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Design Tips for the MCP3911
INTRODUCTION
The central goal of this application note is to supply
support material for a new MCP3911 design. In many
systems, multiple MCP3911 devices will exist to
measure multiple powers, currents, or voltages. Proper
cascading of the delta sigma master clock (MCLK) and
serial communication to lessen I/O usage on the
microcontroller will be discussed. For energy metering
and power monitoring systems, grounding and layout
are essential when the MCP3911 is connected to the
primary side of a high voltage system, e.g. shunt-based
current sensing systems. PCB layout techniques,
through proper analog and digital grounding, will be
described here, using a reference design available for
the MCP3911.

The operation of the ADC across different operating
conditions will also be discussed. There are various
ways to optimize the accuracy of the analog-to-digital
conversion. Decisions such as choosing the correct
oversampling ratio, or selecting proper MCLK speeds,
can affect the conversion performance from a few dB to
much more, in some cases.

Here, pushing the limits of the analog-to-digital
conversion will be the focus, showing the true
performance limits of the device.

Addressable Devices on Single SPI Bus
The MCP3911 analog front ends are addressable in
such a way that multiple devices can be placed on a
single SPI bus using a single CS pin. When ordering
the devices, they can be purchased with different part
numbers containing address codes A0, A1, A2 or A3.
These address options correspond to the following
address bits in the control byte of the MCP3911, shown
in Figure 1.

These devices should all share the same oversampling
clock, i.e. the OSC1 pin of these devices should be tied
together. This clock is typically driven from an output
compare or Pulse-width Modulation (PWM) module of
the microcontroller, which is discussed in more detail
later in this application note. This allows for a reduced
pin count microcontroller to be used in a system such
as shown in Figure 1.

FIGURE 1: Addressable SPI for Poly-phase Meter Designs.
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SINGLE VS. MULTIPLE IRQ
When the devices are clocked by a single MCLK, and
the OSC1 pins are tied together, as long as the internal
clock prescale and oversampling ratios are the same,
the data ready pulse will be synchronized between the
devices. This holds true only if there is no phase delay
introduced into the PHASE register, or if the PHASE
register values match. If it is intended for no phase
delay to be introduced on any of the individual
MCP3911 devices, then a single interrupt request pin
(IRQ) can be used, and the devices are simply read in
sequence prior to the next DR event. 

FIGURE 2: Control Byte.

One-command Configuration at System 
Startup
After VDD has stabilized on the MCP3911, it is possible
to configure the device for use in your application. For
time-sensitive applications, a one-shot configuration
word can be sent to write values across all
configuration registers. The internal registers of the
MCP3911 can be written to and clocked consecutively,
without the need for raising CS between registers and
transmitting multiple control bytes. There is no global
address write command for multiple MCP3911 devices,
so each MCP3911 device must be written to
individually with separate address bytes. It is not
necessary for the master clock (MCLK) of the
MCP3911 to be active during this configuration loading
on the SPI bus. It is also not necessary to reset the
device before this configuration.

If you want to reset or configure all the devices
simultaneously, simply stop the MCLK during the
loading of the configuration registers. The SPI clock
(SCK) will only load the serial interface register values.
The internal function depends on the master digital
clock MCLK, so starting this after the devices have
been loaded would be equivalent to a global address
write.

The PHASE:8, STATUSCOM:16, CONFIG:16, and
optionally the offset and gain calibration registers
OFFCAL_CH0:24,GAINCAL_CH0:24,OFFCAL_CH1:
24, and GAINCAL_CH1:24 can all be written
consecutively as shown in Figure 3. 

.

FIGURE 3: Typical One Command Configuration.

MCLK Generation
In a system such as the one shown in Figure 1, the
MCLK generated by the microcontroller should always
be present when measuring and calculating power
quantities. In the system shown, the MCLK and MCU
internal clock are synchronous, which is best when
attempting to do a specific number of power
calculations between an integer number of samples.

The MCP3911 contains an internal oscillator, which
allows the device to be used with an external crystal.
This draws slightly more current, the internal oscillator
circuitry can be disabled by setting the CLKEXT bit to 0
if a crystal is not used, and the part receives an
externally generated clock source, such as a pin on a
microcontroller, as shown in Figure 1. For higher
performance microcontrollers, the operating frequency
of the MCU clock can be higher than the limit of the
internal analog master clock (AMCLK) of the
MCP3911. 
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For situations such as this, the internal prescaler of the
MCP3911 should be used, as shown in Table 1, by
changing the PRE bits in the configuration register. 

Continuous Read Modes
The MCP3911 has various read modes that allow you
to loop over certain regions of addresses. These
modes are available by changing the READ bits in the
CONFIGURATION register. This allows the user to
avoid sending multiple control bytes.

