INTRODUCTION

This application note discusses outdoor Line-of-Sight (LOS) and indoor antenna range for MRF24WB0MA and MRF24WB0MB modules with various modular certified antennas under specific infrastructure usage models. It also provides detailed information on the measured results and methodologies.

802.11 is the primary wireless protocol for devices to gain internet connection. The combination of ubiquitous Wi-Fi™ access and billions of end-points is paving the way for new products. The Microchip’s Wi-Fi solution provides an easy-to-use and cost effective solution to bring new applications to the market. The Microchip’s Wi-Fi parts MRF24WB0MA and MRF24WB0MB are in production, and are modularly certified for regulatory domains with various cost effective antenna solutions. The following are a few proposed applications for the Microchip’s Wi-Fi module solutions:

- Utility and Smart Energy
 - Configure and control thermostat
 - Monitor and update storage conditions
 - Reconnect during power outage
 - Debug and analyze utility meters
- Consumer Electronics
 - Stream audio
 - Store and access media content
 - Access content from device-to-device
 - Control toys wirelessly
- Industrial Controls
 - Monitor traffic conditions with wireless cameras
 - Update digital messaging in real-time
 - Detect and alert of intrusions
- Remote Device Management
 - Update advertisements in real-time
 - Configure and update data to multiple locations
 - Track and manage assets
- Retail
 - Manage assets
 - Notify inventory shortage
 - Bill and delivery inventory automatically
- Medical, Health care and Fitness
 - Maintain and access medical devices
 - Collect and update health records
 - Notify patient's test results

Microchip’s modules differ from other embedded WLAN modules by offering a variety of 13 regulatory and modularly certified external antennas along with onboard PCB antenna version.

The modularly certified external antennas include:

- Portable 2 dBi RFA-02-P05 (Wi-Fi enabled internet radio)
- 2 dBi RFA-02-D3 (portable Wi-Fi enabled medical electronic note pads) to 9 dBi AN2400-5901RS (Industrial wireless cameras)

For more information on modularly certified external antennas, see Table 1.
RANGE TESTING OVERVIEW

In telecommunication, the best range is the free-space path loss (FSPL), which is the loss in signal strength of an electromagnetic wave that results from a LOS path through the free space, with no obstacles nearby to cause reflection or diffraction. Path loss (or path attenuation) is the reduction in power density (attenuation) of an electromagnetic wave as it propagates through space.

Path loss is caused by free-space loss, refraction, diffraction, reflection, aperture-medium coupling loss, absorption. It is also influenced by the terrain contours, environment (urban or rural, vegetation and foliage), propagation medium (dry or moist air), distance between the transmitter and the receiver, and height and location of antennas. Path loss is unaffected by the factors such as gain of the antennas used at the transmitter and the receiver and the loss associated with hardware imperfections. Free space loss is dominant in an outdoor LOS environment where antenna is far from the ground, with 0 degrees contour and with no obstructions.

In an indoor environment, many obstructions may add constructively or destructively for the radio wave propagations. For example, part of the wave energy are transmitted or absorbed into the obstruction and the remaining wave energy will be reflected off of the medium's surface. Also, the transmitted and reflected wave energy is a function of the geometry and material properties of the obstruction and the amplitude, phase, and polarization of the incident wave. Diffraction occurs when the surface of the obstruction has sharp edges producing secondary waves that in effect bend around the obstruction. Like reflection, diffraction is affected by the physical properties of the obstruction and the incident wave characteristics. In a situation, where the receiver is heavily obstructed, the diffracted waves may have sufficient strength to produce a useful signal. Scattering occurs when the transmitted wave encounters a large quantity of small dimension objects such as lamp posts, bushes, and trees. The reflected energy in a scattering situation is spread in all directions.

