
AN1388
PIC32 Bootloader
INTRODUCTION
The bootloader for PIC32 devices is used to upgrade
firmware on a target device without the need for an
external programmer or debugger.

The bootloader consists of the following applications:

• Five bootloader firmware implementations:
- Universal Asynchronous Receiver Transmitter

(UART)
- Universal Serial Bus (USB) device based on the

Human Interface Device (HID) class
- USB host based on the Mass Storage Device

(MSD) class
- Ethernet
- Secure Digital (SD) card

• A demonstration application, which can be
downloaded into the target PIC32 device using the
bootloader

• A PC host application (required for UART, USB HID
and Ethernet bootloaders only) to communicate with
the bootloader firmware running inside the PIC32
device. This application is used to perform erase
and programming operations.

PREREQUISITES
The prerequisites for operating the bootloader
application are as follows:

• A PC with MPLAB® IDE version 8.60 or later, or
MPLAB X Beta version 7.12 or later installed, and
the C32 compiler version 2.01 or later installed

• Development hardware based on the selected
project, as listed in TABLE 9: “Available
Bootloader Workspaces”

• A USB-to-serial port converter (if the COM port is
not available on the PC) for the UART bootloader

• A USB Flash drive for use with the USB mass
storage bootloader

• A SD card for use with the SD card bootloader
• An Ethernet (RJ-45) crossover cable for use with the

Ethernet bootloader
• A traditional programming tool for initially writing the

bootloader firmware into the PIC32 device (such as
MPLAB® REAL ICE™ In-Circuit Emulator or the
MPLAB ICD 3 In-Circuit Debugger). PIC32 starter
kits do not require any programming tools.

Before using the PIC32 Bootloader, the user should be
familiar with the following concepts:

• PIC32 device Configuration registers
• Compiling and programming a PIC32 device
• PIC32 linker scripts

BASIC FLOW OF THE BOOTLOADER
The flowchart in Figure 3 illustrates the operation of the
bootloader application. The bootloader code starts
executing on a device Reset. If there are no conditions
to enter the firmware upgrade mode, the bootloader
starts executing the user application. The bootloader
performs Flash erase/program operations while in the
firmware upgrade mode.

Entering the Firmware Upgrade Mode
On a device Reset, the bootloader forces itself into the
firmware upgrade mode if the content of the user
application’s reset vector address is erased. To
manually force the bootloader into the firmware
upgrade mode, press and hold the switch, S3, on the
Explorer 16 Development Board during power-up. On
PIC32 starter kits, press and hold the switch, SW3,
during power-up. While in firmware upgrade mode, the
LED labeled D5 on the Explorer 16 Development Board
and the LED labeled LED3 on the PIC32 starter kit will
blink.

Exiting the Firmware Upgrade Mode
For USB HID, Ethernet, or the UART bootloader, the
firmware upgrade mode can be exited either by
applying a hard Reset to the device, or by sending a
“Jump to Application” command from the PC. For the
USB Flash drive or SD card bootloader, the firmware
upgrade mode is exited either by a hard Reset or upon
completion of firmware programming.

Author: Ganapathi Ramachandra
Microchip Technology Inc.

Note: The bootloader should disable and clear
any enabled interrupts before running the
user application. The stray interrupts from
the bootloader may interfere with the user
application and cause the application to fail.
If applicable, interrupts and peripherals
should be reinitialized in the user
application.
© 2011-2012 Microchip Technology Inc. DS01388B-page 1

AN1388
BOOTLOADER PLACEMENT IN
MEMORY
Figure 1 illustrates two schemes for the bootloader
placement based on the size of the bootloader.
Bootloaders that are smaller in size are placed within
the PIC32 boot Flash memory. Fitting the bootloader
application within the boot Flash memory provides the
complete program Flash memory for the user
application.

In the case of bootloaders that exceed the size of
PIC32 boot Flash, the bootloader is split into two parts.
The Interrupt Vector Table (IVT) and the C start-up
code are placed in boot Flash, and the remaining
portion of the bootloader is placed inside the program
Flash.

FIGURE 1: BOOTLOADER PLACEMENT

Reserved

Bootloader IVT

0x9FC02FEF

0x9FC00000

0x9D07FFFF

0x9D000000

Boot Flash(1)

Program Flash(1)

0x9FC02FEF

0x9FC00000

0x9D07FFFF

0x9D000000

Bootloader placement in
program Flash memory

Bootloader placement in
boot Flash memory

Note 1: The size of the boot Flash memory and program Flash memory depends on the particular device. Refer
to the “Memory Organization” chapter in the specific device data sheet for more information.

Bootloader
Code and IVT

User Application
Code and IVT

Reserved

User Application
Code and IVT

Bootloader
Code
DS01388B-page 2 © 2011-2012 Microchip Technology Inc.

AN1388
IMPLEMENTATION OVERVIEW
(UART, USB HID, AND ETHERNET)
The bootloader application is implemented using a
framework. The bootloader firmware communicates
with the PC host application by using a predefined
communication protocol. The bootloader framework
provides Application Programming Interface (API)
functions to handle the protocol related frames from the
PC application. For more information on the
communication protocol, see Appendix B:
“Bootloader Communication Protocol (UART, USB
HID, and Ethernet)”.

