
AN1449
High-Reliability and High-Frequency EEPROM Counter
INTRODUCTION

A common problem with storing counter values to
EEPROM is that the maximum count achievable will be
restricted by the endurance of the Least Significant
Byte (LSB) in the counter. This value on a typical
EEPROM would be in the order of 100,000 counts.

When the application requires counts in excess of this
number, it becomes necessary to spread the load of the
counter updates over several EEPROM bytes in order
to achieve the highest count possible, regardless of
errors caused by the reliability of the EEPROM.

On an EEPROM, where the cell endurance is 100K
writes, it is theoretically possible to increase the
achievable maximum count to 100K, multiplied by the
number of bytes used by the counter.

OVERVIEW

This library implements a number of strategies to
ensure that a reliable counter is implemented with the
maximum effective counter value achievable, given the
available EEPROM space for the counter.

These strategies can be summarized as follows:

1. Use of an error-correcting code (Hamming
code) to identify cell failure and correct single-bit
errors.

2. Use of Gray coding to ensure that any increment
in the counter will only change one byte in the
EEPROM.

3. Optionally store a redundant copy of the counter
in order to allow recovery from multi-bit cell
failures.

4. Immediately read back any data written to verify
successful writes.

5. Storing of a byte-map to keep track of cell
failures and allow relocation of failed counter
bytes to fresh locations, regardless of the order
of cell failures.

IMPLEMENTATION DETAILS

Error Correcting Code

All data is stored using a (8,4) Hamming code. Using
this code, the user will be able to correct any single-bit
error and detect any 2-bit error. Additionally, it allows
the detection of the majority of errors comprising more
than two bits.

To avoid common EEPROM cell failure modes, the
Hamming code is selected to avoid using cell values of
0xFF and 0x00.

A (8,4) Hamming code uses eight bits, as shown in
Table 1.

Gray Coding

In order to ensure that single increments of the counter
do not require multiple EEPROM cells to be updated, a
Gray code is used to store the counter value.

A typical implementation will use 32 bits to store a
counter. By converting this code to a simple 32-bit Gray
coded value, only a single bit will change when the
counter is incremented. This means, even with the
byte-level Hamming code implemented, only a single
byte/EEPROM cell will be changed for every counter
increment.

The Gray code is simply generated by performing an
XOR of the counter value with the same value right-
shifted by one bit. This is a common and very efficient
algorithm to construct a standard cyclic Gray code.
This type of Gray code is known as a reflected Gray
code and has the property that the LSB transitions
every second count, the next bit transitions every fourth
count, the third Least Significant bit (LSb) transitions
every eighth count, and so forth.

Author: Cobus Van Eeden
Microchip Technology Inc.

TABLE 1: HAMMING CODE

Data Code Data Code

0 0x80 8 0x34

1 0x07 9 0x4C

2 0x19 10 0xAD

3 0x01 11 0xD5

4 0x2A 12 0x9E

5 0x52 13 0xE6

6 0xB3 14 0x0F

7 0xCB 15 0x7F
 2012 Microchip Technology Inc. DS01449A-page 1

AN1449
Redundancy

In applications where it is critical that, when multi-bit
failures of the EEPROM occur and the counter value
should be retained, it is important to store the counter
value more than once (add redundancy) in order to
allow recovery from catastrophic cell failures.

Detecting multi-bit failures is good and well, but when
this happens, the user only knows that the data being
read back is corrupted, leaving the user with no way to
reconstruct the correct counter value.

Furthermore, due to the nature of the EEPROM cell
technology, it is possible for a cell to have valid data
immediately after writing to it, but fail when reading it
after a longer period of time (e.g., hours or days later).
This means that simply reading back the data after a
write will not ensure that the byte will still read correctly
after a period of time.

Accordingly, redundant storage of the counter
(duplicating the data in EEPROM) is the only reliable
method to ensure the counter value is not lost when an
EEPROM byte fails. Redundant data will also allow for
correction of data corrupted or lost when the
programming process is interrupted by loss of power.

Corruption is not always caused by the EEPROM cell
reaching its endurance limit. Power failures during write
cycles is an example of this. The library will always
attempt to re-write the correct data to a location which
is found to have been corrupted, before marking the
EEPROM location bad. This ensures that bytes are
only discarded if the corruption was caused by a cell
reaching its endurance limit.

Relocation MAP

In order to keep track of individual cell failures, it is
necessary to keep a map of where in memory every
part of the counter is currently located. In order to
determine if the map has been initialized, the first two
bytes of storage are dedicated to a magic number
which, if set correctly, indicates an initialized map.

