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INTRODUCTION
A key requirement in most applications is the ability to 
generate and control waveforms at various 
frequencies. Most common demands for such sources 
are industrial test setups for providing frequency 
stimulus, communication equipment with low-noise 
requirements, or medical testing devices.

The Direct Digital Synthesis (DDS) technique is gaining 
wide popularity and acceptance from the industrial 
community to achieve programmable analog outputs 
with accuracy and high resolution. The traditional 
Pulse-Width Modulation (PWM), which is commonly 
referred to as the poor man’s Digital-to-Analog 
Converter (DAC) was previously being used for this 
purpose. The PWM method has the limitation of 
generating arbitrary waveforms in low-frequency 
ranges, which is overcome using the DDS technique.

This application note focuses on the use of the 
Numerically Controlled Oscillator (NCO) module for 
designing a Sine Wave Generator. The NCO module 
uses the DDS technique for generating waveforms, 
and is available on various PIC16F family and 
PIC10F320/322 family of MCUs. For more information 
on other Core Independent Peripherals refer to 
www.microchip.com/CIP.

DIRECT DIGITAL SYNTHESIS (DDS) 
AND NCO
Direct Digital Synthesis is a technique of generating an 
analog waveform, generally of sinusoidal wave shape 
from a time varying signal in its digital form and a DAC.

The NCO module operates on the principle of DDS by 
repeatedly adding a fixed value to an accumulator. The 
accumulator is 20 bits in length and additions occur at 
the input clock rate, which can be a maximum of about 
16 MHz. The accumulator will overflow with a carry bit 
set periodically, and this will produce a transition in the 
output of the NCO module.

The NCO module can operate in two modes: fixed duty 
cycle PWM and frequency controlled Pulse mode. With 
such an arrangement, the response will be very linear 
across a wide range of frequencies, ranging from 0 kHz 
up to 500 kHz using a clock of 16 MHz. The frequency 
resolution that can be obtained is precise and is in 
steps of 15 Hz across this entire frequency range. The 
linear frequency control and the increased frequency 
resolution are the key distinguishing factors when 
compared to the traditional PWM-based frequency 
control. Figure 1 illustrates the internal block diagram 
of the NCO module.
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FIGURE 1: INTERNAL BLOCK DIAGRAM OF NCO MODULE

The NCO module generates precisely controllable 
output frequencies using the DDS technique. The DDS 
technique essentially provides a clock with carefully 
controlled jitter on it. Therefore, it is necessary that the 
signal be aggregated on the frequency domain.

Figure 2 illustrates the typical output spectra when 
generating 50% duty cycle square wave using the NCO 
module. The sideband noise generated by the jitter is 
insignificant in comparison to the fundamental 
frequency. When plotted on a logarithmic scale, the 
NCO output compares to that of a perfect square wave.
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FIGURE 2: PERFECT SQUARE WAVE SPECTRUM COMPARED TO NCO OUTPUT SPECTRUM
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NCO Output and PWM Output 
Comparison
This section provides the comparison between the 
NCO module and the traditional PWM module. When 
using a PWM module to generate a pulse train with 
variable frequency, use Equation 1 to calculate the 
PWM frequency.

EQUATION 1: PWM FREQUENCY 
CALCULATION

For an 8-bit PR2 register, the value can vary from 0 
to 255. With the oscillator clock frequency being fixed, 
the value in the PR2 register determines the frequency 
of the PWM output. Since the PR2 register value forms 
the denominator in Equation 1, any change in the value 
of PR2 will not yield a linear variation of FPWM, although 
the incremental change in the denominator or PR2 is 
linear.

Figure 3 illustrates the variation of PWM frequency with 
respect to a corresponding change in the PR2 value.

FIGURE 3: FREQUENCY vs PR VALUE IN PWM MODULE

The relation between the frequency of the NCO output 
and the incremental register is provided in Equation 2.
From Equation 2, note that FNCO is directly proportional 
to the increment value, and the accumulator overflow 
value is always fixed to 220 = 1048576. Therefore, any 
change in the increment value will yield a very linear 
variation in the output frequency of the NCO (i.e, FNCO).