Generally, the obstructed path loss is more difficult to predict, especially for the myriad of different indoor scenarios and materials. Therefore, different path loss models exist to describe a unique dominant indoor characteristics, such as multi-level buildings with windows and single level buildings without windows. The attenuation decreases per floor with the increase in the number of floors. This phenomenon is caused by diffraction of the radio waves along the side of a building as the radio waves penetrate the building's windows. Also, many different indoor configurations can be categorized for buildings with enclosed offices, or office spaces consisting of a mix of cubicles and enclosed rooms. The following are examples of 2.4 GHz signal attenuation through obstacles for various materials:

- Window brick wall – 2 dB
- Metal frame glass wall into building – 6 dB
- Office wall – 6 dB
- Metal door in office wall – 6 dB
- Cinder block wall – 4 dB
- Metal door in brick wall – 12 dB
- Brick wall next to metal door – 3 dB

When a transmitted radio wave undergoes transformation in the indoor environment it reaches the receiving antenna through many routes giving rise to multipath noise. Multipath introduces random variation in the received signal amplitude. Multipath effect varies and it depends on the location and the type of the antenna used. Variations as much as 40 dB occurs due to multipath fading (radio waves combining destructively or constructively). Fading can be rapid or slow depending on the moving source and the propagation effects manifested at the receiver antenna. Rapid variations over short distances are defined as small-scale fading. In indoor testing, fading effects are caused by human activities and they usually exhibit both slow and fast variations. Sometimes, oscillating metal blade fans can also cause rapid fading effects. Applications of the WLAN radio indoors can either be fixed or mobile. Therefore, small-scale fading effects can be described using multipath time delay spreading. The signals will experience different arrival times because the signals can take many paths before reaching the receiver antenna. Therefore, a spreading in time (frequency) can occur. Different arrival times ultimately create further degeneration of the signal.
The directional properties of an antenna can be modified by the ground, because the earth acts as a reflector. If a dipole antenna is placed horizontally above the ground, most of the energy radiated downward from the dipole is reflected upward. The reflected waves combine with the direct waves (those radiated at angles above the horizontal) in various ways, depending on the height of the antenna, frequency, and electrical characteristics of the ground under and around the antenna.

At some vertical angles above the horizon, the direct and reflected waves may be exactly in phase where the maximum signal or field strengths of both waves are reached simultaneously at some distant point. In this case, the resultant field strength is equal to the sum of the two components. At other vertical angles the two waves may be completely out of phase at some distant point that is, the fields are maximized at the same instant but the phase directions are opposite. The resultant field strength in this case is the difference between the two. At some other angles the resultant field will have intermediate values. Therefore, the effect of the ground is to increase the intensity of radiation at some vertical angles and to decrease it at others.

The elevation angles at which the maxima and minima occur depend primarily on the antenna height above the ground (the electrical characteristics of the ground have some slight effect too). For indoor environments, different antenna heights were used, not because of ground effect but due to obstructions in an indoor office environment.

The increase in the number of different WLAN products leads to an increased demand for more indoor radio WLAN range metrics and benchmarks. Particularly, in comparison of Frequency Hopping (FH) and Direct Sequence (DS) radio systems. In addition to that, the usage of the WLAN radio dictates the performance of the radio in network applications. Therefore, the indoor range of a customer may vary from the stated results due to the difference in customer indoor environment.

All antennas have a gain factor expressed in decibels that is relative to an isotropic radiator. An isotropic radiator radiates uniformly in all directions like a point source of light. All the power that the transmitter produces ideally is radiated by the antenna. However, this is not generally true in practice as there are losses in both the antenna and its associated feedline. Also, antenna gain does not increase power, it only concentrates effective radiation pattern.

RANGE TESTING

Range testing is performed using the following usage range models:

- Establishing connectivity range, where Dynamic Host Configuration Protocol (DHCP) time out and does not assign Internet Protocol (IP) and address to the Device Under Test (DUT). After a hardware reset, this connectivity range was determined. In this test, only 802.11 hand shake was done and connection was established.
- Establishing User Datagram Protocol (UDP) throughput at the edge of IP assignment by the access points (APs) DHCP. The connection and subsequent IP assignment, and UDP throughput were tested at the determined distance from the access point.

