (e.g., Microchip
MCP2551). This device supports CAN bus rates of up
to 1 Mbps and is more than adequate for the
application presented here.

FIRMWARE DESCRIPTION

The firmware is written in PIC® microcontroller (MCU)
assembly code. The relative simplicity and small size of
this application makes the assembly language more
than a suitable choice.

Figure 2 shows the top level flowchart for the overall
system operation. The PIC MCU, after going through
self initialization and initializing the MCP2515, goes to
Sleep and waits for an interrupt to occur. The following
sections provide more detailed discussion of the
operation of each of the major blocks in the firmware.
 2010 Microchip Technology Inc. DS00215C-page 3

AN215
FIGURE 2: NODE OPERATION

Initialize

and MCP2515

Sleep

System POR

Interrupt
Occurred?

Process Request

Error Interrupt?

Filter Match?

Read MCP2515
Interrupt Flags

Read MCP2515
Rx Filters

Timer
Interrupt?

Perform A/D
Conversion on

Write A/D Value
to MCP2515

Transmit Buffer

Send Request to
Send Command

to MCP2515

Clear Interrupt
Flags in

PIC12C672

Clear Interrupt
Flags in

PIC12C672 and
MCP2515

Error Handler
Routine

SysErr(InvMsg)

No

Yes

No

Yes No

Yes

No

Yes

AN0

 PIC® MCU
DS00215C-page 4  2010 Microchip Technology Inc.

AN215
PIC® MCU Initialization

Initialization of the PIC12C672 is straightforward.
There are three major functions that need to be
properly configured within the PIC12C672:

• General Purpose I/O (GPIO) pins

• Timer0 module

• A/D Converter module

In addition, the Configuration Word must also be
programmed to enable/disable code protection and
select the oscillator type.

GENERAL PURPOSE I/O PINS

The GPIO pins are the six I/O pins that are used to
interface the PIC12C672 to the MCP2515 and sample
the analog signals. The PIC MCU OPTION, TRIS and
INTCON registers are used to control the setup of the
GPIO pins. In this case, the OPTION register is
programmed to disable the internal pull-up resistors on
GP0/GP1/GP3. It also configures GP2 to generate an
interrupt on the negative going edge (to match the
MCP2515 device’s active low INT output). The TRIS
register, which controls whether each I/O pin is config-
ured as an input or an output, is configured to set GP0/
GP1/GP3 as inputs, and GP2 and GP5 as outputs.
With the exception of GP4, all of the GPIO pins will
remain in their initially configured state. GP4 will be
changed between Input and Output mode, depending
upon whether an SPI read or write operation is being
performed by the PIC12C672. The final step of
configuring the port pins is to program the INTCON
register to enable the interrupt-on-change feature for
GP2. This allows the MCP2515 to generate an interrupt
to the PIC12C672.

TIMER0 MODULE

The Timer0 module operation is controlled by the
OPTION register and the TMR0 register. The OPTION
register contains the control bits for the Timer0
prescaler, which is set to divide-by-256. The TMR0
register is the counting register for Timer0 and
generates an interrupt when it rolls over from 0xFF to
0x00. This register must be reloaded as part of the ISR
in order to correctly control the time period between
Timer0 interrupts. The target time period between
Timer0 messages was 10 ms. In order to approach that
target, it is necessary to determine the amount of time
required to complete the Timer0 ISR, since the time
between messages will be the sum of the Timer0 value
and the ISR execution time. The A/D conversion takes
approximately 19 µs for the SPI communication to write
the A/D result to the MCP2515 transmit buffer. Then,
the conversion sends the RTS command, which
requires approximately 409 µs to complete, for a total
of approximately 428 µs for the ISR to execute.
Subtracting the ISR execution time from the 10 ms
target, yields 9.572 ms. Given that the prescaler is con-
figured in Divide-by-256 mode, the closest value is

9.728 ms (256 µs  38). Adding the 428 µs for the ISR
execution gives a total time between messages of
10.156 ms, which is within 2% of the target.

ANALOG-TO-DIGITAL CONVERTER MODULE

The Timer0 module is configured to use the FOSC/8
option for the conversion clock, which gives a TAD value
of 2 µs and an overall conversion time of 19 µs
(TAD  9.5). This is more than fast enough compared to
the amount of time spent on SPI communications
during the ISR.

MCP2515 Initialization

Before the system can communicate on the CAN bus,
the MCP2515 must be properly configured. The
configuration of the MCP2515 is accomplished by
loading the various control registers with the desired
values. The firmware is written to take advantage of the
table read functionality of the PIC MCU. The values for
each register are stored at the top of the PIC ROM
memory. During the MCP2515 initialization, the values
are sequentially read by the table read function and
then written to the MCP2515, via the SPI interface.

CAN BUS TIMING

The CAN bit rate configuration is controlled by the
CNF1, CNF2 and CNF3 registers. The details behind
determining what is the ‘best’ configuration of these
registers, for a given CAN bus system, is beyond the
scope of this application note. The MCP2515 is
configured to operate at a CAN bus rate of 125 kbps
using the following parameters:

• 8 MHz Oscillator

• Baud rate prescaler equivalent to divide-by-4

• 8 TQ per bit Time

• Sync Segment: 1 TQ

• Prop Segment: 1 TQ

• Phase Segment 1: 3 TQ

• Phase Segment 2: 3 TQ

• Sync Jump Width: 1 TQ

Refer to the “MCP2515 Stand-Alone CAN Controller
with SPI Interface Data Sheet” (DS21291) for more
detailed information regarding the setting of these
parameters.