EQUATION 2: PWM FREQUENCY 
CALCULATION USING NCO 
MODULE

FPWM
FOSC

4 PR2 1+ 
----------------------------=

Where,

FPWM = Desired frequency of PWM

FOSC = Oscillator clock frequency

PR2 = Period register to be loaded

FNCO
FOSC

Accumulator---------------------------------- 
 = IncrementValue 

Where,

FNCO = Frequency of the output of NCO module

FOSC = Oscillator clock frequency (about 16 MHz)

Accumulator = 20 bit summing register that overflows 
to create an output transition

Increment Value = Value loaded to change FNCO
DS00001523A-page  4  2013 Microchip Technology Inc.
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This concept illustrates the variation of FNCO with a 
corresponding change in the increment value, see 
Figure 4.

FIGURE 4: FREQUENCY VERSUS INCREMENT VALUE IN NCO MODULE

Therefore, a better frequency resolution over a wide 
frequency range can be obtained using the NCO for 
waveform generation, when compared to the 
conventional PWM-based approach.
 2013 Microchip Technology Inc. DS00001523A-page  5
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PRINCIPLE OF SINE WAVE 
GENERATION USING NCO MODULE
The output of the NCO module will be a square wave at 
the configured frequency. A square wave has many fre-
quency components with the main frequency being the 
center frequency, as per the NCO configuration. A 
square wave could be generated by adding a series of 
pure tones (sine waves) with appropriate amplitude 
and phase as per the Fourier transforms.

Fourier theorem assumes that the user add sine waves 
of infinite duration. Therefore, a square wave is 
essentially composed of Fundamental frequency-1/3 of 
third harmonic tone+1/5 of fifth harmonic tone-1/7 of 
seventh harmonic tone, and so on (see Figure 5). The 
square wave output from the NCO can be passed 
through a Band Pass Filter with a high Q factor to 
generate a sine wave at the desired frequency.

FIGURE 5: FREQUENCY COMPONENTS IN SQUARE WAVE

Figure 6 illustrates the frequency spectrum of a 
symmetric square wave observed using an 
oscilloscope.

FIGURE 6: FREQUENCY SPECTRUM OF A SQUARE WAVE
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Applications of Sine Wave Generator
There are a wide variety of applications which necessi-
tate the use of a sine wave. Some of the applications 
are as follows:

• Calibration of sound equipment or speakers
• Detection of frequency components in a signal
• Generate test tones for radio audio level 

alignment
• Radio tuning circuitry
• Reference tone generation to tune and adjust 

musical instruments
• Acoustic equalization and testing
• Creation of harmonics for generating multiple 

sound frequencies
• Sound card quality control
• White noise generator
• Hearing test equipment

CASE STUDY: INTRUDER 
DETECTION SYSTEM USING 
DISCRETE FOURIER TRANSFORM 
(DFT) BY CORRELATION
This section describes the application of a sine wave 
generator in computing correlation for a DFT-based 
intruder detection system.

An intruder detection system basically consists of a 
transmitter which emits a signal at a specific frequency 
whenever an intruder is found inside a room or an 
enclosed space. 

In most intruder-based systems, the Infrared (IR) sig-
nals are used. The receiver receives the signal and 
detects if any specific frequency component exists. In 
this detection process, usually a DFT is performed on 
the received signal and is checked for the presence of 
the frequency component of interest. When the DFT is 
implemented using the Correlation method, the sine 
and cosine waves are required at the frequency of 
interest. 

The sine and cosine waves used in the DFT are called 
as DFT basis functions. The output of the DFT is a set 
of numbers that represent amplitudes. The DFT basis 
functions are a set of sine and cosine waves with unity 
amplitude. In the frequency domain, if each of the 
amplitudes is assigned to the sine or cosine waves, the 
outcome will be a set of sine and cosine waves that can 
be added to form the time domain signal. 

Figure 7 illustrates a typical block diagram of the 
intruder detection system. An NCO module is 
configured to produce a square wave of the desired 
frequency to be detected by the receiver. The output of 
the NCO is passed through a Band Pass Filter with a 
suitable frequency band to allow only the frequencies 
of interest around the center frequency, which is the 
frequency to be detected. The Band Pass Filter must 
have a high Q factor to get a better and sharper cutoff 
around the corner frequencies. Therefore, the output of 
the Band Pass Filter will be a sine wave at the 
fundamental frequency.