All the tests were done in infrastructure mode with Linksys WRT54G AP antenna configuration (with security turned off) and all DUT certified antennas configured in free air (vertical polarization). Iperf was used in this analysis to create the wireless connections and transfer data. The Iperf hierarchy block diagram is illustrated in Figure 1.

FIGURE 1: IPERF HIERARCHY

![Iperf Hierarchy Diagram](image-url)
RANGE TEST SETUP

This section provides details of the test setup and test environments as illustrated in Figure 2, Figure 3, Figure 7, Figure 8 and Figure 9.

FIGURE 2: OUTDOOR LINE-OF-SIGHT TEST SETUP

DUT with different antenna vertical options are set and connection management is monitored.

WRT54G AP is set at the edge of the car, with antenna configured 90 degrees to each other (mimic one possible typical customer configuration) and the connection management is monitored, (stationary)

Azimuth, vertical and horizontal are retained at the same level as possible.

Antenna is positioned vertically, and the dipole versions are connected on top of 5x5 square (60mil thick) metal surface (antennas are passed through the metal surface hole, and held at bottom of the antenna, through tape)

DUT moving direction (LOS and same level)

FIGURE 3: IPERF APPLICATION TEST SETUP OVERVIEW

Embedded host

Iperf Client/server

Microchip Device

Over-The-Air (UDP throughput measurements are done unidirectional, and only server throughput #’s (AP or DUT) are recorded).

PC host

Iperf Client/server

AP

SPI

Ethernet

Microchip Technology Inc.

Preliminary

© 2010 Microchip Technology Inc.
Figure 4 illustrates the steps needed to be performed by a client and server for the DHCP exchange process. It also illustrates where the process is interrupted for the first range usage model.

FIGURE 4: DHCP IP TO CLIENT ASSIGNMENT OVERVIEW

Connectivity has occurred before the following sequence starts (that is, association, authentication, and connection).

High Packet Loss; therefore, the server does not offer and 802 layer does not re-try on the AP; thus, DHCP times out, and IP address is not assigned to the DUT.

Client

Begins initialization

DHCPDISCOVER

Determines configuration

Server (selected)

DHCOFFER

Collect replies

Selects configuration

DHCPREQUEST

Commits configuration

DHCPACK

Initialization complete
Figure 5 and Figure 6 illustrate the areas used for the LOS testing.

FIGURE 5: OUTDOOR LOS RANGE TESTING TERRAIN

FIGURE 6: STREET VIEW OF OUTDOOR LOS RANGE TESTING TERRAIN

- **DUT Moving direction (LOS and same level)**
- **Barbwire fence**
- **Linksys WR754G (Stationary)**
- **Electrical Poles**
Note: The barbed wire fence height is approximate 3 ft. along the roadside. All the range testings are done on the road, either away from the fence or electric poles. The height of the AP and DUT with various antennas are kept at a stationary 5 ft away from the ground (GND).
Figure 10 illustrates the interference of the frequency band that is the sum of all interferers (time multiplexed, frequency hopping interferes, constant jammers), measurements with 2.4 GHz. 2 dBi whip antenna (vertically polarized) is placed next to the WRT54G Linksys AP antenna.

FIGURE 10: INDOOR 2.4~2.5 GHZ IN BAND INTERFERENCE
Figure 11 illustrates the interference of the frequency band that is the sum of all the interferers (time multiplexed, frequency hopping interferes, constant jammers), measurements with 2.4 GHz. 2 dBi whip antenna (vertically polarized) is placed next to the DUT antennas.

FIGURE 11: INDOOR 2.4~2.5 GHZ IN BAND INTERFERENCE
Figure 12 illustrates the indoor furniture configuration used for the range testing.

FIGURE 12: INDOOR FURNITURE CONFIGURATION FOR RANGE TESTING
CERTIFIED ANTENNA LIST

Table 1 provides details of the modularly certified antennas.