In order to make use of the MCP2515 device’s general
purpose input and output pins, it is necessary to configure
the TXRTSCTRL and BFPCTRL registers, respectively.

TXTRSCTRL

To enable the use of the TXnRTS pins as general
purpose inputs, the mode control bit, <BnRTSM>, is
cleared. This register also holds the current state of
each of the input pins in bits 3:5, which can be read by
the microcontroller at any time via the SPI interface.
 2010 Microchip Technology Inc. DS00215C-page 5

AN215
BFPCTRL

To use the RXnBF pins of the MCP2515 as output pins,
it is necessary to functionally enable the pin by setting
the BnBFE bits and then to select the general purpose
output mode of operation by clearing the BnBFM bits.
Once the register has been configured, it is also used
to control the state of the output pins by toggling the
BnBFS bits. This is accomplished via the MCP2515
device’s built-in Bit Modify Command which allows only
the desired bit to be modified.

CANINTE

The MCP2515 device’s CANINTE register controls the
individual interrupt source enables. For this application
only, the error interrupt (ERRIE) and Receive Buffer 1
interrupts (RX1IE) are enabled. In this configuration,
the MCP2515 will generate an interrupt when a valid
message is accepted into the receive buffer, or any of
the various error conditions in the EFLG register occur.

Interrupt Service Routine

When an interrupt occurs, the PIC MCU begins
executing the ISR routine. Figure 3 shows the flowchart
for the ISR. The ISR first determines the source of the
interrupt, Timer0 or external INT pin and then branches
to the appropriate code to process the interrupt.
Figure 4 and Figure 5 show the program flow for the
Timer0 and CAN message received interrupts,
respectively.

TIMER0 INTERRUPT

When the Timer0 interrupt occurs (see Figure 4), the
PIC MCU initiates an A/D conversion on AN0, constantly
polling the ADDONE bit until the conversion is complete.
Once the conversion is complete, the ADRES value is
loaded into the MCP2515 Transmit Buffer 0, Data
Byte 0, and an RTS command is issued for Buffer 0. The
TMR0 register is then reloaded and the interrupt flag is
cleared. The interrupts are re-enabled by the execution
of the RETIE command at the end of the ISR.

FIGURE 3: INTERRUPT SERVICE ROUTINE (ISR) FLOWCHART

Msg Rx INT?

CAN MsgYes

CAN bus
SysErr (CANErr)Yes

SysErr(Invalid INT)

Read MCP2515
CANINTF Register

INT Pin Timer0
Interrupt?

SysErr (Invalid INT)

Timer0 Time-out

ISR

Interrupt
Occurred?

Received

Error?

Yes No No

Yes

No

No
DS00215C-page 6  2010 Microchip Technology Inc.

AN215
MESSAGE RECEIVED INTERRUPT

When an interrupt is generated by the MCP2515, the
PIC12C672 reads the CANINTF register of the
MCP2515 to determine the source of the interrupt. If a
valid message has been received, then the MsgRcvd
subroutine is executed (see Figure 5), and if an error
has occurred, the error handling subroutine is executed
(see Figure 6).

When a valid message is received, the FILHIT<2:0>
bits of the RXB1CTRL register are read to determine
which message has been received.

If the match occurred on Filter 2, then the PIC MCU
initiates an A/D conversion on AN1, waits for the
conversion to complete, loads the ADRES register
value into the MCP2515 Transmit Buffer 0 and Data
Byte 0, and sends the RTS command.

If the match occurred on Filter 3, then the PIC MCU
reads the TXRTSCTRL register for the value of the
three input pins, loads this value into the MCP2515
transmit buffer and sends the RTS command.

A match on Filter 4 or Filter 5 causes the PIC MCU to
read the first byte of the received message and write it
to the appropriate output pin via the MCP2515
BFPCTRL register.

FIGURE 4: TIMER0 ISR FLOW

Start Conversion on AN0

Timer0 Time-out

Interrupt
Occurred?

Store AN0 Value into RAM
Variable

Load AN0 Value into
MCP2515 TxMsg Buffer

Send RTS Command to
MCP2515

Clear Interrupt Flag

Reload Timer0

Re-enable Interrupts

Exit ISR

No

Yes
 2010 Microchip Technology Inc. DS00215C-page 7

AN215
FIGURE 5: CAN MSG RECEIVED FLOW

Read MCP2515
Rx Filter

INT Pin

Filter Match = 2?

Read MCP2515
Rx Buffer for Digital

Output 1 Data

Update MCP2515
Digital Output

Control Register

Read MCP2515
Rx Buffer for Digital

Output 2 data

Clear Interrupt
Flags in

PIC12C672 and
MCP2515

Perform A/D
Conversion on AN1

SysErr(InvMsg)

No

Yes

No

Yes

No

Yes

No

Yes

(CAN Msg Rx)

Filter Match = 3?