As the Gray code used in this application note is a
reflected Gray code, not a balanced Gray code, the
LSB will transition most often. This means significantly
more failures are expected in the lower bytes of the
counter than in the higher ones.

As an optimization, the location of each byte of the
counter is stored using eight bits of data for the upper
five nibbles of the counter (classified as type High) and
two bytes of data for the three Least Significant nibbles
(classified as type Low), which is expected to fail most
often.

In order to maintain this balance, the map allocates
MSBs from the lowest memory address (addressable
with an 8-bit address) and LSBs from the highest
address, addressable with 16 bits. This will allow the
High type nibbles to be relocated to any memory
address lower than 256 only, but the Low type nibbles
can be relocated to any location up to 64K.

The relocation map is initialized with pointers to the
initial locations in EEPROM of each corresponding
data byte. The Low bytes will contain addresses
starting at the highest address, while the High bytes will
start from the top of memory and grow downward in
address.

Each EEPROM location stores one nibble of the
counter using a Hamming (8,4) code, and thus needs
eight bytes to store a 32-bit counter. Also, since this is
done redundantly, at least 22 bytes of storage are
needed for the memory map.

Once a cell fails, it is relocated by selecting the next
available address. As the available space is used
sequentially, the next available space can be easily
calculated.
DS01449A-page 2  2012 Microchip Technology Inc.

AN1449
The relocation map is implemented, as shown in
Table 2.

Algorithm for Reliable Counter Recovery

The counter is primarily stored in RAM and written to
EEPROM on every increment in order to be
recoverable in the event of a power failure.

Accordingly, the following algorithm is followed:

1. At power-up the counter is read from EEPROM
and checked for any bit errors.

2. A 2-byte magic number stored at the beginning
of the map is used to indicate that a counter is
present. If not, the counter is initialized to 0, and
the map is initialized according to the configura-
tion.

3. Single-bit errors are corrected and the cells
where errors were detected are relocated for
safety.

4. Multi-bit errors are detected.

5. On a multi-bit error, an attempt is made to
recover the corresponding byte from the alterna-
tive storage location.

6. If the second location also fails with multiple bit
errors at the same time the system fails. The
probability of this occurring should be very
remote.

7. On every timer increment, the value is written to
both the primary and redundant storage
locations.

8. Directly after writing the counter, the values are
read back in order to verify a successful write.

9. If the read fails at this point, the byte is
abandoned and the storage is relocated to a
new byte for the corresponding counter byte.

Resulting Endurance of Counter

This configuration allows for up to 4096 bytes of
EEPROM to be used to represent the counter, which
with redundancy included, will allow approximately
2036x times the minimum single-cell endurance for the
counter as a whole. With a minimum cell endurance of
100K cycles, this would allow the counter to reach at
least 203.6 million before the system fails.

As the typical endurance is usually an order of
magnitude higher than the minimum specified, and
using a statistically significant number of bytes to store
the counter, the average life expectancy per byte
should approach the typical lifetime rather than the
minimum. It is, thus, likely to achieve counts in excess
of two billion using this configuration on a part with
4096 bytes of EEPROM, or counts in excess of 500
million using 1024 bytes of EEPROM.

For a typical application incrementing the counter twice
per second (500 million counts), this will yield an
operating time of 70,000 hours (eight years at 24/7
usage), using 1 kB of EEPROM (assuming that, on
average, every byte will fail when it reaches one million
cycles.)

TABLE 2: RELOCATION MAP

EEPROM MAP

Magic Number Byte Number Type Storage

0 N/A 1 Byte

1 N/A 1 Byte

Copy 1 Byte Number Type Storage

0 Low 16 bits

1 Low 16 bits

2 Low 16 bits

3 High 8 bits

4 High 8 bits

5 High 8 bits

6 High 8 bits

7 High 8 bits

Copy 2 Byte Number Type Storage

0 Low 16 bits

1 Low 16 bits

2 Low 16 bits

3 High 8 bits

4 High 8 bits

5 High 8 bits

6 High 8 bits

7 High 8 bits

Total 24 Bytes
 2012 Microchip Technology Inc. DS01449A-page 3

AN1449
NOTES

1. Most Microchip EEPROM parts specify a
minimum of 100K endurance up to 85ºC.
Temperature has a large effect on endurance
and, thus, a device specified for 100K
endurance up to 85ºC will most likely achieve
the typical one million writes or more at room
temperature.