There are a total of four read modes. Registers that are
defined as groups can be read continuously with a
single CS assertion. Registers that are defined as
types can be read continuously with a single CS
assertion. The entire register map can be read
continuously with a single CS assertion, or a single
register can be read repeatedly with a single CS
assertion. A description of the register types and
groups are defined in Table 2. Note this is a partial
listing of the register set. 
.

Power Optimization
The MCP3911 has many low power options that should
be used to lessen the power consumption of the
device, given certain application environments. The
various blocks of the device that can be shut down will
be described here.

OSCILLATOR CIRCUIT
The MCP3911 contains an internal oscillator that
allows the device to be connected to a low-cost crystal
and generate its own internal clock source. In
applications where a MCU is driving the clock (or some
other clock source), the oscillator circuit of the device
can be put into shutdown mode, saving current. This is
done by setting the CLKEXT bit in the CONFIG register
to logic high.

MCLK SPEED AND OSR SELECTION
AMCLK is the internal clock speed that is post
prescaler and drives the sample rate of the device. If
your application is power sensitive, the bandwidth of
the system should be thoroughly investigated, as the
internal clock speed and sampling rate is the overall
factor in determining the current drawn through DVDD
pin, DIDD.

Changing the Oversampling Ratio (OSR) will have no
effect on AIDD, i.e. increasing the oversampling to get
higher accuracy data at a slower rate will not diminish
the power consumed inside the MCP3911. However,
from an overall system perspective, the use of higher
OSRs on the MCP3911 will greatly reduce any post
averaging and power consumption that might then be
needed on the MCU. Therefore, it is always best to use
the highest OSR as possible, to put the averaging on
the MCP3911, and reduce the data rate and processing
that occurs on the MCU. The bandwidth of the
application will limit the highest OSR. For power
measurement and energy metering applications,
typically the 50th or 60th harmonic is enough for
adequate bandwidth selection. So for a 60 Hz line
frequency, this would require at minimum a 4-5 ksps
rate from the ADC. The relationship between sample
rate (DRCLK), OSR, and MCLK is shown in the
following equation.

EQUATION 1:

So for a target data rate of ~4 ksps, an OSR of 256 can
be used from a MCLK of 4 MHz.

TABLE 1: PRESCALER SETTINGS
Config Analog Master Clock

 Prescale PRE<1:0>

0 0 AMCLK = MCLK/1 (default)
0 1 AMCLK = MCLK/2
1 0 AMCLK = MCLK/4
1 1 AMCLK = MCLK/8
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To directly change the digital current consumption, a
slower MCLK can be used, if the bandwidth of the
application allows it. Digital IDD (DIDD) is directly tied to
the MCLK rate. If power consumption is more important
than analog to digital conversion, then a slower MCLK
with a lower OSR might yield ADC results that are
sufficient for the application, while keeping the power
consumption lower.

ANALOG CURRENT BOOST
The driving factor of the analog IDD, (AIDD), is the
current boost setting in the CONFIG register. The
current boost options determine how much current is
given to the analog portion of the device, which drives
the delta sigma modulator, PGA, and other blocks
crucial to the A/D conversion. For slower sampling
speeds, the current required by this circuit is lessened,
and a lower boost setting should be used.

The following figure shows the trade-off in AIDD for the
different boost settings, and also the relationship
between MCLK and DIDD. Notice that AIDD is not
affected by increasing the MCLK, only by changing the
BOOST setting.

FIGURE 4: Operating Current vs. MCLK 
and BOOST Settings, VDD = 3.3V.

So the obvious next question should be, how do I
determine the correct BOOST setting for my
application? Once you have determined the
appropriate sample rate and MCLK frequency for your
application, you can choose the correct boost setting.
As you can see from the following figure, the
performance of the device (shown here by measuring
Signal-to-Noise and Distortion Ratio (SINAD)) is
drastically impacted at certain sampling rates, if the
proper current boost is not selected.

FIGURE 5: SINAD vs. MCLK and 
BOOST Settings, VDD = 3.3V.
Here you can see, for the lowest boost setting that
consumes the least power (Boost = 0.5x), performance
falls off around 3-4 MHz. Whereas, the highest current
boost setting that consumes the most power (Boost =
2x), AMCLK can be driven to almost 20 MHz with no
degradation of performance. The above graph is for
PGA GAIN = 1 and for VDD = 3.3V. This graph does not
tell the entire story, as maximum clock rates are also
slightly effected by PGA gain and VDD. Table 3
provides a more complete story, showing
recommended maximum clock speeds as a function of
BOOST, PGA, and VDD. This table was generated by
selecting the limit where SINAD was more than -5 dB
from its maximum. 
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FULL SHUTDOWN MODE
The MCP3911 offers the ability to put the device into
extreme low power mode for situations when the ADCs
are not being used. These modes shut off the entire
analog section of the chip and consume less than 1
micro amp of power. This is defined as “FULL
SHUTDOWN MODE” and can be entered by setting
the shutdown bits in the CONFIG register. This mode
disables everything in the device, including the POR,
so care should be taken when using this shutdown
mode. 