Filter Match = 4?

Filter Match = 5?

Exit ISR

Write A/D Value to
MCP2515

Transmit Buffer

Sent Request to
Send Command to

MCP2515

Read Value of
Three MCP2515

Digital Inputs

Sent Request to
Send Command to

MCP2515
DS00215C-page 8  2010 Microchip Technology Inc.

AN215
FIGURE 6: ERROR HANDLER FLOW

Read ERRIF
Register

Error Handler

RxB1
Overflow?

No

Yes

NoYes

No

Yes

No

Yes

Error Warning
Flag Set?

Rx Error
Passive Flag

Tx Error
Passive Flag

Done

Send Error Msg
0x3FF, Error Code

0x11

Rx Warning
Flag Set?

Send Error Msg
0x3FF, Error Code

0x01

Send Error Msg
0x3FF, Error
Code 0x02

Send Error Msg
0x3FF, Error Code

0x03Set

Set

Bus-Off Flag
Set?

Send Error Msg
0x3FF, Error Code

0x13

Send Error Msg
0x3FF, Error Code

0x04

1st Bus-Off
Occurrence?

Idle PICmicro®

Set Bus-Off Flag
and Re-Initialize

MCP2515

Send Error Msg
0x3FF, Error Code

0x12

Message
Transmitted
Successfully

No

No

Yes

Yes

No

Yes

Yes

No

MCU must Reset
System Node
 2010 Microchip Technology Inc. DS00215C-page 9

AN215
Error Handling

The system also provides for error detection for a
number of different types of errors that may occur,
including CAN bus errors detected by the MCP2515, as
well as invalid system state errors (see Figure 6).
When any of these errors are detected, the system
transmits a message with the ID of 0x3FF. This
message contains one data byte which is a code used
to represent the type of error that occurred. Refer to
Appendix B: “Source Code” for a listing of the
various errors and the associated code. The one
exception to this, is the Bus-Off condition that the
MCP2515 may enter if a large number of transmit
errors are detected. If the Bus-Off condition is detected,
the PIC MCU performs a re-initialization of the
MCP2515 and then attempts to transmit the error
message (ID = 0x3FF) with an error code of 0x12. After
initiating a request to send for the error message, the
PIC MCU checks to ensure that the message was
transmitted successfully. If it was successfully transmit-
ted, the PIC MCU sets an internal flag to indicate that a
Bus-Off condition occurred and then resumes normal
operation. If the error message fails to transmit cor-
rectly, or if the Bus-Off condition is detected a second
time, the PIC MCU automatically enters an Idle loop
and remains there until a system Reset occurs via
power-on.

SUMMARY

This application note demonstrates that a smart CAN
node can be implemented with low-cost, low pin count
devices, such as the PIC12C672 microcontroller and
MCP2515 Stand-Alone CAN controller, providing a
very flexible and effective solution for a variety of
applications.

REFERENCE DOCUMENTS

For additional information, the reader is directed to the
following documents:

• PIC12C67X 8-Pin, 8-Bit CMOS Microcontroller
with A/D Converter and EEPROM Data Memory
Data Sheet, DS30561; Microchip Technology, Inc.

• MCP2515 Stand Alone CAN Controller with SPI
Interface Data Sheet, DS21801; Microchip
Technology, Inc.

• AN713, Controller Area Network (CAN) Basics,
DS00713; Microchip Technology, Inc.

• MCP2551 High-Speed CAN Transceiver Data
Sheet, DS21667; Microchip Technology, Inc.
DS00215C-page 10  2010 Microchip Technology Inc.

AN215
APPENDIX A: SCHEMATIC

TX
CA

N
1

RX
CA

N
2

CL
KO

U
T

3

TX
0R

TS
4

TX
1R

TS
5

TX
2R

TS
6

O
SC

2
7

O
SC

1
8

Vs
s

9
RX

1B
F

10
RX

0B
F

11
IN

T
12

SC
K

13
SI

14
SO

15
CS

16
RE

SE
T

1718
U

2 M
C
P2
51

8

G
P0

7

G
P1

6

G
P2

5
G

P3
4

G
P4

3
G

P5
21

U
1 PI
C
12
C
67
X

R1 4.
7K

VD
D

R2 10
K

C1
C2

Rs
8

CA
N

H
7

CA
N

L
6

RE
F

5
RX

D
4

Vc
c

3

G
N

D
2

TX
D

1

U
3 M
C
P2
55
1

Vs
s

Y1
8

M
H

z

C3 30
 p

F

C4 30
 p

F

Vs
s

SW
1

SW
2

SW
3

Vs
s

An
al

og
 In

pu
t 2

An
al

og
 In

pu
t 1

D
ig

ita
l O

ut
pu

t 1

D
ig

ita
l O

ut
pu

t 2

Vs
s

162738495
CO

N
1

CA
N

 B
U

S

VC
C

VD
D

VS
S

0.
1
�F

VC
C

0.
1
�F

V S
S

VD
D

VS
S

 2010 Microchip Technology Inc. DS00215C-page 11

AN215

Software License Agreement
The software supplied herewith by Microchip Technology Incorporated (the “Company”) is intended and supplied to you, the
Company’s customer, for use solely and exclusively with products manufactured by the Company.
The software is owned by the Company and/or its supplier, and is protected under applicable copyright laws. All rights are reserved.
Any use in violation of the foregoing restrictions may subject the user to criminal sanctions under applicable laws, as well as to civil
liability for the breach of the terms and conditions of this license.
THIS SOFTWARE IS PROVIDED IN AN “AS IS” CONDITION. NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATU-
TORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
APPENDIX B: SOURCE CODE