TABLE 1: MODULARLY CERTIFIED ANTENNAS

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Type</th>
<th>Frequency Range (MHz)</th>
<th>Gain</th>
<th>VSWR</th>
<th>Connector</th>
<th>Vendor & Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFA-02-P05</td>
<td>PCB</td>
<td>2400-2500</td>
<td>2 dBi</td>
<td>2.0 Max</td>
<td>IPEX</td>
<td>Aristotle</td>
</tr>
<tr>
<td>RFA-02-L6H1-70-35</td>
<td>Dipole</td>
<td>2400-2500</td>
<td>2 dBi</td>
<td>2.0 Max</td>
<td>IPEX</td>
<td>Aristotle</td>
</tr>
<tr>
<td>RFA-02-D3</td>
<td>Dipole</td>
<td>2400-2500</td>
<td>1.5 dBi</td>
<td>2.0 Max</td>
<td>IPEX</td>
<td>Aristotle</td>
</tr>
<tr>
<td>RFA-02-L2H1</td>
<td>Dipole</td>
<td>2400-2500</td>
<td>2 dBi</td>
<td>2.0 Max</td>
<td>IPEX</td>
<td>Aristotle</td>
</tr>
<tr>
<td>RFA-02-3-C5H1</td>
<td>Dipole</td>
<td>2400-2500</td>
<td>3 dBi</td>
<td>2.0 Max</td>
<td>IPEX</td>
<td>Aristotle</td>
</tr>
<tr>
<td>RFA-02-5-C7H1</td>
<td>Dipole</td>
<td>2400-2500</td>
<td>5 dBi</td>
<td>2.0 Max</td>
<td>IPEX</td>
<td>Aristotle</td>
</tr>
<tr>
<td>RFA-02-5-F7H1</td>
<td>Dipole</td>
<td>2400-2500</td>
<td>5 dBi</td>
<td>2.0 Max</td>
<td>IPEX</td>
<td>Aristotle</td>
</tr>
<tr>
<td>WF2400-15001A</td>
<td>Dipole</td>
<td>2400-2500</td>
<td>5 dBi</td>
<td>2.0 Max</td>
<td>IPEX</td>
<td>Saytec</td>
</tr>
<tr>
<td>WF2400-10001I</td>
<td>Dipole</td>
<td>2400-2500</td>
<td>2 dBi</td>
<td>2.0 Max</td>
<td>IPEX</td>
<td>Saytec</td>
</tr>
<tr>
<td>AN2400-5901RS, used with connector SMASFR8-3152H-00X001</td>
<td>Omni</td>
<td>2400-2500</td>
<td>9 dBi</td>
<td>2.0 Max</td>
<td>IPEX</td>
<td>Saytec</td>
</tr>
<tr>
<td>AN2400-5901RS, used with connector SMASFR8-3152H-00X00IR</td>
<td>Omni</td>
<td>2400-2500</td>
<td>9 dBi</td>
<td>2.0 Max</td>
<td>RF-IPEX</td>
<td>Saytec</td>
</tr>
<tr>
<td>ANT-2.4-CW-RH, used with connector BTC013-1-70B-150</td>
<td>Helical</td>
<td>2370-2530</td>
<td>2 dBi</td>
<td><1.9 typ</td>
<td>IPEX</td>
<td>Antenna Factor (ANT-2.4-CW-RH) Aristotle (BTC013-1-70B-150)</td>
</tr>
<tr>
<td>ANT-2.4-CW-RH-SMA, used with connector BTC013-1-70B-150</td>
<td>Helical</td>
<td>2370-2530</td>
<td>2 dBi</td>
<td><1.9 typ</td>
<td>IPEX</td>
<td>Antenna Factor (ANT-2.4-CW-RH-SMA) Aristotle (BTC013-1-70B-150)</td>
</tr>
</tbody>
</table>
Figure 13 and Figure 14 graphically illustrates the results of the outdoor LOS range data per usage model. Table 2 describes the outdoor LOS range data results.

