
AN1354
Implementing an LCD Using the PIC16F1947 Microcontroller
INTRODUCTION

This application note reviews the process and
procedure of implementing a segmented LCD using the
PIC16F1947 microcontroller (MCU) in an example
application. The example application will be an
electronic combination lock. As this application is
implemented, the configuration and low-power options
associated with the PIC16F1947 LCD module will be
discussed.

GETTING STARTED

For the purposes of this application note, the
Varitronix VLS5573 demo board has been chosen; a
custom 8-digit LCD made to demonstrate Microchip
devices with integrated LCD controllers. This display
has numerical digits, a bar graph, and a variety of
symbols suitable for a clock, thermometer, or a
voltmeter application. See Figure 3 for the LCD
segments and Figure 1 for a photo of the application
example.

FIGURE 1: VLS5573 LCD DISPLAY

How Much LCD Can the Microcontroller
Handle?

When you have decided which segmented LCD display
to use for your application and have acquired the LCD
data sheet (from the manufacturer), you can begin
setting up the MCU to run the LCD via the PIC16F1947
data sheet (DS41414). This application note will take
you through the LCD module configuration and code
development step by step.

Start by verifying that the microcontroller you have
chosen has a sufficient number of LCD segment pins to
cover all of the LCD segments used on the particular
LCD you have chosen. Many LCDs will have
multiplexed segments to reduce the number of MCU
pins required. A typical multiplexed LCD will have 2, 3
or 4 common pins. The PIC16F1947 used for this
application note can be multiplexed up to 4 times the
number of segment pins and uses up to four common
pins (see Figure 2).

FIGURE 2: LCD COMMON PIN
CONFIGURATION

This means that, for a given device, it will have a certain
number of output pins that can be used to control an
LCD display and, with the four different multiplexed
common pin configurations, you basically are able to
control four times as many LCD segments.

For example, with a 64-pin device with 46 output pins
available to control an LCD display X 4 (multiplex con-
figurations), you can control up to 184 LCD segments.

Therefore, with the PIC16F1947 being a 64-pin device,
it can control up to 184 LCD segments, which is more
than enough for this application. Table 1 shows all of
the LCD segment character ID’s as shown in Figure 3,
with respect to the COMs and display pins.

Authors: John Mouton
Microchip Technology Inc.

Static (1 common)

1/2 multiplex (2 commons)

1/3 multiplex (3 commons)

1/4 multiplex (4 commons)
 2010 Microchip Technology Inc. DS01354A-page 1

AN1354
TABLE 1: VARITRONIX VLS5573 LCD
PINOUT

Segment Mapping

Let us look at the LCD data sheet for the LCD used in
this application, the Varitronix VLS5573. Every LCD
data sheet should have at least two sections; a
segment layout (which includes the entire LCD
segment layout and the digit segment layout), see
Figure 3 and Figure 4, and a LCD pinout table
(Table 1). From these two sections you will get most of
the information needed to drive the LCD from the
microcontroller.