; ***
; * 8pincan.asm *
; * Revision 1.0 September 2000 *
; * Developed by Rick Stoneking *
; * Developed using MPLAB V4.12 and MPASM V2.3 *
; * *
; * This code demonstrates how a very low cost *
; * CAN node can be implemented using a *
; * Microchip PIC12C672 8 pin microcontroller *
; * and a Microchip MCP2515 Stand Alone CAN *
; * controller. *
; * *
; ***

; ***
; * Setup the MPASM assembler options *
; ***

 LIST p=12C672

; ***
; * Include the standard PIC12C672 include file *
; * and the custom MCP2515 support files *
; ***

#include <p12c672.inc>
#include “MCP2515.inc”

; ***
; * Setup the PIC12C672 configuration Word *
; ***

 __CONFIG _CP_OFF & _WDT_OFF & _MCLRE_OFF & _INTRC_OSC

; ***
; * Constants definitions *
; ***
TMR_COUNT EQU 0xD9 ; Timer Reload value:
 ; 0xD9 = 38 * 256 * 1us = 9.728ms

; ***
; * Variable definitions *
; ***
temp EQU 0x20
temp1 EQU 0x21
byte_cnt EQU 0x22
addr EQU 0x23
tmp_data EQU 0x24
DS00215C-page 12  2010 Microchip Technology Inc.

AN215
; ***
; * PIC Initialization *
; ***

 org 0x00
 goto start ; Jump around ISR vector

; ***
; * Interrupt service vector initialization *
; ***
 org 0x04
 goto isr ; Point ISR vector to the ISR handler

; ***
; * Start of Main Code *
; ***
start
 bsf STATUS,RP0 ; select bank1
 movlw 0x87 ; Disable internal pullups
 ; Interrupt on negative going edge on GP2
 ; Prescaler = 1:256

 movwf OPTION_REG ; Load the OPTION register

 movlw 0x0B ; --001011
 movwf TRISIO ; set all ports output except GP3/1/0

 bsf INTCON,GPIE ; enable GPIO Interrupt on change

 movlw 0x04 ; GP4&2 = DIO, GP0&1= ADC, Vref=VDD
 movwf ADCON1 ;

 movlw 0x04 ; GPIE set - interrupt on pin change
 ; GIE cleared - global interrupts disabled
 bcf STATUS,RP0 ; select bank0

; Initialize the A/D converter

 movlw 0x40 ; AN0 conversion clock = Fosc/8 (TAD=2us)
 movwf ADCON0 ; Turn off A/D module

; Initialize Timer0

 movlw TMR_COUNT ; Initialize Timer0
 movwf TMR0 ; Timer0 interrupt every 9.728mS

; Set up initial conditions for the SPI

 movlw 0x24 ; CS high, INT high, data/clk low
 movwf GPIO ; write to port

 bsf GPIO,cs_pin ; set CS pin high
 bcf GPIO,sck_pin ; clear the sck pin
 bcf GPIO,sdo_pin ; clear the sdo pin

 call MCP2515_init ; initialize the MCP2515
 2010 Microchip Technology Inc. DS00215C-page 13

AN215
; ***
; * Main wait loop *
; ***

wait ; wait for interrupt to occur
 sleep ; sleep while not processing a message
 nop ; NOP executed when waking up from sleep
 nop ; NOP executed after ISR completes
 goto wait ; go back to sleep and wait

; ***
; * MCP2515 Initialization *
; ***

MCP2515_init
 movlw CAN_WRITE ; write command
 bcf GPIO,cs_pin ; lower CS to enable MCP2515
 call spi_send ; send command
 movlw CANCTRL ; select CANCTRL register address
 call spi_send ; and send it
 movlw REQOP_CONFIG ; Request Config Mode
 call spi_send ; send data
 bsf GPIO,cs_pin ; raise CS to terminate operation
 bcf GPIO,sck_pin ; set clock and
 bcf GPIO,sdo_pin ; data pins low

 movlw 0x71 ; number of addresses to be written
 movwf byte_cnt ; load into byte counter
 movlw CAN_WRITE ; write command
 bcf GPIO,cs_pin ; enable MCP2515
 call spi_send ; send command
 movlw 0x00 ; start writing at address 0x00
 call spi_send ; send address
 movlw 0x01
 movwf addr
seq_wr ; sequential write loop
 movlw HIGH reg_init_tbl ; get high byte of reg_int_tbl address
 movwf PCLATH ; load into high byte of PC counter
 movfw addr ; write into jump table pointer (addr)
 decf addr, 1 ;
 movf addr, W ;
 call reg_init_tbl ; fetch byte to be written
 call spi_send ; send it to MCP2515
 incf addr,1 ; increment the jump table pointer
 incf addr,1 ; twice to point to the next byte
 decfsz byte_cnt,1 ; decrement the byte counter and test for zero
 goto seq_wr ; not done so repeat
 bsf GPIO,cs_pin ; raise CS to terminate operation

 movlw CAN_WRITE ; write command
 bcf GPIO,cs_pin ; enable MCP2515
 call spi_send
 movlw CANCTRL ; write to CANCTRL register
 call spi_send
 movlw REQOP_NORMAL ; Normal Mode
 call spi_send
 bsf GPIO,cs_pin ; terminate operation

 movlw 0x00 ; clear byte_cnt variable
 movwf byte_cnt

 bsf INTCON,GIE ; Enable Interrupts
 return
DS00215C-page 14  2010 Microchip Technology Inc.