FIGURE 7: BLOCK DIAGRAM OF INTRUDER DETECTION SYSTEM
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The ADC inside the PIC® MCU has two inputs: the sine 
wave output of the Band Pass Filter, and the signal sent 
from the TX and received at the RX. This signal must 
be correlated to determine if the frequency of interest 
(fdetect) exists. After the digital samples from the ADC 
are obtained, the sine samples are then passed 
through an orthogonal signal generation process to 
produce a cosine output. This orthogonal signal 
generation is computed in the firmware and some of 
the transforms or filters are described below:

• Hilbert Transforms: This transform is used to 
produce output signals which are 90° out of phase 
with respect to the input signal (i.e, orthogonal to 
each other). Therefore, if a sine wave is applied at 
the input, the result will be a cosine wave at the 
output with no attenuation. 

• Low Pass Filter: If a low pass filter of first order is 
designed such that the user operates it in the stop 
band (i.e, beyond the cutoff frequency), and an 
input sine wave is provided to this filter, then the 
resulting output will be an attenuated signal of the 
same wave shape as the input, but shifted in 
phase by 90°. This signal can then be amplified in 
the firmware by multiplying with an appropriate 
gain to get the output amplitude to be same as the 
input amplitude. Therefore, the resulting 
waveform will be similar to the input waveform in 
shape (sine wave), frequency and amplitude, but 
shifted in phase by 90° (cosine wave).

• Shifting the Sampled Array: If the sine wave 
samples (elements in the array) are shifted 
appropriately such that the output samples are 
shifted by 90°, the resultant waveform will be a 
cosine wave.

Because the sine wave and cosine waveforms have 
been generated and are available in digital form, the 
correlation is performed on the input signal by 
performing the following computations:

• Summation of the product of the individual sine 
wave samples and the input signal samples

• Summation of the product of the individual cosine 
wave samples and the input signal samples

Once the output (Y1 and Y2) of the two summations 
are available, check if the frequencies exist by 
interpreting the following results:

• If the frequency to be detected does not exist in 
the received signal, then the sum of the sine bins 
and cosine bins will be zero. Otherwise, there will 
be a finite value.

• If the sum of the sine bin is finite and the cosine 
bin is zero, then the signal at the detection 
frequency exists and the phase shift is zero.

• If the sum of the sine bin is zero and the cosine 
bin is finite, then the signal at the detection 
frequency exists and has a phase shift of 90°.

• If the sum in the sine bin and the cosine bin both 
have finite values, then the signal at the detection 
frequency exists and there is finite phase shift 
also.

The interpreted results are illustrated in Figure 8.

FIGURE 8: FREQUENCY DETECTION PRINCIPLE IN INTRUDER DETECTION SYSTEM
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Sine Wave Generation Using NCO 
Module
As discussed in Case Study: Intruder Detection System 
Using Discrete Fourier Transform (DFT) by Correlation, 
a sine wave of desired frequency can be generated 
using the NCO module. Example 1 shows a code 
snippet for generating a square wave at 1 kHz. The 
square wave generated by this method is passed 
through a fourth order Sallen Key filter.

EXAMPLE 1: CODE SNIPPET FOR SINE WAVE GENERATION USING NCO MODULE

The simulation of the Sallen Key filter and the resulting 
waveforms are illustrated in Figure 9.

FIGURE 9: SIMULATION OF A SALLEN KEY FILTER

    #pragma config FOSC = INTOSC

// FOSC configuration

    OSCCON = 0x78;// Fosc = 16 MHz with internal oscillator

    __delay_us(100);

    TRISC = 0x00;        // Port C as digital output port

    ANSELC = 0x00;       // Port C as digital output port

    APFCON = 0x00;

    NCO1CON = 0xC0;     // NCO enable, NCO output enable, fixed frequency

    NCO1CLK = 0x01;     // NCO clock = FOSC = 16 MHz

    NCO1INCH = 0x00;    // NCO increment register high byte

    NCO1INCL = 0x84;    // NCO increment register high byte

// NCO output toggled at frequency = 2 kHz to get the square wave of 1 kHz
 2013 Microchip Technology Inc. DS00001523A-page  9
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The output sine wave along with its resulting frequency 
spectrum is captured using an oscilloscope, see 
Figure 10. The fundamental frequency at 1 kHz is the
most dominant while the other harmonic frequencies 
at 2 kHz, 3 kHz, 4 kHz, and so on are negligible or are 
very small.