PIN COM1 COM2 COM3 COM4

1 N.C. N.C. N.C. N.C.

2 COM1 – – – – – – – – –

3 S12 – – – – – – – – –

4 S11 – – – – – – – – –

5 7D 7F 7A 7E

6 DP2 7G 7B 7C

7 8D 8F 8A 8E

8 S13 8G 8B 8C

9 X23 X25 X26 X24

10 5B 5C – – – 5G

11 5A 5E 5G 5F

12 4B 4C DP1 4G

13 4A 4E 4D 4F

14 3B 3C – – – 3G

15 – – – X22 X21 – – –

16 X17 X19 X20 X18

17 X16 X14 X13 X15

18 X9 X11 X12 X10

19 – – – COM2 – – – – – –

20 N.C. N.C. N.C. N.C.

21 N.C. N.C. N.C. N.C.

22 – – – – – – COM3 – – –

23 X8 X6 X5 X7

24 X1 X3 X4 X2

25 – – – F2 F1 F3

26 1A 1E F4 1F

27 1B 1C 1D 1G

28 2A 2E 2D 2F

29 2B 2C COL 2G

30 3A 3E 3D 3F

31 S9 6G 6B 6C

32 6D 6F 6A 6E

33 X31 X33 X34 X32

34 – – – X27 X35 X30

35 – – – X28 X36 X29

36 S1 S3 S4 S2

37 S6 – – – – – – S7

38 S5 – – – – – – S8

39 – – – – – – COM4

40 N.C. N.C. N.C. N.C.
DS01354A-page 2  2010 Microchip Technology Inc.

AN1354
FIGURE 3: LCD SEGMENT LAYOUT

FIGURE 4: DIGIT SEGMENT LAYOUT Now, take a look at which parts of the LCD display are
going to be used and which LCD segments on the
microcontroller you are going to drive them with. You
will map this out by using the LCD segment mapping
worksheet as found in the PIC16F1947 data sheet
(Table 2). To fill out the LCD segment mapping
worksheet, you will need the LCD segment layout
(Figure 3), the digit segment layout (Figure 4), and the
LCD pinout table (Table 1) from the LCD display data
sheet.
 2010 Microchip Technology Inc. DS01354A-page 3