AN215
; ***
; * Interrupt Service Routine *
; * The ISR determines whether a TMR0 interrupt or an external INT *
; * pin interrupt occurs and then proceeds accordingly *
; ***
isr
 bcf STATUS,RP1 ; select bank 0/1

 btfss INTCON,T0IE ; Timer0 interrupt?
 goto intpin ; No, so jump to external interrupt pin ISR

 movlw TMR_COUNT ; reload
 movwf TMR0 ; Timer0

 bcf ADCON0,CHS0 ; select ADC channel 0
 call adc_cnv ; go do the conversion

 bcf GPIO,cs_pin ; enable MCP2515

 movlw CAN_WRITE ; send write command to MCP2515
 call spi_send ;

 movlw TXB0D0 ; set write address to TXB0D0
 call spi_send ;

 movfw ADRES ; write ADC conversion result
 call spi_send ;
 bsf GPIO,cs_pin ; terminate SPI operation

 bcf GPIO,cs_pin ; enable MCP2515
 movlw CAN_RTS_TXB0 ; Send RTS command for TXB0
 call spi_send
 bsf GPIO,cs_pin ; terminate operation

 bcf INTCON, T0IF ; clear TMR0 interrupt flag
 return ; exit isr

intpin ; Message received interrupt

 movlw CAN_READ
 bcf GPIO,cs_pin ; lower CS line
 call spi_send ; send read command to MCP2515

 ; Check for RXB1IF flag by reading
 movlw CANINTF ; the interrupt flag register (CANINTF)
 call spi_send
 call spi_rx ; read the data from the MCP2515
 bsf GPIO,cs_pin ; terminate SPI read

 movwf tmp_data ; save CANINTF value

 btfsc tmp_data,1 ; test CANINTF for RX1IF
 call msg_rcvd ; if RX1IF set go process message

 btfss tmp_data,5 ; test CANINTF for ERRIF
 call can_err ; if ERRIF set go process CAN error

 movlw B’11011101’ ; mask off RXB1IF and ERRIF bits
 andwf tmp_data,1 ; of CANINTF
 btfsc STATUS,Z ; if any bit set process invalid interrupt

 call sys_err ; Not an error interrupt so initiate an invalid interrupt
 ; occurred message.

 bcf INTCON,GPIF ; reset interrupt flag
 retfie ; return to main routine
 2010 Microchip Technology Inc. DS00215C-page 15

AN215
; ***
; * CAN Error routine *
; * This routine reads the value of the MCP2515 Error flag (EFLG) *
; * register, writes it to byte 0 of TXB1, and then transmits the *
; * TXB1 message *
; ***
can_err

 movlw CAN_READ ; SPI Read operation
 bcf GPIO,cs_pin ; enable MCP2515
 call spi_send ;
 movlw EFLG ; EFLG register to be read
 call spi_send ;
 call spi_rx ; read the data
 bsf GPIO,cs_pin ; terminate SPI operation
 movwf tmp_data ; save the value of EFLG register

 movlw CAN_WRITE ; now write to MCP2515
 bcf GPIO,cs_pin ;
 call spi_send ;
 movlw TXB1D0 ; write to data byte 0 of TXB1
 call spi_send ;
 movfw tmp_data ; write EFLG register contents
 call spi_send ;
 bsf GPIO,cs_pin ; terminate SPI operation

 movlw CAN_RTS_TXB1 ; send request to send
 bcf GPIO,cs_pin ; for transmit buffer 1
 call spi_send
 bsf GPIO,cs_pin
 ; exit isr and re-enable interrupts
 retfie

; ***
; * System Error Handler Routine *
; * This routines transmits the TXB2 message to indicate that a *
; * unidentifiable system error has occurred. *
; ***
sys_err
 movlw CAN_RTS_TXB2 ; send request to send
 bcf GPIO,cs_pin ; for transmit buffer 2
 call spi_send ; when a system error occurs
 bsf GPIO,cs_pin

 retfie

; ***
; * CAN Msg Received Routine *
; * This routine is called when a message has been received into *
; * TXB0 of the MCP2515. This routine reads the filter bits to *
; * determine the type of message received and then initiates the *
; * appropriate response. *
; ***
msg_rcvd
 movlw CAN_READ ; SPI read command
 bcf GPIO,cs_pin ; enable MCP2515
 call spi_send

 movlw RXB0CTRL ; Read buffer 0 control register
 call spi_send
 call spi_rx
 bsf GPIO,cs_pin ; terminate function
DS00215C-page 16  2010 Microchip Technology Inc.