FRAMEWORK (UART, USB HID, AND
ETHERNET)
Figure 2 illustrates the bootloader architecture. The
bootloader framework provides several API functions,
which can be called by the bootloader application and
the transport layer. The bootloader framework assists
the user to easily modify the bootloader application to
adapt to different requirements.

FIGURE 2: BOOTLOADER
ARCHITECTURE (UART,
USB HID, AND ETHERNET)

The Bootloader.c file contains the bootloader
application code. This file includes the bootloader
functionality, and is illustrated in Figure 3.

FIGURE 3: BOOTLOADER OPERATION

Ethernet

USB

UART

Framework Services

Bootloader Application

Transport Layer

Reset

Initialize System Clock

Check Trigger

Firmware Upgrade Mode

On Command Jump to Application/

No Valid Application

Trigger Exists

No Trigger

Valid Application

Run Application

Check for Valid
Application

Disable and Clear Interrupts
(If Any)

Device Reset

Program Completion

Erase/Program/Verify
© 2011-2012 Microchip Technology Inc. DS01388B-page 3

AN1388

The Framework.c file contains the framework
functions. The framework handles the communication
protocol frames, and executes commands received
from the PC host application.

The transport layer files, Uart.c and
Usb_HID_tasks.c, include the functionality for
transmitting and receiving the raw bytes to and from the
PC host application.

Table 1 lists the API functions provided by the
framework.

TABLE 1: FRAMEWORK API DESCRIPTIONS (UART, USB HID, AND ETHERNET)
API Description

void FrameWorkTask(void) This function executes the command if there is a valid
frame from the PC host application. It must be called
periodically from the bootloader application task.

Input Parameters:
None.

Return:
None.

void BuildRxFrame(UINT8 *RxData, INT16 RxLen) The transport layer calls this function when it receives
data from the PC host application.

Input Parameters:
*RxData – Pointer to the received data buffer

RxLen – Length of the received data bytes

Return:
None.

UINT GetTransmitFrame(UINT8* TxData) Returns a non-zero value if there is a valid response
frame from the framework. The transport layer calls
this function to check if there is a frame to be
transmitted to the PC host application.

Input Parameters:
*TxData – Pointer to a data buffer that will carry the
response frame

Return:
Length of the response frame. Zero indicates no
response frame.

BOOL ExitFirmwareUpgradeMode(void) This function directs the bootloader application to exit
the Firmware Upgrade mode, and executes the user
application. This can happen when the PC host
application issues the run application command.

Input Parameters:
None.

Return:
If value is true, exit Firmware Upgrade mode.
DS01388B-page 4 © 2011-2012 Microchip Technology Inc.

AN1388
HANDLING DEVICE CONFIGURATION
BITS
The bootloader does not erase or write the device
Configuration words while programming the new
application firmware. This is because the device
Configuration words settings are shared by both the
bootloader and the user application. Any modification
to the device Configuration words may make the
bootloader non-functional. Therefore, it is highly
recommended to have common device Configuration
words settings for both the user application and the
bootloader.

DEMONSTRATION APPLICATION
The Demo_Application folder contains a sample
demonstration application that controls two LEDs
causing them to blink. Table 2 lists the two workspaces
that support the Explorer 16 Development Board and
PIC32 starter kits. The demonstration application uses
the custom linker script file to map the entire application
into the program Flash without overlapping the
bootloader.

Use the following procedure to configure and build the
project:

1. In MPLAB or MPLAB X, open the desired
workspace.

2. Select the desired device part number in the
IDE.

3. Build the project in Release mode. The project
compiles and generates a .hex file.

The resulting application Hex file can be downloaded
into the selected development board through the
bootloader. This demonstration application controls
two LEDs labeled D9 and D10 on the Explorer 16
Development Board, or the LEDs labeled LED1 and
LED2 on a PIC32 starter kit, causing them to blink.

TABLE 2: EXPLORER 16 DEVELOPMENT BOARD AND PIC32 STARTER KIT WORKSPACES

Workspace Hardware Resource Compatible
Devices Action

For MPLAB®:
Demo_App_Explorer16.mcp

For MPLAB X:
Demo_App_Explorer16.X

Explorer 16 Development Board PIC32MX1XX(1)

PIC32MX2XX(1)

PIC32MX3XX
PIC32MX4XX
PIC32MX5XX
PIC32MX6XX
PIC32MX7XX

Blinks LEDs D9
and D10.

For MPLAB:
Demo_App_PIC32_Starter_Kits.mcp

For MPLAB X:
Demo_App_PIC32_Starter_Kits.X

PIC32 USB Starter Kit II or
PIC32 Ethernet Starter Kit

PIC32MX3XX
PIC32MX4XX
PIC32MX5XX
PIC32MX6XX
PIC32MX7XX

Blinks LEDs LED1
and LED2.