FIGURE 10: FREQUENCY SPECTRUM OF A SINE WAVE GENERATED USING NCO MODULE
DS00001523A-page  10  2013 Microchip Technology Inc.
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Sine Wave Generation Using the Look-Up 
Table Method
This section describes the look-up table method for 
sine wave generation. This is one of the most 
fundamental and popular methods of sine wave 
generation. In this method, the values used to 
approximate a sine wave are stored in memory.

There are three subsets in the look-up table method:

• The first method involves the synthesis of sine 
waves with frequencies which are multiples of the 
fundamental frequency for which the table 
elements are calculated.

• The second method involves the synthesis of sine 
waves with frequencies which are fractional 
multiples of the fundamental frequency for which 
the table elements are calculated. In this method, 
the frequencies are not integer multiples of the 
fundamental table frequency, and have 
substantially high Total Harmonic Distortion 
(THD).

• In the third method, the synthesis can be done for 
sine waves of non-integer multiples and also 
maintain a low THD by using interpolation.

When the look-up table-based implementations are 
done, the entire energy of the generated sine waves 
will not only be at the fundamental frequency, but a 
small amount of the energy will also be spread out at 
frequencies other than the fundamental frequency. 
These frequencies can be both harmonic and 
subharmonic frequencies. The presence of these 
frequencies will create a certain amount of distortion in 
the resultant waveform.

The harmonic distortions in the resulting waveform can 
be attributed to two factors: quantization and sampling 
errors. The sine table elements are stored in data 
memory and have definite word length such as 8 bits, 
10 bits, 16 bits, and so on. Therefore, the values of 
these elements cannot be exactly represented and 
might result in quantization errors which are related to 
the word length. When dealing with frequencies which 
are non-integer multiples of the fundamental table 
frequency, the sample values between the two table 
entries must be estimated. These calculations would 
introduce sampling errors. Because these estimations 
inherently use the table values for calculation purpose, 
the resulting values will have quantization errors 
embedded in them, and the sampling errors will always 
be more than the quantization errors.

In order to reduce the quantization and sampling 
errors, a combination of the look-up table method along 
with interpolation must be used. This will reduce the 
distortions significantly. By using interpolation, the sine 
values between the values of table elements can be 
represented more precisely. For ease of 
implementation, Linear Interpolation method is used 
mostly. In this method, the values between any two 
table entries are assumed to lie on a straight line.
 2013 Microchip Technology Inc. DS00001523A-page  11
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Example 1 shows a code snippet for generating a sine 
wave at 1 kHz using the look-up table method.

EXAMPLE 1: CODE SNIPPET FOR SINE WAVE GENERATION USING LOOK-UP TABLE METHOD
     #pragma config FOSC = INTOSC

     unsigned char gDutycount =0;

     const char SINETABLE[40]=

     {

     50,55,60,65,70,75,80,85,90,95,

     100,95,90,85,80,75,70,65,60,55,

     50,45,40,35,30,25,20,15,10,5,

     0,5,10,15,20,25,30,35,40,45

     };

// FOSC configuration

     OSCCON = 0x78;     // Fosc = 16 MHz with internal oscillator

     __delay_us(100);

// Timer2 configuration for PWM 

    PR2 = 99;          // PWM period register for 40 kHz

    T2CON = 0x04;       // Timer2 on

// PWM 1 configuration 

    PWM1CON = 0xC0;           // PWM1 on, PWM 1 output enable

    PWM1DCH = 50;             // PWM duty initialized to 50%

    PWM1DCL = 0;

    

    PIE1bits.TMR2IE =1;       // Timer2 interrupt enable

    INTCON =0xC0;             // Global interrupt enable, peripheral interrupt enable

    TRISC = 0x00;             // Port C as digital output port

    ANSELC = 0x00;            // Port C as digital output port

    void interrupt Timer2_ISR(void)

    {

       if (TMR2IF)

       {

           ++gDutycount;      // Increment the counter variable by 1

           if(gDutycount == 39)

           {

                  gDutycount = 0;

           }

          PWM1DCH = SINETABLE[gDutycount];    // Load the duty cycle register 

          according to the sine table

          TMR2IF = 0;

      }

    }
DS00001523A-page  12  2013 Microchip Technology Inc.
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The duty cycle of the PWM is varied and is passed 
through a Sallen Key filter. The resulting sine wave and 
the frequency spectrum is illustrated in Figure 11. The 
resulting harmonics are slightly more than the NCO-
based methods, as provided in Sine Wave Generation 
Using NCO Module.