AN215
 andlw B’00000111’ ; mask off all but the FILHIT bits
 movwf temp ; store value in temp

 movlw 0x01 ;
 subwf temp,1
 btfsc STATUS,Z ; filter 1 match?
 goto filter1

 movlw 0x02
 subwf temp,1
 btfsc STATUS,Z ; filter 2 match
 goto filter2

 movlw 0x03
 subwf temp,1
 btfsc STATUS,Z ; filter 3 match
 goto filter3

 movlw 0x04
 subwf temp,1
 btfsc STATUS,Z ; filter 4 match
 goto filter4

filter1
 call wrt_txb0sidh ; load the transmit buffer SIDH register

 bsf ADCON0,CHS0 ; select ADC channel 1
 call adc_cnv ; go do the conversion

 bcf GPIO,cs_pin ; enable MCP2515
 movlw CAN_WRITE ; send write command to MCP2515
 call spi_send ;
 movlw TXB0D0 ; set write address to TXB0D0
 call spi_send ;
 movfw ADRES ; write ADC conversion result
 call spi_send ;
 bsf GPIO,cs_pin ; terminate SPI operation

 goto filter_done

filter2
 call wrt_txb0sidh ; load the transmit buffer SIDH register

 bcf GPIO,cs_pin ; enable MCP2515
 movlw CAN_READ ; send read command to MCP2515
 call spi_send ;
 movlw TXRTSCTRL ; set read address to TXRTSCTRL
 call spi_send ;
 call spi_rx ; read data
 bsf GPIO,cs_pin

 bcf GPIO,cs_pin
 movlw CAN_WRITE ; write TXTRTSCTRL value
 call spi_send ; to data byte zero of
 movlw TXB0D0 ; transmit buffer zero
 call spi_send ;
 bsf GPIO,cs_pin ; terminate SPI operation

 goto filter_done

filter3
 call wrt_txb0sidh ; load the transmit buffer SIDH register

 movlw CAN_READ ; Read contents of receive buffer zero
 bcf GPIO,cs_pin ; byte zero to get value to write to
 2010 Microchip Technology Inc. DS00215C-page 17

AN215
 call spi_send ; GP output pin of MCP2515
 movlw RXB1D0 ;
 call spi_send
 call spi_rx
 bsf GPIO,cs_pin
 movwf tmp_data ; store value in tmp_data

 movlw CAN_BIT_MODIFY ; use bit modify command to
 bcf GPIO,cs_pin ; set/reset the B0BFS bit of BFPCTRL register
 call spi_send
 movlw BFPCTRL
 call spi_send
 movlw B0BFS
 call spi_send

 movlw 0xFF ; assume that B0BFS is to be set
 btfss tmp_data,0 ; test the value received in message and if it is 0
 movlw 0x00 ; load w register to reset bit in BFPCTRL register

 call spi_send
 bsf GPIO,cs_pin

 goto filter_done

filter4
 call wrt_txb0sidh ; load the transmit buffer SIDH register

 movlw CAN_READ ; Read contents of receive buffer zero
 bcf GPIO,cs_pin ; byte zero to get value to write to
 call spi_send ; GP output pin of MCP2515
 movlw RXB1D0 ;
 call spi_send
 call spi_rx
 bsf GPIO,cs_pin
 movwf tmp_data ; store value in tmp_data

 movlw CAN_BIT_MODIFY ; use bit modify command to
 bcf GPIO,cs_pin ; set/reset the B0BFS bit of BFPCTRL register
 call spi_send
 movlw BFPCTRL
 call spi_send
 movlw B1BFS
 call spi_send

 movlw 0xFF ; assume that B1BFS is to be set
 btfss tmp_data,0 ; test the value received in message and if it is 0
 movlw 0x00 ; load w register to reset bit in BFPCTRL register

 call spi_send
 bsf GPIO,cs_pin

filter_done
 movlw CAN_RTS_TXB0 ; last step is to send the
 bcf GPIO,cs_pin ; request to send command for
 call spi_send ; transmit buffer zero
 bsf GPIO,cs_pin

 return
DS00215C-page 18  2010 Microchip Technology Inc.

AN215
; ***
; * write TXB0SIDH *
; * This routine reads the SIDH register from the received message *
; * and then sets the SID3 bit and writes the new value to the TX *
; * buffer. *
; ***
wrt_txb0sidh
 movlw CAN_READ ; SPI read command
 bcf GPIO,cs_pin ; enable MCP2515
 call spi_send
 movlw RXB0SIDH ; Read received SIDH register
 call spi_send
 call spi_rx
 bsf GPIO,cs_pin ; terminate function

 movwf tmp_data ; store SIDH value in data

 bcf GPIO,cs_pin
 movlw CAN_WRITE
 call spi_send
 movlw TXB0SIDH ; write to the SIDH register
 call spi_send ;
 movfw tmp_data ; retrieve SIDH value of received message
 bsf W,0 ; set bit SID3 high
 call spi_send ;
 bsf GPIO,cs_pin
 return