Note 1: The demonstration application requires firmware modification to map the LEDs to the correct I/O ports.
© 2011-2012 Microchip Technology Inc. DS01388B-page 5

AN1388
USING THE BOOTLOADER
APPLICATION (UART, USB HID, AND
ETHERNET BOOTLOADERS)
Use the following procedure to run the UART/USB HID/
Ethernet bootloader:

1. Using Table 9, select the specific hardware
setup for the selected bootloader.

2. With a debugger or programmer, program the
bootloader into the device using Release Build.

3. Run PIC32UBL.exe, which is located in
the ..\PC_Application\ folder.

4. Depending on the bootloader workspace used,
enable either the USB, Serial port, or Ethernet
using the Communication Settings menu in the
PC application. For the Serial Port bootloader,
the default baud rate is 115200. For the USB
bootloader, the default values of Vendor ID
number (VID) and Product ID number (PID) are
0x4D8 and 0x03C, respectively. For the Ethernet
bootloader, the default IP address is
192.168.1.11.

5. If you are using the Ethernet bootloader, set the
IP address and subnet mask of the PC to
192.168.1.12 and 255.255.255.0, respectively.

6. To enter the firmware upgrade mode, use the
procedure as described in “Entering the
Firmware Upgrade Mode”.

7. Depending on the type of bootloader
programmed, connect the serial cable, micro-USB
cable, or the Ethernet (RJ-45) crossover cable to
the Explorer 16 Development Board.

8. Click Connect. The device connects and the
bootloader version information is read.

9. Click Load Hex File, and browse to the
Demo_Application folder.

10. Select the specific demonstration application file
Demo_App_Explorer16.hex/
Demo_App_PIC32_Starter_Kits.hex,
located in the Firmware\Demo_Application
folder.

11. Click Erase to erase the device.
12. Click Program to program the previously loaded

.hex file into the device Flash.
13. Click Verify to verify the Flash contents. If the

Flash is written correctly, the “Verification
successful” message is displayed in the
console.

14. Click Run Application. The application must
run and perform an action, as listed in the
Remarks column in Table 2. Optionally, steps
11, 12 and 13 can be performed as a single
action by clicking Erase-Program-Verify.

15. Once the device starts running the programmed
application firmware, the PC application will not
be able to communicate with the device. To
reconnect to the bootloader, return to step 6.

RUNNING THE USB HOST FLASH
DRIVE BOOTLOADER
Use the following procedure to run the USB host Flash
drive bootloader:

1. Using Table 9, select the hardware setup for the
USB host Flash drive bootloader.

2. Using a debugger or programmer, program the
USB host MSD bootloader into the device.

3. After programming the device, perform the
procedure as described in “Entering the
Firmware Upgrade Mode” to place the
bootloader into the firmware upgrade mode.

4. Copy the application .hex file to a USB Flash
drive and rename the hex file to image.hex.

5. Insert the USB Flash drive into the selected
development hardware. The bootloader begins
programming the image into the program Flash
memory of the device. If applicable, the LED on
the Flash drive blinks during the programming
operation. After programming has completed,
the bootloader exits and starts running the
application.

Note: If the device does not recognize the Flash
drive (or the file on the Flash drive), format
the Flash drive in the FAT32 format.
DS01388B-page 6 © 2011-2012 Microchip Technology Inc.

AN1388
RUNNING THE SD CARD
BOOTLOADER
Use the following procedure to run the SD card
bootloader:

1. Using Table 9, select the specific hardware
setup for the SD card bootloader.

2. Copy the application .hex file to a SD card, and
rename the hex file to image.hex. Insert the
SD card into the selected hardware setup.

3. Program the SD card bootloader into the device
using Release Build.

4. After programming the device, perform the
procedure as described in “Entering the
Firmware Upgrade Mode” to place the
bootloader into the firmware upgrade mode.

5. Once inside the firmware upgrade mode, the
bootloader begins programming the hex image
into program Flash. During the programming
operation, the indicator LED on the selected
development hardware will blink at a faster rate.
After programming has completed, the
bootloader exits and starts running the user
application.

CONCLUSION
This application note provides the concepts of the
PIC32 bootloader, bootloader memory mapping,
bootloader framework API calls, and usage of the
bootloader PC application.

Appendix B: “Bootloader Communication Protocol
(UART, USB HID, and Ethernet)” explains the
communication protocol and the commands used by
the bootloader.

Appendix C: “Considerations While Moving the
Application Image” explains the step-by-step
approach to map the application to a different region
inside the program Flash.

Appendix D: “Bootloader Configurations” explains
the compile time settings available in the bootloader
source code.

Appendix E: “Bootloader Workspace” lists all the
available workspaces for the bootloader, and explains
the procedure to program the bootloader firmware into
the device.

REFERENCES
The following resources are available from Microchip
Technology Inc.

These documents provide information on the
terminologies used in the linker script file:

• “MPLAB® Assembler, Linker and Utilities for PIC32
MCUs User’s Guide” (DS51833)

• “MPLAB® C Compiler for PIC32 MCUs User’s
Guide” (DS51686)

These documents provide information on the PIC32
device and its peripherals:

• “PIC32MX1XX/2XX Data Sheet” (DS61168)
• “PIC32MX3XX/4XX Data Sheet” (DS61143)
• “PIC32MX5XX/6XX/7XX Data Sheet” (DS61156)

Note: If the device does not recognize the file on
SD card, format the SD card in the FAT32
format.
© 2011-2012 Microchip Technology Inc. DS01388B-page 7