FIGURE 11: FREQUENCY SPECTRUM OF A SINE WAVE GENERATED USING LOOK-UP TABLE
 2013 Microchip Technology Inc. DS00001523A-page  13
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Sine Wave Generation by Implementing 
Trigonometric Expressions
Sine wave and cosine wave are represented as shown 
in Equation 3.

EQUATION 3: SINE WAVE AND COSINE 
WAVE REPRESENTATION

The trigonometric value of the radian angle is the 
instantaneous value of signal. The only difference 
between sine and cosine wave is the phase difference 
of 90°. Therefore, the instantaneous values of one 
wave can be obtained by phase shifting that of another 
wave by 90°. These waves are generated in the analog 
domain through oscillators. The basic wave equation, 
when converted to digital signal, can be represented as 
shown in Equation 4.

EQUATION 4: DIGITAL REPRESENTATION 
OF BASIC WAVE EQUATION

In a digital computer, Equation 4 can be evaluated to 
generate samples of a specific frequency signal. The 
sine wave can be constructed using the Interpolation 
method or DAC. The digital frequency (f) can be 
calculated using F/Fs.

For example, if signal frequency = 1000 Hz, sampling 
frequency = 360000 Hz, then the value of f is shown in 
Equation 5.

EQUATION 5: DIGITAL FREQUENCY

Substituting the value of f in Equation 4 and 
incrementing the value of n from 0 to ∞, the sample 
values for cosine wave can be calculated. However, 
every calculation involves the evaluation of cosine of 
radian angle, which is the evaluation of cosine infinite 
series. The problem with this approach is that it 
consumes a higher number of CPU cycles. To 
overcome this problem, trigonometric analysis can be 
used to reduce the evaluation of infinite series to few 
floating point calculations. The standard trigonometric 
expressions are provided in Equation 6 and 
Equation 7.

EQUATION 6: STANDARD 
TRIGONOMETRIC 
EXPRESSION

EQUATION 7: STANDARD 
TRIGONOMETRIC 
EXPRESSION

Equation 8 is derived by adding Equation 6 and 
Equation 7.

EQUATION 8: SUMMATION OF STANDARD 
TRIGONOMETRIC 
EXPRESSION

Equation 8 is rearranged as shown in Equation 9.

EQUATION 9: REARRANGEMENT OF 
TRIGONOMETRIC 
EXPRESSION

V t  Sin 2Ft =

Where,

V(t) = Instantaneous value

t = Time instant

F = Signal frequency

2π = Used for converting to radians

V t  Cos 2Ft =

X n  Sin 2FnT =

Where,

n = Instantaneous digital sample time which is an 
integer (i.e, 0, 1, 2, 3, 4.......n)

T = Period/time between two samples of the wave

F = Signal frequency

X n  Cos 2FnT =

X n  Sin 2FnT  Sin 2Fn
Fs
-------------- 
  Sin 2fn = = =

Also, X n  Cos 2fn =

Where,

f = F/Fs = Digital frequency from range -1/2 to 1/2

Fs = 1/T or T = 1/Fs (Fs = Sampling frequency)

f F
Fs------

1000
360000------------------= =

= 0.00277777777777777777777777777778 Hz

cos x y+  xcos ycos x ysinsin–=

Where,

sinx = Sine of signal frequency present sample

siny = Sine of sampling frequency

cos x = Cosine of signal frequency present sample

cos y = Cosine of sampling frequency

cos(x+y) = Cosine of signal frequency next sample

cos x y–  xcos ycos x ysinsin+=

Where,

cos(x-y) = Cosine of signal frequency previous sample

cos x y+  cos x y– + 2 xcos ycos=

cos x y+  2 xcos ycos cos x y– –=
DS00001523A-page  14  2013 Microchip Technology Inc.
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Consider Equation 10 for the angular representation of 
a sinusoidal waveform. Equation 10 can be used to 
calculate the next cosine value of cosine wave, if the 
previous and current samples of the signal and the 
cosine of sampling frequency is also known.