; ***
; * Analog to Digital Conversion Routine *
; * This routine initiates the A/D conversion. The ADC channel *
; * select bits (CHS1:0) have to be set prior to this routine being *
; * called. The routine waits for the conversion to complete *
; * before returning to the calling function. *
; ***
adc_cnv
 bsf ADCON0,GO
adc_busy
 btfsc ADCON0,GO_DONE ; wait for ADC to complete
 goto adc_busy

 movlw CAN_WRITE ; SPI write command
 bcf GPIO,cs_pin ; lower CS line
 call spi_send ; send write command to MCP2515
 movlw TXB0D0 ; data being written to data byte zero of buff 0
 call spi_send ;
 movf ADRES,0 ; Move ADC value to W register
 call spi_send ; send to MCP2515
 bsf GPIO,cs_pin ; terminate SPI command
 return

; **
; * Include the custom three wire SPI support file *
; **

#include “spi.inc” ; SPI routines
 2010 Microchip Technology Inc. DS00215C-page 19

AN215
; ***
; * MCP2515 register initialization table *
; * Store at the end of ROM memory *
; * Note that all addresses are initialized to simplify the *
; * initialization code. *
; ***

 org 0x0700 ; Initialization table address
reg_init_tbl
 addwf PCL, 1 ; Register Addr
 ; --------- ----
 retlw 0xff ; RXF0SIDH 0x00
 retlw 0xff ; RXF0SIDL 0x01
 retlw 0xff ; RXF0EID8 0x02
 retlw 0xff ; RXF0EID0 0x03
 retlw 0xff ; RXF1SIDH 0x04
 retlw 0xff ; RXF1SIDL 0x05
 retlw 0xff ; RXF1EID8 0x06
 retlw 0xff ; RXF1EID0 0x07
 retlw 0x7e ; RXF2SIDH 0x08 Filter 2 matches 0x3f0
 retlw 0x00 ; RXF2SIDL 0x09
 retlw 0xff ; RXF2EID8 0x0A
 retlw 0xff ; RXF2EID0 0x0B
 retlw 0x3c ; BFPCTRL 0x0C BFP pins as digital outputs, initial
 ; state hi
 retlw 0x00 ; TXRTSCTRL 0x0D TXRTS pins as digital inputs
 retlw 0x80 ; CANSTAT 0x0E
 retlw 0x80 ; CANCTRL 0x0F

 retlw 0x7e ; RXF3SIDH 0x10 Filter 3 matches 0x3f1
 retlw 0x20 ; RXF3SIDL 0x11
 retlw 0xff ; RXF3EID8 0x12
 retlw 0xff ; RXF3EID0 0x13
 retlw 0x7e ; RXF4SIDH 0x14 Filter 4 matches 0x3f2
 retlw 0x40 ; RXF4SIDL 0x15
 retlw 0xff ; RXF4EID8 0x16
 retlw 0xff ; RXF4EID0 0x17
 retlw 0x7e ; RXF5SIDH 0x18 Filter 5 matches 0x3f3
 retlw 0x50 ; RXF5SIDL 0x19
 retlw 0xff ; RXF5EID8 0x1A
 retlw 0xff ; RXF5EID0 0x1B
 retlw 0x00 ; TEC 0x1C
 retlw 0x00 ; REC 0x1D
 retlw 0x80 ; CANSTAT 0x1E
 retlw 0x80 ; CANCTRL 0x1F

 retlw 0xff ; RXM0SIDH 0x20 Enable all mask bits so that no msg’s
 retlw 0xff ; RXM0SIDL 0x21 are received into RXB0
 retlw 0xff ; RXM0EID8 0x22
 retlw 0xff ; RXM0EID0 0x23
 retlw 0x7e ; RXM1SIDH 0x24 Set RXM1 to match msg ID’s of 0x3f0
 ; to 0x3ff
 retlw 0x00 ; RXM1SIDL 0x25
 retlw 0x00 ; RXM1EID8 0x26
 retlw 0x00 ; RXM1EID0 0x27
 retlw 0x02 ; CNF3 0x28 PHSEG2 = 3TQ
 retlw 0x90 ; CNF2 0x29 PHSEG1 = 3TQ, PRSEG = 1TQ
 retlw 0x03 ; CNF1 0x2A SJW = 1TQ, BRP set to 4
 retlw 0x22 ; CANINTE 0x2B MERRIE and RX1IE enabled
 retlw 0x00 ; CANINTF 0x2C
 retlw 0x00 ; EFLG 0x2D
 retlw 0x80 ; CANSTAT 0x2E
 retlw 0x80 ; CANCTRL 0x2F

 retlw 0x03 ; TXB0CTRL 0x30 Highest priority
DS00215C-page 20  2010 Microchip Technology Inc.