AN1354
TABLE 2: LCD SEGMENT MAPPING WORKSHEET

LCD
Function

COM0 COM1 COM2 COM3

LCDDATAx
Address

LCD
Segment

LCDDATAx
Address

LCD
Segment

LCDDATAx
Address

LCD
Segment

LCDDATAx
Address

LCD
Segment

SEG0 LCDDATA0, 0 LCDDATA3, 0 LCDDATA6, 0 LCDDATA9, 0

SEG1 LCDDATA0, 1 LCDDATA3, 1 LCDDATA6, 1 LCDDATAA9, 1

SEG2 LCDDATA0, 2 LCDDATA3, 2 LCDDATA6, 2 LCDDATAA9, 2

SEG3 LCDDATA0, 3 LCDDATA3, 3 LCDDATA6, 3 LCDDATAA9, 3

SEG4 LCDDATA0, 4 LCDDATA3, 4 LCDDATA6, 4 LCDDATAA9, 4

SEG5 LCDDATA0, 5 LCDDATA3, 5 LCDDATA6, 5 LCDDATAA9, 5

SEG6 LCDDATA0, 6 LCDDATA3, 6 LCDDATA6, 6 LCDDATAA9, 6

SEG7 LCDDATA0, 7 LCDDATA3, 7 LCDDATA6, 7 LCDDATAA9, 7

SEG8 LCDDATA1, 0 LCDDATA4, 0 LCDDATA7, 0 LCDDATA10, 0

SEG9 LCDDATA1, 1 LCDDATA4, 1 LCDDATA7, 1 LCDDATA10, 1

SEG10 LCDDATA1, 2 LCDDATA4, 2 LCDDATA7, 2 LCDDATA10, 2

SEG11 LCDDATA1, 3 LCDDATA4, 3 LCDDATA7, 3 LCDDATA10, 3

SEG12 LCDDATA1, 4 LCDDATA4, 4 LCDDATA7, 4 LCDDATA10, 4

SEG13 LCDDATA1, 5 LCDDATA4, 5 LCDDATA7, 5 LCDDATA10, 5

SEG14 LCDDATA1, 6 LCDDATA4, 6 LCDDATA7, 6 LCDDATA10, 6

SEG15 LCDDATA1, 7 LCDDATA4, 7 LCDDATA7, 7 LCDDATA10, 7

SEG16 LCDDATA2, 0 LCDDATA5, 0 LCDDATA8, 0 LCDDATA11, 0

SEG17 LCDDATA2, 1 LCDDATA5, 1 LCDDATA8, 1 LCDDATA11, 1

SEG18 LCDDATA2, 2 LCDDATA5, 2 LCDDATA8, 2 LCDDATA11, 2

SEG19 LCDDATA2, 3 LCDDATA5, 3 LCDDATA8, 3 LCDDATA11, 3

SEG20 LCDDATA2, 4 LCDDATA5, 4 LCDDATA8, 4 LCDDATA11, 4

SEG21 LCDDATA2, 5 LCDDATA5, 5 LCDDATA8, 5 LCDDATA11, 5

SEG22 LCDDATA2, 6 LCDDATA5, 6 LCDDATA8, 6 LCDDATA11, 6

SEG23 LCDDATA2, 7 LCDDATA5, 7 LCDDATA8, 7 LCDDATA11, 7

SEG24 LCDDATA12, 0 LCDDATA15, 0 LCDDATA18, 0 LCDDATA21, 0

SEG25 LCDDATA12, 1 LCDDATA15, 1 LCDDATA18, 1 LCDDATA21, 1

SEG26 LCDDATA12, 2 LCDDATA15, 2 LCDDATA18, 2 LCDDATA21, 2

SEG27 LCDDATA12, 3 LCDDATA15, 3 LCDDATA18, 3 LCDDATA21, 3

SEG28 LCDDATA12, 4 LCDDATA15, 4 LCDDATA18, 4 LCDDATA21, 4

SEG29 LCDDATA12, 5 LCDDATA15, 5 LCDDATA18, 5 LCDDATA21, 5

SEG30 LCDDATA12, 6 LCDDATA15, 6 LCDDATA18, 6 LCDDATA21, 6

SEG31 LCDDATA12, 7 LCDDATA15, 7 LCDDATA18, 7 LCDDATA21, 7

SEG32 LCDDATA13, 0 LCDDATA16, 0 LCDDATA19, 0 LCDDATA22, 0

SEG33 LCDDATA13, 1 LCDDATA16, 1 LCDDATA19, 1 LCDDATA22, 1

SEG34 LCDDATA13, 2 LCDDATA16, 2 LCDDATA19, 2 LCDDATA22, 2

SEG35 LCDDATA13, 3 LCDDATA16, 3 LCDDATA19, 3 LCDDATA22, 3

SEG36 LCDDATA13, 4 LCDDATA16, 4 LCDDATA19, 4 LCDDATA22, 4

SEG37 LCDDATA13, 5 LCDDATA16, 5 LCDDATA19, 5 LCDDATA22, 5

SEG38 LCDDATA13, 6 LCDDATA16, 6 LCDDATA19, 6 LCDDATA22, 6

SEG39 LCDDATA13, 7 LCDDATA16, 7 LCDDATA19, 7 LCDDATA22, 7

SEG40 LCDDATA14, 0 LCDDATA17, 0 LCDDATA20, 0 LCDDATA23, 0

SEG41 LCDDATA14, 1 LCDDATA17, 1 LCDDATA20, 1 LCDDATA23, 1

SEG42 LCDDATA14, 2 LCDDATA17, 2 LCDDATA20, 2 LCDDATA23, 2

SEG43 LCDDATA14, 3 LCDDATA17, 3 LCDDATA20, 3 LCDDATA23, 3

SEG44 LCDDATA14, 4 LCDDATA17, 4 LCDDATA20, 4 LCDDATA23, 4

SEG45 LCDDATA14, 5 LCDDATA17, 5 LCDDATA20, 5 LCDDATA23, 5
DS01354A-page 4  2010 Microchip Technology Inc.

AN1354
The LCD segment layout shows all of the LCD’s display
features, location on the display and their segment IDs,
as shown in Figure 3. This layout also shows how
many digits can be displayed and each digit’s individual
segment layout, as shown in Figure 4. Table 1 shows
all of the LCD display segment IDs, which commons
they are on, and which LCD pins they are on. This will
allow you to physically connect the specific
microcontroller segment pins to the correct LCD

display segment pin. The LCD segment mapping
worksheet, Table 2, will help you keep track of which
microcontroller LCD segment will drive a particular
LCD display segment ID of your choosing and shows
you which LCDDATA register bit will control the
particular segment. See Table 3 for a completed LCD
segment map for the electronic combination lock
application.

LCD Module Configuration

Now, take a look at the registers used to set up the LCD
module in the PIC16F1947 device you are using. The
LCD module contains the following registers:

- LCD Control register (LCDCON)
- LCD Phase register (LCDPS)
- LCD Reference Ladder register (LCDRL)
- LCD Contrast Control register (LCDCST)
- LCD Reference Voltage Control register

(LCDREF)
- LCD Segment Enable registers (LCDSEn)
- LCD Data registers (LCDDATAn)

See Example 1 for the LCD module register settings as
used in this application example.