FIGURE 13: OUTDOOR LOS RANGE DATA PER USAGE MODEL

<table>
<thead>
<tr>
<th>Types of Antennas</th>
<th>Range (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WF2400-15001B</td>
<td>800</td>
</tr>
<tr>
<td>WF2400-15001A</td>
<td>900</td>
</tr>
<tr>
<td>RFA-02-5-F7H1</td>
<td>700</td>
</tr>
<tr>
<td>RFA-02-5-C7H1</td>
<td>600</td>
</tr>
<tr>
<td>RFA-02-3-C5H1</td>
<td>500</td>
</tr>
<tr>
<td>RFA-02-L2H1</td>
<td>400</td>
</tr>
<tr>
<td>RFA-02-D3</td>
<td>300</td>
</tr>
<tr>
<td>RFA-02-L6H1-70-35</td>
<td>200</td>
</tr>
<tr>
<td>RFA-02-P05</td>
<td>100</td>
</tr>
</tbody>
</table>

FIGURE 14: OUTDOOR LOS RANGE GRAPH PER USAGE MODEL

<table>
<thead>
<tr>
<th>Types of Antennas</th>
<th>Range (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZG2100M onboard antenna</td>
<td>1000</td>
</tr>
<tr>
<td>ANT-2.4-CW-RHSMA</td>
<td>900</td>
</tr>
<tr>
<td>ANT-2.4-CWRH</td>
<td>800</td>
</tr>
<tr>
<td>AN2400-5901RS</td>
<td>700</td>
</tr>
<tr>
<td>AN2400-5901RS</td>
<td>600</td>
</tr>
<tr>
<td>WF2400-10001R</td>
<td>500</td>
</tr>
<tr>
<td>WF2400-10001I</td>
<td>400</td>
</tr>
<tr>
<td>Antenna Items</td>
<td>Connectivity Range Measurement (m)</td>
</tr>
<tr>
<td>---</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>RFA-02-P05</td>
<td>520</td>
</tr>
<tr>
<td>RFA-02-L6H1-70-35</td>
<td>633</td>
</tr>
<tr>
<td>RFA-02-D3</td>
<td>577</td>
</tr>
<tr>
<td>RFA-02-L2H1</td>
<td>648</td>
</tr>
<tr>
<td>RFA-02-3-C5H1</td>
<td>782</td>
</tr>
<tr>
<td>RFA-02-5-C7H1</td>
<td>809</td>
</tr>
<tr>
<td>RFA-02-5-F7H1</td>
<td>799</td>
</tr>
<tr>
<td>WF2400-15001A</td>
<td>839</td>
</tr>
<tr>
<td>WF2400-15001B</td>
<td>809</td>
</tr>
<tr>
<td>WF2400-10001I</td>
<td>642</td>
</tr>
<tr>
<td>WF2400-10001R</td>
<td>639</td>
</tr>
<tr>
<td>AN2400-5901RS, used with connector SMASFR8-3152H-00X00I (Sample =7 dBi)</td>
<td>961</td>
</tr>
<tr>
<td>AN2400-5901RS, used with connector SMASFR8-3152H-00X00IR (Sample =7 dBi)</td>
<td>961</td>
</tr>
<tr>
<td>ANT-2.4-CWRH, used with connector BTC013-1-70B-150</td>
<td>600</td>
</tr>
<tr>
<td>ANT-2.4-CW-RHSMA, used with connector BTC013-1-70B-150</td>
<td>600</td>
</tr>
<tr>
<td>ZG2100MCC3 onboard antenna</td>
<td>401</td>
</tr>
</tbody>
</table>
Figure 15 graphically illustrates the results of the MRF24WB0MA and MRF24WB0MB Indoor LOS range data per usage model.

Table 3 describes the MRF24WB0MA and MRF24WB0MB Indoor range data results.