AN1388
APPENDIX A: SOURCE CODE

All of the software covered in this application note is
available as a single WinZip archive file. This archive
can be downloaded from the Microchip corporate Web
site at:

www.microchip.com

Software License Agreement
The software supplied herewith by Microchip Technology Incorporated (the “Company”) is intended and supplied to you, the
Company’s customer, for use solely and exclusively with products manufactured by the Company.
The software is owned by the Company and/or its supplier, and is protected under applicable copyright laws. All rights are reserved.
Any use in violation of the foregoing restrictions may subject the user to criminal sanctions under applicable laws, as well as to civil
liability for the breach of the terms and conditions of this license.
THIS SOFTWARE IS PROVIDED IN AN “AS IS” CONDITION. NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR
STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE
FOR SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
DS01388B-page 8 © 2011-2012 Microchip Technology Inc.

http://www.microchip.com

AN1388
APPENDIX B: BOOTLOADER
COMMUNICATION
PROTOCOL (UART,
USB HID, AND
ETHERNET)

The PC host application uses a communication
protocol to interact with the bootloader firmware. The
PC host application acts as a master and issues
commands to the bootloader firmware to perform
specific operations.

Frame Format
The communication protocol follows the frame format,
as shown in Example 1. The frame format remains the
same in both directions, that is, from the host
application to the bootloader, and from the bootloader
to the host application.

EXAMPLE 1: FRAME FORMAT

The frame starts with a control character, Start of
Header (SOH), and ends with another control character,
End of Transmission (EOT). The integrity of the frame is
protected by two bytes of Cyclic Redundancy Check
(CRC)-16, represented by CRCL (low-byte) and CRCH
(high-byte).

Control Characters
Some bytes in the Data field may imitate the control
characters, SOH and EOT. The Data Link
Escape (DLE) character is used to escape such bytes
that could be interpreted as control characters. The
bootloader always accepts the byte following a <DLE>
as data, and always sends a <DLE> before any of the
control characters.

TABLE 3: CONTROL CHARACTER
DESCRIPTIONS

Commands
The PC host application can issue the commands listed
in Table 4 to the bootloader. The first byte in the data
field carries the command.

TABLE 4: COMMAND DESCRIPTION

READ BOOTLOADER VERSION
INFORMATION
The PC host application request for version information
to the bootloader is shown in Example 2.

EXAMPLE 2: REQUEST

The bootloader responds to the PC request for version
information in two bytes, as shown in Example 3.

EXAMPLE 3: RESPONSE

ERASE FLASH
On receiving the erase Flash command from the PC
host application, the bootloader erases that part of the
program Flash, which is allocated for the user
application. The request frame from the PC host
application to the bootloader is shown in Example 4.

EXAMPLE 4: REQUEST

The response frame from the bootloader to the PC host
application is shown in Example 5.

EXAMPLE 5: RESPONSE

Control Hex Value Description

<SOH> 0x01 Marks the beginning of a
frame

<EOT> 0x04 Marks the end of a frame

<DLE> 0x10 Data link escape

[<SOH>…]<SOH>[<DATA>…]<CRCL><CRCH><EOT>

Where:
 <...> Represents a byte
 [...] Represents an optional or variable number of bytes

Command Value
in Hexadecimal Description

0x01 Read the bootloader version
information

0x02 Erase Flash

0x03 Program Flash

0x04 Read CRC

0x05 Jump to application

[<SOH>…]<SOH>[<0x01>]<CRCL><CRCH><EOT>

[<SOH>…]<SOH><0x01><MAJOR_VER><MINOR_VER>
<CRCL><CRCH><EOT>

Where:
MAJOR_VER – Major version of the bootloader
MINOR_VER – Minor version of the bootloader

 [<SOH>…]<SOH><0x02><CRCL><CRCH><EOT>

 [<SOH>…]<SOH><0x02><CRCL><CRCH><EOT>
© 2011-2012 Microchip Technology Inc. DS01388B-page 9

AN1388

PROGRAM FLASH
The PC host application sends one or multiple hex
records in Intel Hex format along with the program
Flash command. The MPLAB C32 compiler generates
the image in the Intel Hex format. Each line in the Intel
hexadecimal file represents a hexadecimal record.
Each hexadecimal record starts with a colon (:) and is
in ASCII format. The PC host application discards the
colon and converts the remaining data from ASCII to
hexadecimal, and then sends the data to the
bootloader. The bootloader extracts the destination
address and data from the hex record, and writes the
data into program Flash.

The request frame from the PC host application to the
bootloader is shown in Example 6.

EXAMPLE 6: REQUEST

The response from the bootloader to the PC host
application is shown in Example 7.

EXAMPLE 7: RESPONSE

READ CRC
The read CRC command is used to verify the content
of the program Flash after programming. The request
frame from the PC host application to the bootloader is
shown in Example 8.

EXAMPLE 8: REQUEST

ADRS_LB, ADRS_HB, ADRS_UB and ADRS_MB, as
shown in Example 8, represent the 32-bit Flash
addresses from where the CRC calculation begins.

NUMBYTES_LB, NUMBYTES_HB, NUMBYTES_UB and
NUMBYTES_MB, as shown in Example 8, represent the
total number of bytes in 32-bit format for which the CRC
is to be calculated.

The response from the bootloader to the PC host
application is shown in Example 9.

EXAMPLE 9: RESPONSE

JUMP TO APPLICATION
The Jump to Application command from the PC
host application commands the bootloader to execute
the application. The request frame from the PC host
application to the bootloader is shown in Example 10.