TABLE 3: COMPLETED LCD SEGMENT MAPPING WORKSHEET

LCD
Function

COM0 COM1 COM2 COM3

LCDDATAx
Address

LCD
Segment

LCDDATAx
Address

LCD
Segment

LCDDATAx
Address

LCD
Segment

LCDDATAx
Address

LCD
Segment

SEG0 LCDDATA0, 0 LCDDATA3, 0 LCDDATA6, 0 LCDDATA9, 0

SEG1 LCDDATA0, 1 1A LCDDATA3, 1 1E LCDDATA6, 1 F4 LCDDATAA9, 1 1F

SEG2 LCDDATA0, 2 – LCDDATA3, 2 F2 LCDDATA6, 2 F1 LCDDATAA9, 2 F3

SEG3 LCDDATA0, 3 1B LCDDATA3, 3 1C LCDDATA6, 3 1D LCDDATAA9, 3 1G

SEG4 LCDDATA0, 4 5B LCDDATA3, 4 5C LCDDATA6, 4 – LCDDATAA9, 4 5G

SEG5 LCDDATA0, 5 5A LCDDATA3, 5 5E LCDDATA6, 5 5D LCDDATAA9, 5 5F

SEG6 LCDDATA0, 6 2A LCDDATA3, 6 2E LCDDATA6, 6 2D LCDDATAA9, 6 2F

SEG7 LCDDATA0, 7 LCDDATA3, 7 LCDDATA6, 7 LCDDATAA9, 7

SEG8 LCDDATA1, 0 LCDDATA4, 0 LCDDATA7, 0 LCDDATA10, 0

SEG9 LCDDATA1, 1 LCDDATA4, 1 LCDDATA7, 1 LCDDATA10, 1

SEG10 LCDDATA1, 2 LCDDATA4, 2 LCDDATA7, 2 LCDDATA10, 2

SEG11 LCDDATA1, 3 3A LCDDATA4, 3 3E LCDDATA7, 3 3D LCDDATA10, 3 3F

SEG12 LCDDATA1, 4 LCDDATA4, 4 LCDDATA7, 4 LCDDATA10, 4

SEG13 LCDDATA1, 5 LCDDATA4, 5 LCDDATA7, 5 LCDDATA10, 5

SEG14 LCDDATA1, 6 LCDDATA4, 6 LCDDATA7, 6 LCDDATA10, 6

SEG15 LCDDATA1, 7 LCDDATA4, 7 LCDDATA7, 7 LCDDATA10, 7

SEG16 LCDDATA2, 0 2B LCDDATA5, 0 2C LCDDATA8, 0 – LCDDATA11, 0 2G

SEG17 LCDDATA2, 1 LCDDATA5, 1 LCDDATA8, 1 LCDDATA11, 1

SEG18 LCDDATA2, 2 S1 LCDDATA5, 2 LCDDATA8, 2 LCDDATA11, 2

SEG19 LCDDATA2, 3 LCDDATA5, 3 LCDDATA8, 3 LCDDATA11, 3

SEG20 LCDDATA2, 4 LCDDATA5, 4 LCDDATA8, 4 LCDDATA11, 4

SEG21 LCDDATA2, 5 4B LCDDATA5, 5 4C LCDDATA8, 5 – LCDDATA11, 5 4G

SEG22 LCDDATA2, 6 4A LCDDATA5, 6 4E LCDDATA8, 6 4D LCDDATA11, 6 4F

SEG23 LCDDATA2, 7 3B LCDDATA5, 7 3C LCDDATA8, 7 – LCDDATA11, 7 3G

Note: The LCD display segment IDs can be
driven by any microcontroller LCD
segment function of your choosing.

For example:

Microcontroller LCD function LCD Segments

SEG1 1A,1E,F4,1F

 or SEG13 1A,1E,F4,1F

Note: However, the choice of LCD segment pins
will likely be determined by the PCB layout
of your application. Your source code will
include functions that map to the appropri-
ate bits in the LCDDATA registers.
 2010 Microchip Technology Inc. DS01354A-page 5

AN1354
EXAMPLE 1: INITIALIZATION OF THE LCD MODULE

void lcd_init(void)
{
 LCDSE0 = 0xFE;
 LCDSE1 = 0x8F;
 LCDSE2 = 0xFF;
 LCDSE3 = 0x00;
 LCDSE4 = 0x00;
 LCDSE5 = 0x00;

// enable first group of LCD segment outputs
// enable second group of LCD segments
// enable third group of LCD segments

 LCDDATA0 = 0;
 LCDDATA1 = 0;
 LCDDATA2 = 0;
 LCDDATA3 = 0;
 LCDDATA4 = 0;
 LCDDATA5 = 0;
 LCDDATA6 = 0;
 LCDDATA7 = 0;
 LCDDATA8 = 0;
 LCDDATA9 = 0;
 LCDDATA10 = 0;
 LCDDATA11 = 0;
 LCDDATA12 = 0;
 LCDDATA13 = 0;
 LCDDATA14 = 0;
 LCDDATA15 = 0;
 LCDDATA16 = 0;
 LCDDATA17 = 0;
 LCDDATA18 = 0;
 LCDDATA19 = 0;
 LCDDATA20 = 0;
 LCDDATA21 = 0;
 LCDDATA22 = 0;
 LCDDATA23 = 0;