TABLE 3: MRF24WB0MA AND MRF24WB0MB INDOOR RANGE DATA PER USAGE MODEL

<table>
<thead>
<tr>
<th>Certified Antenna Items</th>
<th>DHCP IP assignment Range Measurement with Microchip TCPIP Stack v5.00 on PIC 24 (Explorer 16 platform) (m)</th>
<th>Connectivity Range Measurement (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZG2100MCC3 onboard antenna AP (3Ft) - DUT (3Ft)</td>
<td>39.0</td>
<td>39.0</td>
</tr>
<tr>
<td>ZG2100MCC3 onboard antenna AP (7Ft) - DUT (3Ft)</td>
<td>44.3</td>
<td>44.3</td>
</tr>
<tr>
<td>ZG2100MCC3 onboard antenna AP (7Ft) - DUT (7Ft)</td>
<td>50.2</td>
<td>50.2</td>
</tr>
<tr>
<td>ANT-2.4-CWRH, used with connector BTC013- 1-70B-150 AP (3Ft) - DUT (3Ft)</td>
<td>43.4</td>
<td>44.3</td>
</tr>
<tr>
<td>ANT-2.4-CWRH, used with connector BTC013- 1-70B-150 AP (7Ft) - DUT (3Ft)</td>
<td>44.3</td>
<td>45.4</td>
</tr>
<tr>
<td>ANT-2.4-CWRH, used with connector BTC013- 1-70B-150 AP (7Ft) - DUT (7Ft)</td>
<td>50.2</td>
<td>50.2</td>
</tr>
<tr>
<td>ANT-2.4-CW-RHSMA, used with connector BTC013- 1-70B-150 AP (3Ft) - DUT (3Ft)</td>
<td>43.4</td>
<td>44.3</td>
</tr>
<tr>
<td>ANT-2.4-CW-RHSMA, used with connector BTC013- 1-70B-150 AP (7Ft) - DUT (3Ft)</td>
<td>44.3</td>
<td>45.4</td>
</tr>
<tr>
<td>ANT-2.4-CW-RHSMA, used with connector BTC013- 1-70B-150 AP (7Ft) - DUT (7Ft)</td>
<td>50.2</td>
<td>50.2</td>
</tr>
</tbody>
</table>
Figure 16 graphically illustrates the MRF24WB0MB Indoor range data results per usage model. Table 4 describes the MRF24WB0MB Indoor range data results per usage model.

FIGURE 16: MRF24WB0MB INDOOR RANGE GRAPH PER USAGE MODEL

![Graphical Illustration of MRF24WB0MB Indoor Range Data](image)

TABLE 4: MRF24WB0MB INDOOR RANGE DATA PER USAGE MODEL

<table>
<thead>
<tr>
<th>Certified Antenna Items</th>
<th>DHCP IP assignment Range Measurement with Microchip TCPIP Stack v5.00 on PIC 24 (Explorer 16 platform) (m)</th>
<th>Connectivity Range Measurement (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFA-02-P05 AP (3Ft) - DUT (3Ft)</td>
<td>50.2</td>
<td>50.2</td>
</tr>
<tr>
<td>RFA-02-L6H1-70-35 AP (3Ft) - DUT (3Ft)</td>
<td>50.2</td>
<td>50.2</td>
</tr>
<tr>
<td>RFA-02-D3 AP (3Ft) - DUT (3Ft)</td>
<td>50.2</td>
<td>50.2</td>
</tr>
<tr>
<td>RFA-02-L2H1 AP (3Ft) - DUT (3Ft)</td>
<td>50.2</td>
<td>50.2</td>
</tr>
<tr>
<td>RFA-02-3-C5H1 AP (3Ft) - DUT (3Ft)</td>
<td>50.2</td>
<td>50.2</td>
</tr>
<tr>
<td>RFA-02-5-C7H1 AP (3Ft) - DUT (3Ft)</td>
<td>50.2</td>
<td>50.2</td>
</tr>
<tr>
<td>RFA-02-5-F7H1 AP (3Ft) - DUT (3Ft)</td>
<td>50.2</td>
<td>50.2</td>
</tr>
<tr>
<td>WF2400-15001A AP (3Ft) - DUT (3Ft)</td>
<td>50.2</td>
<td>50.2</td>
</tr>
<tr>
<td>WF2400-15001B AP (3Ft) - DUT (3Ft)</td>
<td>50.2</td>
<td>50.2</td>
</tr>
</tbody>
</table>
Figure 17 graphically illustrates the MRF24WB0MB Indoor range data results per usage model.