EXAMPLE 10: REQUEST

There is no response to this command from the
bootloader because the bootloader immediately exits
the firmware upgrade mode and begins executing the
application.

[<SOH>…]<SOH><0x03>[<HEX_RECORD>…]<CRCL>
<CRCH><EOT>

Where:
HEX_RECORD is the Intel Hex record in hexadecimal format

[<SOH>…]<SOH><0x03><CRCL><CRCH><EOT>

[<SOH>…]<SOH><0x04><ADRS_LB><ADRS_HB>
<ADRS_UB><ADRS_MB><NUMBYTES_LB><NUMBYTES_HB>
<NUMBYTES_UB><NUMBYTES_MB><CRCL><CRCH><EOT>

[<SOH>…]<SOH><0x04><FLASH_CRCL><FLASH_CRCH>
<CRCL><CRCH><EOT>

 [<SOH>…]<SOH><0x05><CRCL><CRCH><EOT>
DS01388B-page 10 © 2011-2012 Microchip Technology Inc.

AN1388
APPENDIX C: CONSIDERATIONS
WHILE MOVING THE
APPLICATION IMAGE

This section describes the procedure to place a user
application into a desired program Flash memory
region. It must be ensured that the user application’s
memory region does not overlap with the memory
region reserved for the bootloader.

1. Create a new text file and save it with a .ld file
extension.

2. Add the new *.ld file to your project. The new
*.ld file appears in the project tree.

3. Starting with the default linker script is easier
than starting from the scratch. Use a text editor
to copy the contents of the \pic32mx\lib\
ldscripts\elf32pic32mx.x default linker
script into the newly created *.ld file. The
INCLUDE procdefs.ld directive should be
replaced with the contents of device specific \
pic32mx\lib\proc\device\procdefs.ld
portion of the linker script. The path \pic32mx\
lib is located inside the folder where C32
compiler tools are installed.

4. Edit the newly created *.ld file to remap the
linker script memory regions exception_mem,
kseg0_boot_mem, kseg1_boot_mem and
kseg0_program_mem into the program Flash
reserved for the user application. The
exception_mem must align on a 4K address
boundary of the program Flash as shown in
Example 11.

For more information on linker script memory
regions, refer to the “MPLAB® Assembler, Linker
and Utilities for PIC32 MCUs User’s Guide”
(DS51833) and the “MPLAB® C Compiler for
PIC32 MCUs User’s Guide” (DS51686).

5. Set the value of _ebase_address to the
ORIGIN value of exception_mem.

6. Change the values of memory addresses
_RESET_ADDR, _BEV_EXCPT_ADDR and
_DBG_EXCPT_ADDR, so that all these
addresses fall inside kseg1_boot_mem.

7. Clean and build the application project to get a
remapped application image.

The next step following the application remap is
informing the bootloader about the new location and
reset address of the user application in the program
Flash.

The bootloader code provides compile time options for
this purpose. The macros,
APP_FLASH_BASE_ADDRESS and
APP_FLASH_END_ADDRESS, define the start and the
end addresses of the program Flash reserved for the
user application. The bootloader performs an erase or
program operation only if the target address of the
Flash is within these addresses. Therefore, the user
must set new start and end address values to these
macros following the application remap. Set the
addresses so that exception_mem,
kseg0_boot_mem, kseg1_boot_mem, and
kseg0_program_mem defined in the procdefs.ld
file of the user application are within these addresses,
as shown in Example 12.
The macro, USER_APP_RESET_ADDRESS, specifies
the reset address of the user application. The
bootloader branches to this address when it must run
the user application. The value of this macro must be
changed to _RESET_ADDR defined in the
procdefs.ld file of the user application project. The
bootloader project must be recompiled and
programmed into the PIC32 device after modifying
these macros.

Note: The modified application linker script file is
not suitable for building the application in
debug or stand-alone (to use without
bootloader) mode.
© 2011-2012 Microchip Technology Inc. DS01388B-page 11

AN1388

EXAMPLE 11: LINES TO MODIFY IN APPLICATION LINKER SCRIPT
/***
 * Processor-specific object file. Contains SFR definitions.
 ***/
INPUT("processor.o")

/***
 * For interrupt vector handling
 ***/
PROVIDE(_vector_spacing = 0x00000001);
/* _ebase_address value must be same as the ORIGIN value of exception_mem (see below) */
_ebase_address = 0x9D000000;

/***
 * Memory Address Equates
 ***/
 /* Equate _RESET_ADDR to the ORIGIN value of kseg1_boot_mem (see below) */
_RESET_ADDR = (0x9D000000 + 0x1000 + 0x970);

/*Map _BEV_EXCPT_ADDR and _DBG_EXCPT_ADDR in to kseg1_boot_mem (see below) */
/* Place _BEV_EXCPT_ADDR at an offset of 0x380 to _RESET_ADDR */
/* Place _DBG_EXCPT_ADDR at an offset of 0x480 to _RESET_ADDR */

_BEV_EXCPT_ADDR = (0x9D000000 + 0x1000 + 0x970 + 0x380);
_DBG_EXCPT_ADDR = (0x9D000000 + 0x1000 + 0x970 + 0x480);