AN215
 retlw 0x7e ; TXB0SIDH 0x31
 retlw 0x00 ; TXB0SIDL 0x32
 retlw 0x00 ; TXB0EID8 0x33
 retlw 0x00 ; TXB0EID0 0x34
 retlw 0x01 ; TXB0DLC 0x35
 retlw 0x00 ; TXB0DB0 0x36
 retlw 0x00 ; TXB0DB1 0x37
 retlw 0x00 ; TXB0DB2 0x38
 retlw 0x00 ; TXB0DB3 0x39
 retlw 0x00 ; TXB0DB4 0x3A
 retlw 0x00 ; TXB0DB5 0x3B
 retlw 0x00 ; TXB0DB6 0x3C
 retlw 0x00 ; TXB0DB7 0x3D
 retlw 0x80 ; CANSTAT 0x3E
 retlw 0x80 ; CANCTRL 0x3F

 retlw 0x03 ; TXB1CTRL 0x40 Highest priority
 retlw 0x7e ; TXB1SIDH 0x41
 retlw 0xe0 ; TXB1SIDL 0x42
 retlw 0x00 ; TXB1EID8 0x43
 retlw 0x00 ; TXB1EID0 0x44
 retlw 0x01 ; TXB1DLC 0x45
 retlw 0x00 ; TXB1DB0 0x46
 retlw 0x00 ; TXB1DB1 0x47
 retlw 0x00 ; TXB1DB2 0x48
 retlw 0x00 ; TXB1DB3 0x49
 retlw 0x00 ; TXB1DB4 0x4A
 retlw 0x00 ; TXB1DB5 0x4B
 retlw 0x00 ; TXB1DB6 0x4C
 retlw 0x00 ; TXB1DB7 0x4D
 retlw 0x80 ; CANSTAT 0x4E
 retlw 0x80 ; CANCTRL 0x4F

 retlw 0x03 ; TXB2CTRL 0x50
 retlw 0x7e ; TXB2SIDH 0x51
 retlw 0xe0 ; TXB2SIDL 0x52
 retlw 0x00 ; TXB2EID8 0x53
 retlw 0x00 ; TXB2EID0 0x54
 retlw 0x00 ; TXB2DLC 0x55
 retlw 0x00 ; TXB2DB0 0x56
 retlw 0x00 ; TXB2DB1 0x57
 retlw 0x00 ; TXB2DB2 0x58
 retlw 0x00 ; TXB2DB3 0x59
 retlw 0x00 ; TXB2DB4 0x5A
 retlw 0x00 ; TXB2DB5 0x5B
 retlw 0x00 ; TXB2DB6 0x5C
 retlw 0x00 ; TXB2DB7 0x5D
 retlw 0x80 ; CANSTAT 0x5E
 retlw 0x80 ; CANCTRL 0x5F

 retlw 0x20 ; RXB0CTRL 0x60 Receive only Standard Id’s that match
 ; Masks/Filters
 retlw 0x00 ; RXB0SIDH 0x61
 retlw 0x00 ; RXB0SIDL 0x62
 retlw 0x00 ; RXB0EID8 0x63
 retlw 0x00 ; RXB0EID0 0x64
 retlw 0x00 ; RXB0DLC 0x65
 retlw 0x00 ; RXB0DB0 0x66
 retlw 0x00 ; RXB0DB1 0x67
 retlw 0x00 ; RXB0DB2 0x68
 retlw 0x00 ; RXB0DB3 0x69
 retlw 0x00 ; RXB0DB4 0x6A
 retlw 0x00 ; RXB0DB5 0x6B
 retlw 0x00 ; RXB0DB6 0x6C
 retlw 0x00 ; RXB0DB7 0x6D
 2010 Microchip Technology Inc. DS00215C-page 21

AN215
 retlw 0x80 ; CANSTAT 0x6E
 retlw 0x80 ; CANCTRL 0x6F

 retlw 0x20 ; RXB1CTRL 0x70 Receive only Standard Id’s that match
Masks/Filters
 END
DS00215C-page 22  2010 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.
 2010 Microchip Technology Inc.
Trademarks

The Microchip name and logo, the Microchip logo, dsPIC,
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,
PIC32 logo, rfPIC and UNI/O are registered trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,
MXDEV, MXLAB, SEEVAL and The Embedded Control
Solutions Company are registered trademarks of Microchip
Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard,
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial
Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified
logo, MPLIB, MPLINK, mTouch, Omniscient Code
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,
PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance,
TSHARC, UniWinDriver, WiperLock and ZENA are
trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2010, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

 Printed on recycled paper.

ISBN: 978-1-60932-653-1
DS00215C-page 23

Microchip received ISO/TS-16949:2002 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

DS00215C-page 24  2010 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com

Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260

Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445

Toronto
Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431

Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889

China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500

China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431

China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470

China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066

China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760

China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118

China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130

China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123

India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632

India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513

Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122

Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302

Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934

Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859

Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068

Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069

Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-6578-300
Fax: 886-3-6578-370

Taiwan - Kaohsiung
Tel: 886-7-213-7830
Fax: 886-7-330-9305

Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820

Worldwide Sales and Service

08/04/10

http://support.microchip.com
http://www.microchip.com

	Introduction
	System Description
	Overview
	Message Identifier Format
	TABLE 1: Message Identifiers

	Hardware Description
	Design/Performance Considerations
	System Clock
	SPI Bus
	Interrupts
	Interrupt Latency
	Digital Inputs and Outputs
	CAN Bus

	Firmware Description
	PIC® MCU Initialization
	MCP2515 Initialization
	Interrupt Service Routine
	Error Handling

	summary
	Reference Documents
	Appendix A: schematic
	Appendix B: Source Code
	Worldwide Sales and Service