2. Care should be taken when using address ‘0’ in
the EEPROM for storing sensitive data. At start-
up, registers EEADRL and EEADRH are both
set to ‘0’, which leaves them referencing the
EEPROM cell at address ‘0’. If a condition
occurs where a write is accidentally initiated
from software, this will consequently happen at
address ‘0’. Although this is not very likely, it
does make address ‘0’ the most likely location to
overwrite accidentally and, for this reason, it is
recommended that sensitive data, such as the
map and magic numbers of the counter library,
should not be located at this address.

3. The write sequence of an EEPROM byte
consists of two steps. First, the entire byte is
erased, which will change it to either 0xFF or
0x00, depending on the specific implementation
and technology used. Subsequently, the new
value will be written to the location. The erase
step in this process accounts for the bulk of the
time to completion. The consequence of this is
that, if a write is interrupted by the loss of power
on the device, it is much more likely it will
happen during the erase cycle, which would
most likely leave the byte in a partially erased, or
fully erased state when power is returned. Of
course, erasing a byte will most likely result in a
multi-bit error, which will not be recoverable
without redundancy (storing the byte a second
time at an alternate location). If your application
can potentially be disconnected from power
unexpectedly, it is highly recommended that the
redundant storage be implemented in order to
recover from interrupted writes caused by power
loss.

4. In order to prevent EEPROM bytes from being
discarded due to an interrupted write, the recov-
ery sequence will always attempt to re-write a
EEPROM byte and read back the data to verify
it before discarding the byte and relocating the
storage to a new location.

CONCLUSION

When storing a counter to EEPROM, the LSB changes
on every increment of the counter. This results in the
EEPROM cell storing the LSB failing at the cell
endurance specification. Typically, this will yield
100,000 write cycles, which will impose a maximum
number to which the counter can reliably be set.

This application note shows that spreading the storage
of a typical 32-bit counter over multiple bytes and by
adding redundancy and error correction, it is possible
to increase the maximum value to which such a counter
can reliably be incremented to over four billion.

This library represents a good basis from which a
reliable high value counter can be implemented. The
library can be modified according to individual
requirements. Possible improvements or adjustments,
which were considered, but not implemented, are listed
in Table 3 below.

TABLE 3: IMPROVEMENTS FOR
CONSIDERATION

Modification Motivation

1 Store EEPROM
map using a
Hamming code.

This would consume more
EEPROM storage but would
increase reliability.

2 Discard
EEPROM cell
only after
multiple bit
failures.

The current implementation
discards a cell (byte) on any
bit failure. Since the Hamming
code can correct single-bit
errors and the redundant
storage allows recovery,
usage can be extended to the
first multi-bit failure.

3 Abandon the
second copy to
achieve higher
counts.

The second copy adding
redundancy can be omitted,
especially if the count required
does not have to be precise.
As failures are most likely to
occur in the LSB, recovery
from catastrophic failure
(multiple bit error) by setting
the LSB to eight may be
acceptable (resulting in an
average error of only eight
counts per failure)

4 Store EEPROM
map in Flash
memory.

The EEPROM map is
modified at most as many
times as you have EEPROM
bytes available. This would
typically be 4096 times or
less. On devices that can self-
program, it may be attractive
to store the EEPROM map in
the Flash memory instead of
EEPROM.
DS01449A-page 4  2012 Microchip Technology Inc.

AN1449
APPENDIX A: LIBRARY API

Configuration

Some configuration is required in order to tell the library
where to locate the data in EEPROM and how many
bytes to use for the counter storage. This is achieved
by using the following Macro definitions (e.g., to
allocate 127 bytes to the counter).

Storage of the counter in RAM and the EEPROM map
in RAM also needs to be provided. This is achieved by
declaring the following variables as global symbols in
the program:

Consequently, the library consumes 26 bytes of RAM.
Code space required depends on compiler settings and
device used (approximately 2000 words of program
space).

Interface

To use the library, only two public functions need to be
called. These functions are described below.

unsigned char eepromMapInit(void)

This method checks the magic number. If it has been
set correctly the user must have a stored counter value
and it will recover the counter value from the EEPROM
storage. If the magic number is not set, this method will
initialize the counter to zero and set up the map for
initial use.

This method returns success (1), if a counter value was
successfully recovered, and failure (0), if the map had
not been initialized before, and the counter was reset to
zero.

unsigned char writeCounters(unsigned long int c)

This method persists the counter value that is supplied
as a parameter redundantly to the EEPROM. It
internally remaps the storage locations based on any
single bit failure detected upon writing. It returns an
error (0) if a failure is detected and no more storage is
available.