_DBG_CODE_ADDR = 0xBFC02000;
_DBG_CODE_SIZE = 0xFF0 ;
_GEN_EXCPT_ADDR = _ebase_address + 0x180;

/***
 * Memory Regions
 *
 * Memory regions without attributes cannot be used for orphaned sections.
 * Only sections specifically assigned to these regions can be allocated
 * into these regions.
 ***/
MEMORY
{
 /* IVT is mapped into the exception_mem. ORIGIN value of exception_mem must align with 4K

 address boundary. Keep the default value for the length */

 exception_mem : ORIGIN = 0x9D000000, LENGTH = 0x1000

 /* Place kseg0_boot_mem adjacent to exception_mem. Keep the default value for the length */
 kseg0_boot_mem : ORIGIN = (0x9D000000 + 0x1000), LENGTH = 0x970

 /* C Start-up code is mapped into kseg1_boot_mem. Place kseg1_boot_mem adjacent to
 kseg0_boot_mem. Keep the default value for the length */

 kseg1_boot_mem : ORIGIN = (0x9D000000 + 0x1000 + 0x970), LENGTH = 0x490

 /*All C files (Text and Data) are mapped into kseg0_program_mem. Place kseg0_program_mem

adjacent to kseg1_boot_mem. Change the length of kseg0_program_mem as required. In this
example, 512 KB Flash size is shrunk as follows: */

 kseg0_program_mem (rx):ORIGIN = (0x9D000000 + 0x1000 + 0x970 + 0x490),
LENGTH = (0x80000 - (0x1000 + 0x970 + 0x490))

 debug_exec_mem : ORIGIN = 0xBFC02000, LENGTH = 0xFF0
 config3 : ORIGIN = 0xBFC02FF0, LENGTH = 0x4
 config2 : ORIGIN = 0xBFC02FF4, LENGTH = 0x4
 config1 : ORIGIN = 0xBFC02FF8, LENGTH = 0x4
 config0 : ORIGIN = 0xBFC02FFC, LENGTH = 0x4
 kseg1_data_mem (w!x) : ORIGIN = 0xA0000000, LENGTH = 0x20000
 sfrs : ORIGIN = 0xBF800000, LENGTH = 0x100000
 configsfrs : ORIGIN = 0xBFC02FF0, LENGTH = 0x10
}

DS01388B-page 12 © 2011-2012 Microchip Technology Inc.

AN1388

EXAMPLE 12: LINES TO MODIFY IN BOOTLOADER CODE
/* APP_FLASH_BASE_ADDRESS and APP_FLASH_END_ADDRESS reserves program Flash for the application */
/* Rule:
 1) The memory regions kseg0_program_mem, kseg0_boot_mem, exception_mem and
 kseg1_boot_mem of the application linker script must fall within APP_FLASH_BASE_ADDRESS
 and APP_FLASH_END_ADDRESS

 2) The base address and end address must align on 4K address boundary
*/

#define APP_FLASH_BASE_ADDRESS 0x9D000000
#define APP_FLASH_END_ADDRESS 0x9D07FFFF

/* Address of the Flash from where the application starts executing */
/* Rule: Set APP_FLASH_BASE_ADDRESS to _RESET_ADDR value of application linker script */

#define USER_APP_RESET_ADDRESS (0x9D000000 + 0x1000 + 0x970)
© 2011-2012 Microchip Technology Inc. DS01388B-page 13

AN1388
APPENDIX D: BOOTLOADER
CONFIGURATIONS

The bootloader code provides a few macros for
configuring the settings while compiling. Table 5
through Table 8 list these macros and their usage.
Depending on user requirements, the values in these
macros may need to be changed.

TABLE 5: GENERAL MACROS

TABLE 6: UART BOOTLOADER MACRO

TABLE 7: USB HID BOOTLOADER MACROS

TABLE 8: ETHERNET BOOTLOADER MACROS

Macro Usage

APP_FLASH_BASE_ADDRESS Base address of the program Flash reserved for the user application. The
address value must point to the beginning of a 4K Flash page.

APP_FLASH_END_ADDRESS End address of the program Flash reserved for the user application. The
address value must point to the end of a 4K Flash page.

USER_APP_RESET_ADDRESS Address of user Reset vector. The bootloader branches to this address
when it must run the user application.

MAJOR_VERSION Major version of the bootloader firmware.

MINOR_VERSION Minor version of the bootloader firmware.

Macro Usage

DEFAULT_BAUDRATE Sets the UART baud rate.

Macro Usage

USB_VENDOR_ID Sets the vendor ID.

USB_PRODUCT_ID Sets the product ID.

Macro Usage

MY_DEFAULT_MAC_BYTE1
MY_DEFAULT_MAC_BYTE2
MY_DEFAULT_MAC_BYTE3
MY_DEFAULT_MAC_BYTE4

Sets the MAC address.

MY_DEFAULT_IP_ADDR_BYTE1
MY_DEFAULT_IP_ADDR_BYTE2
MY_DEFAULT_IP_ADDR_BYTE3
MY_DEFAULT_IP_ADDR_BYTE4

Sets the IP address.
DS01388B-page 14 © 2011-2012 Microchip Technology Inc.

AN1388
APPENDIX E: BOOTLOADER
WORKSPACE

The Bootloader folder contains the bootloader
firmware source code. The available workspaces are
listed in Table 9.