EQUATION 10: ANGULAR 
REPRESENTATION

Figure 12 illustrates the trigonometric expressions 
provided in Equation 6 through Equation 10. 

FIGURE 12: ANGULAR REPRESENTATION OF SINUSOIDAL WAVEFORM

Equation 10 can be rewritten as shown in Equation 11.

EQUATION 11: SAMPLE-BASED 
REPRESENTATION OF 
COSINE WAVE

The first two samples of the cosine wave can be 
calculated by evaluating cos(2πf0) and cos(2πf1) directly.

x 2FnTs 2nF
Fs--------------= =

Where,

F = Signal frequency in Hz

Fs = Sampling frequency in Hz

f  = F/Fs = Digital frequency from -0.5 to 0.5

y = Angular distance between the two points on the 
circle in radians (sampling rate in terms of angle 
in radians)

y n  2 ycos y n 1–  y n 2– –=

Where,

y(n) = nth sample being calculated

y(n-1) = n-1th sample

y(n-2) = n-2th sample

Note 1: cos2f1 is the cosine of the first sample 
which represents the angular distance 
between the 0th and first sample. Hence, 
it represents the angular distance 
covered during one sampling period on 
the signal.

2: Consider a circle of radius (r). Dividing 
the circle into Fs/F equal parts, the angle 
between two successive radius lines is 
the sampling rate. Hence, the cosine of 
that angle is the sampling frequency, 
which is in 2πfn radian, for n = 1. This is 
also the second sample of the signal
where, n = 1 and y(n-1) = cos y = cos x.
 2013 Microchip Technology Inc. DS00001523A-page  15
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The 8-bit MCUs do not contain floating point processor 
to perform the cosine infinite series evaluation, but the 
basic floating point operations such as addition, 
subtraction, multiplication and division can be 
emulated in software.

The recursive Equation 10 can be used to calculate the 
frequency signal samples for any sampling frequency. 
Also, the sine and cosine waves are periodic in nature 
and hence, only a single cycle needs to be calculated. 
The sample values repeat themselves after one cycle, 
hence no further calculations are needed. This will 
reduce the number of CPU cycles. A circular buffer can 
be used for easier implementation.

To convert the sample values into sine wave, at least 
10 samples per cycle are required to reconstruct the 
signal shape. Hence, it is recommended to choose a 
sampling frequency that is ten times higher than the 
highest signal frequency. If the maximum signal 
frequency is 3000 Hz, the sampling rate should be 
30000 Hz to keep the signal shape intact while 
reconstructing the sine wave.

The calculated sample values are in floating point 
format which need to be converted to integer format 
before sending them as input to the DAC, to create the 
analog signal. The resolution of the signal should be as 
high as possible (i.e, a signal with 10-bit sample values 
contains more fidelity in shape in reconstruction 
compared to a signal with 8-bit sample values).

Consider γ as the bit resolution for DAC. Multiplying the 
floating point sample values with (2γ–2(γ-1)) and adding 
2(γ-1) to all the sample values will convert from (-1, 1) 
range to (0, 2γ), and rounding of the result will make an 
integer array of signal samples for one cycle as shown 
in Equation 12.

EQUATION 12: INTEGER ARRAY OF 
SIGNAL SAMPLES FOR ONE 
CYCLE

In 8-bit MCUs, the DAC with high resolution is rare, but 
there are Capture Compare (CCP) modules with PWM 
mode which can be used to convert the digital values to 
analog signal with a minimum resolution of 10 bits.

Initially, the PWM should be configured at 50% duty 
cycle. The PWM frequency should be the sampling fre-
quency of the signal. For example, for a signal of 
1000 Hz frequency sampled at 30000 Hz, the PWM fre-
quency should be 30000 Hz at 50% duty cycle since 
every cycle or period of PWM signal should contain 
only one sample value of signal. If the two PWM peri-
ods contain the same sample value, filtering of the 
PWM will generate a stepped sine wave signal. The 
shape will hence be distorted, and the signal frequency 
will decrease by half. Therefore, the PWM frequency 
should be the sampling frequency with every period 
containing only one sample value of the signal. For this, 
the timer2 for PWM generation in PIC MCU can be 
used to generate the interrupt. In the interrupt handler, 
the CCP duty cycle value can be updated for every 
period. The output of PWM is then filtered to generate 
the sine wave signal using the double pole RC filter.

