INTRODUCTION

Many data acquisition systems require both a visual display and a computer interface. The TC7135 from Microchip Technology is a 4-1/2 digit Analog-to-Digital converter (ADC) which can easily provide both of these functions. The TC7135’s multiplexed BCD outputs interface easily to low cost LED or LCD decoder/drivers, such as the TC7211A. Also, the TC7135’s data outputs simplify computer interfacing.

This application note will present both the hardware and software required to interface the TC7135 to a microprocessor. The circuit was developed for a 6502 μP and 6522 I/O port, but the design can easily be modified for other μPs and I/O ports.

The TC7135 has several features which make it an attractive choice for data acquisition where speed is not an overriding consideration. The analog features include:

- High Resolution 20,000 counts
- High Accuracy.. ±1 count
- Low Roll-Over Error ±1 count
- Valid Polarity at 000 reading (the + and – zero states give an extra bit of resolution.
- Negligible zero drift – definitely not the case with a bipolar DAC/SAR type ADC.
- The dual-slope conversion method rejects 50Hz, 60Hz and 400Hz noise.
- The ratiometric reference and differential inputs provide flexible transducer interfacing.

The TC7135 T also has features that simplify system design:

- Easy μP interfacing
- Overrange and underrange flags for autoranging and process control decisions
- Operation from ±5V supplies, with only 10mW typical power dissipation
- TTL compatible outputs (1.6mA sink current)

The TC7135 provides output signals which, together with one port of an LSI I/O chip, simplify a microprocessor interface. The relationship between the various TC7135 outputs is shown in Figure 1. The specific functions of these outputs are as follows:

TC7135 Pin Function

<table>
<thead>
<tr>
<th>Pin</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1-B8</td>
<td>BCD coded data is output on the B1-B8 pins.</td>
</tr>
<tr>
<td>DS5-DS1</td>
<td>Digit Select 5 (most significant digit) through Digit Select 1 (least significant) go high as data on B1-B8 becomes valid for that digit.</td>
</tr>
<tr>
<td>STROBE</td>
<td>For the first digit scan after a conversion STROBE goes low (for 1/2 clock period) in the middle of each digit strobe. After five pulses, STROBE stays high until the next conversion is complete.</td>
</tr>
<tr>
<td>BUSY</td>
<td>BUSY is high while the TC7135 is in Integrate or Deintegrate phases of a conversion. The falling of BUSY can, therefore, be used as an end of conversion signal.</td>
</tr>
<tr>
<td>POL</td>
<td>POLARITY is high if the analog input polarity is positive.</td>
</tr>
<tr>
<td>OR</td>
<td>OVERRANGE goes high if the analog input is greater than full scale (reading >20,000).</td>
</tr>
<tr>
<td>UR</td>
<td>While UNDERRANGE goes high if the reading is 1,800 or less.</td>
</tr>
</tbody>
</table>

The TC7135 also has a RUN/HOLD input. If RUN/HOLD is held low, the converter will remain in the auto-zero phase. A new conversion will not begin until RUN/HOLD goes high. This input can be used to generate conversions on command.
INTERFACE HARDWARE

The complete TC7135 to SYP6522 interface schematic is shown in Figure 2. BCD data, POL, OR, UR, and DS5 are connected to the 6522’s PA0 through PA7 inputs. The TC7135’s STROBE output interrupts the microprocessor via the 6522’s CA1 interrupt. RUN/HOLD can be controlled by programming CA2 as an output.

At first glance, the circuit may appear incomplete because digit holds can be controlled by programming CA2 as an output. Interrupts the microprocessor via the 6522’s CA1 interrupt. RUN/HOLD can be controlled by programming CA2 as an output. If the µP finds (DS • STROBE) true upon responding to an interrupt, an “end of conversion” is assumed and assembling of BCD data from the TC7135 begins. Each of the next four interrupts will provide another BCD digit. The µP counts interrupts in a register and stores the corresponding BCD data in successive memory locations. After five STROBE pulses, all BCD data has been transferred to the µP and conversion is complete.

One constraint of this interface method is that the µP must respond to each digit’s interrupt before the next digit becomes valid. The 6522’s CA1 input can be programmed to latch data into Port A, as well as provide an interrupt to the µP. Since latched data remains valid until the next STROBE pulse, the µP has the full interval between STROBE pulses to service each interrupt. STROBE pulses are 200 clock cycles apart. A TC7135 clock frequency of 100kHz will allow the µP to service each interrupt without losing data.