Programming the Bootloader Firmware
Use the following procedure to select a suitable
workspace depending on the hardware configuration
and the selected bootloader type.

1. Using MPLAB or MPLAB X, open the specific
bootloader workspace.

2. Select the specific device part number in IDE,
and rebuild the project.

3. After building the project, program the
bootloader into the device.

4. Use REAL ICE or ICD 3 to program the device
on an Explorer 16 Development Board. The
PIC32 starter kits do not require a programmer.

TABLE 9: AVAILABLE BOOTLOADER WORKSPACES

Project Name Development
Hardware

Compatible
Devices

Bootloader
Type

Bootloader
Mapping

For MPLAB®:
UART_Btl_Explorer16.mcp

For MPLAB X:
UART_Btl_Explorer16.X

Explorer 16
Development Board
(DM24001) and a
PIC32 Plug-in Module
(PIM)

PIC32MX1XX(1,2)

PIC32MX2XX(1,2)

PIC32MX3XX
PIC32MX4XX
PIC32MX5XX
PIC32MX6XX
PIC32MX7XX

UART See Note 3

For MPLAB:
UART_HID_Btl_StarterKit.mcp

For MPLAB X:
UART_HID_Btl_StarterKit.X

PIC32 Ethernet
Starter Kit
(DM320004) or the
PIC32 USB Starter Kit
II (DM320003-2)

PIC32MX2XX(1,2)

PIC32MX3XX
PIC32MX4XX
PIC32MX5XX
PIC32MX6XX
PIC32MX7XX

USB HID See Note 3

For MPLAB:
UART_MSD_Btl_StarterKit.mcp

For MPLAB X:
UART_MSD_Btl_StarterKit.X

PIC32 Ethernet
Starter Kit
(DM320004) or the
PIC32 USB Starter Kit
II (DM320003-2)

PIC32MX2XX(1,2)

PIC32MX3XX
PIC32MX4XX
PIC32MX5XX
PIC32MX6XX
PIC32MX7XX

USB MSD See Note 3

For MPLAB:
ETH_Btl_ETH_StarterKit.mcp

For MPLAB X:
ETH_Btl_ETH_StarterKit.X

PIC32 Ethernet
Starter Kit
(DM320004)

PIC32MX6XX
PIC32MX7XX

Ethernet (with
internal MAC)

See Note 3

Note 1: The bootloader code will need modifications to I/O port mapping for these devices.
2: The example bootloader linker script for these devices is provided in the Bootloader\

linker_scripts\PIC32MX_1XX_2XX folder. The user must compile the bootloader with the specific
linker script files.

3: Refer to the “Mapping Note” in the corresponding linker script file.
© 2011-2012 Microchip Technology Inc. DS01388B-page 15

AN1388
For MPLAB:
ETH_Btl_ETH_Explorer16_ENC28.mcp

For MPLAB X:
ETH_Btl_ETH_Explorer16_ENC28.X

Explorer 16
Development Board
(DM24001), a PIC32
PIM, and the Ethernet
PICtail™ Plus
Daughter Board
(AC164123)

PIC32MX1XX(1,2)

PIC32MX2XX(1,2)

PIC32MX3XX
PIC32MX4XX
PIC32MX5XX
PIC32MX6XX
PIC32MX7XX

Ethernet (with
external Ethernet
Controller
ENC28J60)

See Note 3

For MPLAB:
ETH_Btl_Explorer16_ENC624.mcp

For MPLAB X:
ETH_Btl_Explorer16_ENC624.X

Explorer 16
Development Board
(DM24001), a PIC32
PIM, and the Fast 100
Mbps Ethernet
PICtail™ Plus
Daughter Board
(AC164132)

PIC32MX1XX(1,2)

PIC32MX2XX(1,2)

PIC32MX3XX
PIC32MX4XX
PIC32MX5XX
PIC32MX6XX
PIC32MX7XX

Ethernet (with
external Ethernet
Controller
ENC624J600)

See Note 3

For MPLAB:
SD_Card_Btl_Explorer16.mcp

For MPLAB X:
SD_Card_Btl_Explorer16.X

Explorer 16
Development Board
(DM24001), a PIC32
PIM and the PICtail™
Daughter Board for
SD™ and MMC
Cards (AC164122)

PIC32MX1XX(1,2)

PIC32MX2XX(1,2)

PIC32MX3XX
PIC32MX4XX
PIC32MX5XX
PIC32MX6XX
PIC32MX7XX

SD Card See Note 3

TABLE 9: AVAILABLE BOOTLOADER WORKSPACES (CONTINUED)

Project Name Development
Hardware

Compatible
Devices

Bootloader
Type

Bootloader
Mapping

Note 1: The bootloader code will need modifications to I/O port mapping for these devices.
2: The example bootloader linker script for these devices is provided in the Bootloader\

linker_scripts\PIC32MX_1XX_2XX folder. The user must compile the bootloader with the specific
linker script files.

3: Refer to the “Mapping Note” in the corresponding linker script file.
DS01388B-page 16 © 2011-2012 Microchip Technology Inc.

AN1388
APPENDIX F: REVISION HISTORY

Revision A (June 2011)
This is the initial released version of this document.