Detecting a POR event inside the 
MCP3911
In certain applications, it may be useful for the system
to know if a Power on Reset (POR) event has occurred
inside the MCP3911. This can be caused if there is a
glitch or other noise on the power supply and would
erroneously reset all the configuration settings back to

zero without the host MCU being aware (unless a
check of the registers or a test against the configuration
CRC is done).

One method of doing this would be to check the timing
of the data ready (DR) pulses coming from the device.
A POR is going to cause two extra 1/DRCLK time
periods before the first DR pulse after POR, due to the
SINC filter settling time.

Accuracy Optimization
Optimizing the device for proper AMCLK speeds and
low power modes is not the only way to get the most out
of the MCP3911. Using the device to get optimal
accuracy from the analog-to-digital conversion is the
primary concern in many applications. This section will
discuss how to get the best dynamic performance
(SINAD, and Total Harmonic Distortion (THD)) from the
device under various situations.

TABLE 3: MAXIMUM AMCLK LIMITS AS A FUNCTION OF BOOST AND PGA GAIN

Conditions VDD = 3.0V to 3.6V, TA 
from -40°C to 125°C

VDD = 2.7V to 3.6V, TA 
from -40°C to 125°C

Boost Gain Maximum AMCLK 
(MHz) 

Maximum AMCLK 
(MHz) 

Maximum AMCLK 
(MHz) 

Maximum AMCLK 
(MHz) 

0.5x 1 3 3 3 3
0.66x 1 4 4 4 4
1x 1 10 10 10 10
2x 1 16 16 16 16
0.5x 2 2.5 3 3 3
0.66x 2 4 4 4 4
1x 2 10 10 10 10
2x 2 14.5 16 13.3 14.5
0.5x 4 2.5 2.5 2.5 2.5
0.66x 4 4 4 4 4
1x 4 10 10 8 10
2x 4 13.3 16 10.7 11.4
0.5x 8 2.5 2.5 2.5 2.5
0.66x 8 4 4 4 4
1x 8 10 10 6.7 8
2x 8 10 14.5 8 8
0.5x 16 2 2 2 2
0.66x 16 4 4 4 4
1x 16 10.6 10.6 8 10
2x 16 12.3 16 8 10.7
0.5x 32 2 2 2 2
0.66x 32 4 4 4 4
1x 32 10 11.4 8 10
2x 32 13.3 16 8 10
© 2012 Microchip Technology Inc. DS01426A-page 5
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CORRECT USE OF THE MCP3911 DITHERING 
BLOCK
The dithering block of the MCP3911 introduces non-
correlated pseudo-random noise into the modulator
output of the MCP3911, adding to the overall noise
floor of the device. This additive noise, however,
effectively lowers any correlated noise created by the
MCP3911 device itself. This is the reason for
decreased THD and improved INL for the device.
However, the overall accuracy is typically denoted by
looking at the Effective Number of Bits (ENOB)
calculated from SINAD, which is a combination of the
harmonics included in the THD specification, and the
noise floor, accurately described by the Signal-to-Noise
ratio (SNR). The important thing to note here is that
since the dithering block is adding noise, depending on
which OSR you are using, the oversampling may or
may not be able to effectively remove the uncorrelated
noise added by the dithering block. The following figure
shows SINAD versus OSR at the different dithering
options (see Figure 6).

FIGURE 6: Correct Use of Dithering at 
Various OSR Settings.

It can be shown that for the lower OSR settings
(OSR=32, OSR=64), the dithering should be turned off,
or set to none. This will increase the overall
performance by many dB and at least 1-2 bits of
performance.

At the higher OSR, the dithering block has less of an
impact, and should typically be turned ON, due to the
improvement in THD, shown below:

FIGURE 7: THD vs. OSR.
Here, the effect of the dithering block is lessened at the
lower OSRs for removing the correlated noise, such as
THD.
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Hardware Layout / PCB Grounding
The MCP3911 is a mixed signal IC with both analog
and digital ports. For power, it has both analog (AVDD)
and digital (DVDD) pins. For grounding, it has both
analog and digital ground pins as well, labeled AGND
and DGND, respectively. An MCP3911 system will also
include a microcontroller or DSP. As the device has
been primarily designed for power and energy
measurement-type applications, direct connection to
the outside world via a high voltage power line is also a
likely scenario, and a hurdle towards a low noise PCB
design.

The schematic and layout discussed in this section are
from a meter designed with the MCP3911 and
PIC18F65J90. Complete schematic, layout, Gerbers
and BOM are located on the MCP3911 product page on
Microchip’s web site.