If the µP finds (DS • STROBE) true upon responding to an interrupt, an “end of conversion” is assumed and assembling of BCD data from the TC7135 begins. Each of the next four interrupts will provide another BCD digit. The µP counts interrupts in a register and stores the corresponding BCD data in successive memory locations. After five STROBE pulses, all BCD data has been transferred to the µP and conversion is complete.

One constraint of this interface method is that the µP must respond to each digit’s interrupt before the next digit becomes valid. The 6522’s CA1 input can be programmed to latch data into Port A, as well as provide an interrupt to the µP. Since latched data remains valid until the next STROBE pulse, the µP has the full interval between STROBE pulses to service each interrupt. STROBE pulses are 200 clock cycles apart. A TC7135 clock frequency of 100kHz will allow the µP to service each interrupt without losing data.

Software for the TC7135 to 6502 interface can be divided into three routines: (1) Programming the 6522’s Port A for latched input and interrupt from CA1; (2) the interrupt service routine which actually acquires and stores BCD data from the TC7135; (3) display or manipulation of the acquired data. Figure 3 is a 6502 assembly language listing of the first two routines. An interrupt service routine flow chart is shown in Figure 4. Since the end of a digit scan leaves 5 digits of BCD data in successive memory locations, the user will find the interface software easy to incorporate into a specific display or manipulation routine.

When programmed for interrupt operation, the 6522 will pull its IRQ output low on the falling edge of each STROBE pulse from the TC7135. Assuming interrupts are enabled, IRQ going low will cause the 6502µP to load the address of an interrupt service routine from memory locations FFEE andFFFF. This routine will typically identify the interrupting device, determine its priority and jump to a program to service the interrupt. The user must provide software to vector interrupts coming from the TC7135 to the service routine located at location “INTVEC” of Figure 3. The TC7135-6522 hardware can accommodate interrupt service delays of up to 2msec, so a relatively low-priority interrupt status can be used.

FIGURE 2: TC7135 to 6502µP interface schematic.
Once the 6522’s interrupt has been recognized and vectored to location “INTVEC,” a read of Port A loads the TC7135 data into the 6502 accumulator. Reading Port A also sets the µP’s status flags and resets the 6522’s interrupt flag.

The µP now tests whether the accumulator contains the TC7135’s most significant digit by testing for DS5 being high. Connecting DS5 to PA7 (MSB) of the I/O port allows testing DS5 with a single branch on plus instruction.

If DS5 is high, this data signals the beginning of a new display scan (i.e., an end of conversion has occurred). The µP zeros its X index register, which will be used both to count the digits and to provide an offset for storing each digit in zero page memory. Register X is also stored in zero page memory at location XSTOR, since its contents will probably be lost upon returning from interrupt.

An early indication of an overrange condition can be obtained at this time. A bit mask, stored in memory, is used to test for the TC7135’s OVERRANGE input. If OR is high, the program branches to an error routine. An alternative for overrange testing is to wait until all digits have been scanned and then test bit 4 of any digit.

FIGURE 3: 6502 assembly language testing.

FIGURE 4: TC7135 to 6502µP interface program flow chart.
If DS5 is not high, or after register X is zeroed, program execution proceeds to location "NXTDIG." The BCD data is stored in zero page memory, beginning at location "DIGSTOR" and indexed by register X. After each digit is stored, register X is incremented and compared to five. If register X equals five, the digit scan is complete and data can be processed or displayed. Register X less than five indicates the digit scan is not complete, so an RTI instruction returns operation to the main program to await another digit strobe. Other programs can use memory location XSTOR as a "Data Valid" indication: If XSTOR = 5, then 5 consecutive memory locations beginning at DIGSTOR contain the results of the latest TC7135 conversion.

FIGURE 5: 6522 I/O port control register functions.
Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip’s products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999. The Company's quality system processes and procedures are QS-9000 compliant for its PICmicro® 8-bit MCUs, KEELOG® code hopping devices, Serial EEPROMs and microperipheral products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001 certified.

Trademarks

The Microchip name and logo, the Microchip logo, PIC, PICmicro, PICMASTER, PICSTART, PRO MATE, KEELOG, SEEVAL, MPLAB and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

Total Endurance, ICSP, In-Circuit Serial Programming, Filter-Lab, MXDEV, microID, FlexROM, fuzzyLAB, MPASM, MPLINK, MPLIB, PICC, PICDEM, PICDEM.net, ICEPIC, Migratable Memory, FanSense, ECONOMONITOR, Select Mode and microPort are trademarks of Microchip Technology Incorporated in the U.S.A.

Serialized Quick Term Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2001, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.