Revision B (January 2012)
This revision includes the following updates:

• Updated the list of bootloader applications in
“Introduction”

• Updated “Prerequisites”
• Updated all content in “Basic Flow of the

Bootloader”
• Removed the section “Basic Settings”
• Updated Figure 1
• Updated the titles in “Implementation Overview

(UART, USB HID, and Ethernet)” and
“Framework (UART, USB HID, and Ethernet)”

• Updated the title in Figure 2
• Updated Figure 3
• Updated the title in Table 1
• Added “Demonstration Application”
• Updated all content in “Handling Device

Configuration Bits”
• Updated the title and the procedure in “Using the

Bootloader Application (UART, USB HID, and
Ethernet Bootloaders)”:

• Removed Figure 5: Communication Settings
• Removed Figure 6: Bootloader Connected

Successfully
• Removed Figure 7: PC Application Messages
• Added “Running the USB Host Flash drive

Bootloader”
• Added “Running the SD Card Bootloader”
• Updated “Conclusion”
• Updated the title in Appendix B: “Bootloader

Communication Protocol (UART, USB HID, and
Ethernet)”

• Updated all content in Appendix C:
“Considerations While Moving the Application
Image”

• Added Appendix D: “Bootloader Configurations”
• Added Appendix E: “Bootloader Workspace”
• Minor changes to the text and formatting were

incorporated throughout the document
© 2011-2012 Microchip Technology Inc. DS01388B-page 17

AN1388

NOTES:
DS01388B-page 18 © 2011-2012 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:
• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.
© 2011-2012 Microchip Technology Inc.
Trademarks

The Microchip name and logo, the Microchip logo, dsPIC,
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,
PIC32 logo, rfPIC and UNI/O are registered trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,
MXDEV, MXLAB, SEEVAL and The Embedded Control
Solutions Company are registered trademarks of Microchip
Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, chipKIT,
chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net,
dsPICworks, dsSPEAK, ECAN, ECONOMONITOR,
FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP,
Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB,
MPLINK, mTouch, Omniscient Code Generation, PICC,
PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE,
rfLAB, Select Mode, Total Endurance, TSHARC,
UniWinDriver, WiperLock and ZENA are trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2011-2012, Microchip Technology Incorporated, Printed in
the U.S.A., All Rights Reserved.

 Printed on recycled paper.

ISBN: 978-1-61341-942-7
DS01388B-page 19

Microchip received ISO/TS-16949:2009 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

DS01388B-page 20 © 2011-2012 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445
Toronto
Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing
Tel: 86-10-8569-7000
Fax: 86-10-8528-2104
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500
China - Hangzhou
Tel: 86-571-2819-3187
Fax: 86-571-2819-3189
China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431
China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130
China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513
Japan - Osaka
Tel: 81-66-152-7160
Fax: 81-66-152-9310
Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122
Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934
Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859
Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850
Taiwan - Hsin Chu
Tel: 886-3-5778-366
Fax: 886-3-5770-955
Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-330-9305
Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820

Worldwide Sales and Service

11/29/11

http://support.microchip.com
http://www.microchip.com

	Introduction
	Prerequisites
	Basic Flow of the Bootloader
	Entering the Firmware Upgrade Mode
	Exiting the Firmware Upgrade Mode

	Bootloader Placement in Memory
	FIGURE 1: Bootloader Placement

	Implementation Overview (UART, USB HID, and Ethernet)
	Framework (UART, USB HID, and Ethernet)
	FIGURE 2: Bootloader Architecture (UART, USB HID, and Ethernet)
	FIGURE 3: Bootloader Operation
	TABLE 1: Framework API Descriptions (UART, USB HID, and Ethernet)

	Handling Device Configuration Bits
	Demonstration Application
	TABLE 2: Explorer 16 Development Board and PIC32 Starter Kit Workspaces

	Using the Bootloader Application (UART, USB HID, and Ethernet Bootloaders)
	Running the USB Host Flash drive Bootloader
	Running the SD Card Bootloader
	Conclusion
	References
	Appendix A: Source Code
	Appendix B: Bootloader Communication Protocol (UART, USB HID, and Ethernet)
	Frame Format
	EXAMPLE 1: Frame Format

	Control Characters
	TABLE 3: Control Character Descriptions

	Commands
	TABLE 4: Command Description
	Read Bootloader Version Information
	EXAMPLE 2: Request
	EXAMPLE 3: Response

	Erase Flash
	EXAMPLE 4: Request
	EXAMPLE 5: Response

	Program Flash
	EXAMPLE 6: Request
	EXAMPLE 7: Response

	Read CRC
	EXAMPLE 8: Request
	EXAMPLE 9: Response

	Jump to Application
	EXAMPLE 10: Request

	Appendix C: Considerations While Moving the Application Image
	EXAMPLE 11: Lines to Modify in Application Linker Script
	EXAMPLE 12: Lines to Modify in Bootloader Code

	Appendix D: Bootloader Configurations
	TABLE 5: General Macros
	TABLE 6: UART Bootloader Macro
	TABLE 7: USB HID Bootloader Macros
	TABLE 8: Ethernet Bootloader Macros

	Appendix E: Bootloader Workspace
	Programming the Bootloader Firmware
	TABLE 9: Available Bootloader Workspaces (Continued)

	Appendix F: Revision History
	Revision A (June 2011)
	Revision B (January 2012)