Debugging

In Debug mode the library will print any relocation
events or errors to stdout when they happen. When
including stdio.h with the HI-TECH C® compiler,
stdout is implemented via the putch method, which
the user must implement to print one character at a
time to the desired location. The example project
redirects this to the serial port on the device.

TABLE 4:

Macro Name Example Description

EEPROM_MAP_LOCATION 1 Locates the 24 bytes of map starting at Address 1

COUNTER_EEPROM_START 25 Start of counter data EEPROM storage

COUNTER_EEPROM_END 128 End of counter data EEPROM storage

// Create 2 maps, one for base and redundant storage
volatile eeprom_map EepromMap[2];
// Create storage in RAM for Counter and init to 0
unsigned long int Counter = 0;
 2012 Microchip Technology Inc. DS01449A-page 5

AN1449
NOTES:
DS01449A-page 6  2012 Microchip Technology Inc.

AN1449
APPENDIX B: CODE EXAMPLE

Software License Agreement
The software supplied herewith by Microchip Technology Incorporated (the “Company”) is intended and supplied to you, the
Company’s customer, for use solely and exclusively with products manufactured by the Company.
The software is owned by the Company and/or its supplier, and is protected under applicable copyright laws. All rights are reserved.
Any use in violation of the foregoing restrictions may subject the user to criminal sanctions under applicable laws, as well as to civil
liability for the breach of the terms and conditions of this license.
THIS SOFTWARE IS PROVIDED IN AN “AS IS” CONDITION. NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR
STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE
FOR SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.

#include <htc.h>
#include <stdio.h>
#include "balancedCounter.h"

/* Update the following values in balancedCounter.h include file
// Define bytes 1 to 128 for storage, 24 first bytes are for the MAP, rest for the data
#define EEPROM_MAP_LOCATION 1
#define COUNTER_EEPROM_START 25
#define COUNTER_EEPROM_END 128
*/

// Create 2 map instances in RAM, one for primary and redundant storage each volatile eeprom_map
EepromMap[2];
// Create storage in RAM for Counter and init to 0 unsigned long int Counter = 0;

char Normal_Operation = 1;

void main(void)
{
 if (eepromMapInit() == 1)
 printf(“Counter value recovered successfully”);

 while (Normal_Operation == 1)
 {
 if (writeCounters(++Counter) == 0)
 {
 // Handle irrecoverable error here
 printf(“Unable to persist counter without errors”);
 while(1); // wait
 }
 }
}

 2012 Microchip Technology Inc. DS01449A-page 7

AN1449
NOTES:
DS01449A-page 8  2012 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.
 2012 Microchip Technology Inc.

QUALITY MANAGEMENT SYSTEM
CERTIFIED BY DNV

== ISO/TS 16949 ==
Trademarks

The Microchip name and logo, the Microchip logo, dsPIC,
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,
PIC32 logo, rfPIC and UNI/O are registered trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,
MXDEV, MXLAB, SEEVAL and The Embedded Control
Solutions Company are registered trademarks of Microchip
Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, chipKIT,
chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net,
dsPICworks, dsSPEAK, ECAN, ECONOMONITOR,
FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP,
Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB,
MPLINK, mTouch, Omniscient Code Generation, PICC,
PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE,
rfLAB, Select Mode, Total Endurance, TSHARC,
UniWinDriver, WiperLock and ZENA are trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2012, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

 Printed on recycled paper.

ISBN: 9781620764381
DS01449A-page 9

Microchip received ISO/TS-16949:2009 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

DS01449A-page 10  2012 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support
Web Address:
www.microchip.com

Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260

Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445

Toronto
Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431

Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Tel: 86-10-8569-7000
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889

China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500

China - Hangzhou
Tel: 86-571-2819-3187
Fax: 86-571-2819-3189

China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431

China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470

China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066

China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760

China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118

China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130

China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123

India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632

India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513

Japan - Osaka
Tel: 81-66-152-7160
Fax: 81-66-152-9310

Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122

Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302

Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934

Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859

Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068

Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069

Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-5778-366
Fax: 886-3-5770-955

Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-330-9305

Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820

Worldwide Sales and Service

11/29/11

http://support.microchip.com
http://www.microchip.com

	Introduction
	Overview
	Implementation Details
	Error Correcting Code
	Gray Coding
	Redundancy
	Relocation MAP
	Algorithm for Reliable Counter Recovery
	Resulting Endurance of Counter

	Notes
	Conclusion
	Appendix A: Library API
	Configuration
	Interface
	Debugging

	Appendix B: Code Example
	Trademarks
	Worldwide Sales