The first point of discussion is the power supply, shown
in Figure 8. This shows the connection directly to a high
voltage line, e.g. a two-wire 120V or 220V system. A
current sensing shunt is used for the current
measurement on the high side (line side), and this also
supplies the ground for the system. This is necessary,
as the shunt is connected directly to the channel input
pins of the MCP3911. If the shunt is off-board, it will
require wires coming from the shunt to the inputs of the
PCB here CP4 and CP5. To reduce sensitivity to
external influences such as Electromagnetic
Interference (EMI), these two wires should form a
twisted pair, not shown in the figure.

Here you can see the shunt, which is connected across
connection points CP4 and CP5. It is also connected to
the ground of the system, initially to a node described
here as GROUND B or GNDB. This is the most noisy
place on the meter, as it is tied directly to the outside
world, at the connection to the line. L4 and C13 provide
some immunity to external noise. The capacitive power
supply created by C12, C14, R11, D3, and D2 is more
completely described in AN994 “IEC Compliant
Active-Energy Meter Design” (DS00994B), also
available on the MCP3911 product page on Microchip’s
web site. This document details component value
selection for this part of the circuit. For this application
note and the focus of discussion here, we are
interested in the grounding and power scheme of this
circuit. Note that the power supply components are all
connected to GNDB, with inductive choke L5
separating GNDB from a new ground, GNDA, or
Analog Ground. 

Also shown here is the separation of a 3.3V digital and
3.3V analog supply. Depending on the cost sensitivity
of the application, a single regulator with adequate
filtering between a digital and analog supply rail might
be sufficient. The most conservative approach is
shown here.

C11 and C17 would represent the analog and digital
“start’ points, where sensitive components would be
caught on power lines stemming from this base
charging locale. 

FIGURE 8: Example Power Supply and Grounding, Separate Regulators Supply 3.3V Analog and 
3.3V Digital.
The analog ground (GNDA) is separated out to be
home to the most noise sensitive part of the application
circuit, where the signal sizes would typically be the
smallest. In energy metering and power monitoring
systems, this sensitive part is always the current
sensing area of the PCB.

Small power shunts and small currents lead to very
small signals going into the current channel of the
MCP3911. For example, a 200 mΩ shunt measuring a
current of 50 mA produces a peak-to-peak voltage of
28.2 µV. (200 x 10 -6 Ω x 50 x 10 - 3 A x 2 x sqrt(2) = 28.2
x 10 -6 V). These small signals must all be kept
separate from other parts of the system. 
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Taking a closer look at Figure 9, you will notice that all
components associated with the current input path are
connected to the analog ground (GNDA). Also note that
the voltage reference bypass capacitors C8 and C9 are
also connected to this ground plane. The analog
ground and the analog VDD are also connected and
bypassed to GNDA. DGND and the digital side of the
device are connected to GNDB. 
 

FIGURE 9: MCP3911 Showing Proper Analog (GNDA) and Digital (GNDB) Grounding.
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PCB LAYOUT
For component placement and layout, the utmost care
must be given to this area also. The traces on the PCB
must be kept as short as possible, and any symmetry
within the differential pair must be maintained. 

FIGURE 10: PCB Layout of Noise 
Sensitive Components; Red Line Represents 
Analog Ground Plane AGND.
The red line in Figure 10 represents the AGND section
of the PCB. The power supply and MCU are separated
on the right hand side of the PCB, surrounded by the
digital ground plane. The MCP3911 is kept on the left
hand side, surrounded by the analog ground plane.

The back side of the board shows the same ground
plan, again surrounded in red. There are two separate
power supplies going to the digital section of the
system and the analog section, including the
MCP3911. Here you can also see the ferrite bead that
is connecting the analog and digital ground places,
circled in yellow in Figure 11. 

   

FIGURE 11: MCP3911 Design with 
Proper Analog and Digital Grounding and Power 
Supply Layout.
The ferrite bead between the digital and analog ground
planes helps to keep high frequency noise from
entering through the device. Also, they are typically
placed on the shunt inputs and into the power supply
circuit for additional protection.

Summary
The MCP3911 is a highly accurate analog-to-digital
converter that can achieve 15.5 effective number of bits
(ENOB) with extremely low signal levels. Proper PCB
design is essential, especially when dealing with
primary side high-voltage designs. The device is
extremely configurable and offers the user many
choices for varying applications. When used correctly,
it offers a powerful solution to analog-to-digital
conversion needs.

REFERENCE
[1] MCP3911 Data Sheet, “3.3V Two-Channel Analog
Front End”, Microchip Technology Inc., DS22286,
2012.
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Note the following details of the code protection feature on Microchip devices:
• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the 
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our 
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data 
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not 
mean that we are guaranteeing the product as “unbreakable.”
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