sample_value (integer value) = 

sample_value(floating point value) X (2γ – 2(γ-1)) + 2(γ-1)

Note: We can generate higher multiples of the 
calculated frequency (F) up to a maximum 
frequency of Fs/10. For example, consider 
a 1000 Hz computed signal sampled at a 
rate of 30000 Hz. To generate a 2000 Hz 
frequency from the 1000 Hz samples 
(harmonic or multiple of 1000 Hz), the 
samples should be selected such that they 
are alternate samples from the 1000 Hz 
signal at even or odd sample positions.

If x(n) = Samples of 1000 Hz signal at 
30000 Hz rate, then y(n) = Samples of 
2000 Hz signal at 30000 Hz rate = x(2n) or 
x(2n-1).
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Example 2 shows a code snippet for generating a sine 
wave using the trigonometric method.

EXAMPLE 2: CODE SNIPPET FOR SINE WAVE GENERATION USING TRIGONOMETRIC 
COMPUTATION

Program to generate cosine/sine wave using trigonometric equation cos(a+b) = 2 cos a cos b - cos(a-b)

// where a is the current sample, b is the sampling frequency, a-b is the previous sample and a+b is the next sample 

// to be calculated

    int single_cycle_array[40], samples; //array-integer array to store sample values 
of one sine/cosine cycle, samples-no of samples in one cycle=Fs/F

void main()

{

        float y, y_1, y_2=1.0, sampling_freq_angle; 

// y_2 is previous sample, y-1 is current sample and y is the next sample 

// sampling_freq_angle is the cosine of sampling frequency b

        int signal_freq=1000, i; //i-counter

        OSCCON = 0b11111100;

        OSCTUNE = 0b11000000;//31.25kHz, PLL enabled, factory calibrated frequency

        while(1)

        {

            samples = (int)(31250/signal_freq);

// The first and second sample value is hard coded, since the evaluation of infinite series in non-feasible on 8-bit MCU

        y_1 = sampling_freq_angle = 0.97985505238424686571479340950002;

// cos(2(signal_freq/31250)) and sampling frequency = PWM frequency = 31250 Hz

// This one time calculation will also save CPU cycles

       sampling_freq_angle *= 2.0;

// The sample values are rounded into range of 210, i.e, 0 to 1024 values

// Higher resolution PWM are advised to use for better and symmetric sine wave 

// reconstruction

       single_cycle_array[0] = (int)(y_2*510+510);

       single_cycle_array[1] = (int)(y_1*510+510);

// The loop to finish calculation of remaining samples

       for(i=2;i<samples;i++)

       {

            y = y_1*sampling_freq_angle - y_2;

            single_cycle_array[i] = (int)(y*510+510);

            y_2 = y_1;

            y_1 = y;

       }

      }

   }

// Interrupt for PWM duty cycle update
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The harmonics are higher compared to the sine wave 
generation using NCO or look-up table methods. The 
PWM output produced using this method is passed 
through a Sallen Key filter and the output is observed 
using an oscilloscope. This method yields a sine wave 
at 1 kHz with frequency spectrum, as illustrated in 
Figure 13.

FIGURE 13: FREQUENCY SPECTRUM OF A SINE WAVE GENERATED USING 
TRIGONOMETRIC COMPUTATION
DS00001523A-page  18  2013 Microchip Technology Inc.



AN1523
CONCLUSION
Many applications can be designed using a sine wave 
generator. This application note has taken few 
applications and dealt with one case study of intruder 
detection in particular.

However, there are plenty of applications of a sine 
wave, because it forms the basic function for most of 
the electrical and electronic systems. Using the 
Numerically Controlled Oscillator (NCO) module to 
generate a sine wave at any desired frequency and its 
advantages over the conventional Pulse-Width 
Modulation (PWM) approach have also been covered. 
The use of the NCO is not limited to the generation of 
a sine wave. By using a proper filter with an appropriate 
cutoff frequency, any desired wave shape can be 
rendered to the resultant output.

For more information on other Core Independent 
Peripherals refer to www.microchip.com/CIP.
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NOTES:
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