Table 5 describes the MRF24WB0MB Indoor range data results per usage model.

FIGURE 17: MRF24WB0MB INDOOR RANGE GRAPH PER USAGE MODEL

![Graph showing range measurements for different antenna configurations.](image)

TABLE 5: MRF24WB0MB INDOOR RANGE DATA PER USAGE MODEL

<table>
<thead>
<tr>
<th>Certified Antenna Items</th>
<th>DHCP IP assignment Range Measurement with Microchip TCPIIP Stack v5.00 on PIC 24 (Explorer 16 platform) (m)</th>
<th>Connectivity Range Measurement (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WF2400-10001I AP (3Ft) - DUT (3Ft)</td>
<td>50.2</td>
<td>50.2</td>
</tr>
<tr>
<td>WF2400-10001R AP (3Ft) - DUT (3Ft)</td>
<td>50.2</td>
<td>50.2</td>
</tr>
<tr>
<td>AN2400- 5901RS, used with connector SAMSFR8-3152H-00X00IR (Sample = 7 dBi) AP (3Ft) - DUT (3Ft)</td>
<td>50.2</td>
<td>50.2</td>
</tr>
<tr>
<td>AN2400- 5901RS, used with connector SAMSFR8-3152H-00X00IR (Sample = 7 dBi) AP (3Ft) - DUT (3 or 7 Ft.)</td>
<td>52.2</td>
<td>52.2</td>
</tr>
<tr>
<td>AN2400- 5901RS, used with connector SAMSFR8-3152H-00X00IR (Sample = 7 dBi) AP (7Ft) - DUT (3 or 7 Ft.)</td>
<td>50.2</td>
<td>50.2</td>
</tr>
<tr>
<td>AN2400- 5901RS, used with connector SAMSFR8-3152H-00X00IR (Sample = 7 dBi) AP (3Ft) - DUT (3Ft)</td>
<td>52.2</td>
<td>52.2</td>
</tr>
</tbody>
</table>

Note: Outside of the office environment, range measurement was done only for 9 dBi antenna options. However, the rest of antenna MAX range was done only indoors to emulate indoor customer usage environment. Therefore, antennas with 502 meter indoor range measurements limitations may be due to the test environment size limitation, and they can perform better in connectivity indoor environments.
REVISION HISTORY

Revision A (December 2010)

This is the initial release of the document.
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC[®] logo, rPIC and Uni/I/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICKit, PICtail, REAL ICE, rLab, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2010, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

 Printed on recycled paper.

ISBN: 978-1-60932-749-1

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company’s quality system processes and procedures are for its PIC[®] MCUs and dsPIC[®] DSCs, KEELOQ[®] code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified.
Worldwide Sales and Service

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com

Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0063

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260

Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445

Toronto
Mississauga, Ontario, Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431

Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889

China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500

China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431

China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470

China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066

China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2933

China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760

China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118

China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130

China - Zhuhai
Tel: 86-766-3210040
Fax: 86-766-3210049

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123

India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632

India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513

Japan - Yokohama
Tel: 81-45-471-6166
Fax: 81-45-471-6122

Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302

Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934

Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859

Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068

Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069

Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-6578-300
Fax: 886-3-6578-370

Taiwan - Kaohsiung
Tel: 886-7-213-7830
Fax: 886-7-330-9305

Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2500-0102

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820

08/04/10