// clear LCD segment registers

// clear LCD segment registers

// WAVEFORM TYPE A, LCD MODULE IS ACTIVE
 LCDPS = 0x20; // PRESCALER IS 1:1, BIAS IS 0 (CAN BE STATIC OR 1/3)

// LCD MODULE IS ON, DRIVER MODULE IS ENABLED DURING SLEEP
 LCDCON = 0x8B; // NO WRITE FAIL ERROR, VLDC PINS ARE ENABLED, MULTIPLEX 1/4 BIAS 1/3

 LCDREF = 0x80;

 LCDCST = 0x00;

 LCDRL = 0xF0;

}

DS01354A-page 6  2010 Microchip Technology Inc.

AN1354
LCD CONTROL REGISTER (LCDCON)

For this application, this register is used to:

- turn the LCD module on,

- have the LCD module off while the
microcontroller is in Sleep mode,

- clock source the LCD using the Timer1
oscillator T1OSC and,

- have the LCD segments configured for 1/4
multiplex to give us the maximum number of
LCD segments for this device (184
segments) at 1/3 bias.

Clock Sources

The LCD module has 3 possible clock sources: FOSC/
256, T1OSC and LFINTOSC. The first clock source is
the system clock (FOSC) divided by 256. This divider
ratio is chosen to provide about 1 kHz output when the
system clock is 8 MHz. This source is commonly used
unless the LCD needs to run while the processor is in
Sleep mode, then the second or third clock sources
should be used. The second clock source is the
T1OSC. This clock source will also give about 1 kHz
when a 32 kHz crystal is used with the Timer1
oscillator. The third clock source is the 31 kHz Low-
Frequency Internal Oscillator (LFINTOSC), which also
provides approximately 1 kHz output.

Which clock source is better for low power? That
depends on the microcontroller and the LCD module
being used. For the purpose of this application, using
the PIC16F1947 in Sleep mode, T1OSC or LFINTOSC
can be used. However, if you look in the electrical
specification section of the data sheet (DS41414) you
will see that using the T1OSC clock will consume the
least amount of current of the two. When the
microcontroller is not in Sleep mode and you are using
Watchdog Timer (WDT), the LFINTOSC has the lower
current consumption. But, if you are already using the
T1OSC for Sleep mode, use it when you are not in
Sleep mode. The difference in current consumption is
minimal and it does not make sense to change it.

Drive Modes

LCD panels come in many flavors depending on the
application and the operating environment. LCDs can
be classified in two ways. LCDs come in static (or
direct) drive or multiplex drive variations. Static drive
displays use only one common or backplane signal.
Every pixel has its own segment and frontplane line.
The common line acts as an “activation” signal,
preparing all the pixels that it touches to be turned on
by respective segment lines. The segment lines act as
a “selector” signal, specifying whether a pixel is turned
ON or OFF. When the common line is not activated, the
segment lines have no effect on the pixel state.

Frequencies for static drive displays are typically
between 30 Hz and 100 Hz, depending on display size
and design. Displays can operate at higher
frequencies, but this increases power consumption.
LCDs mimic a capacitive load, which reduces the load
impedance as frequency increases. However,
operation below 30 Hz usually results in visible flicker
of the segments. LCDs can be overdriven by a
combination of voltage, frequency and lower contrast at
higher frequencies, which result in cross talk or
“ghosting”. Ghosting is the appearance or partial
activation of an “off” segment. This condition occurs
when high drive voltage and frequency are applied.
Because the current is directly proportional to the
frequency, the voltage-frequency product must not be
exceeded. It is also important to connect all unused
segments to the backplane, and not allow them to float.

The main advantage of static drive is that it is simple to
implement. You only have to worry about which
segment line to turn on and off, while activating the
common signal all the time.

Another advantage is that voltage levels can go from
rail to rail and does not require multiple intermediate
levels, providing more contrast control. The
disadvantage is that it requires more pins. Every pixel
must have a segment line tied to it, and segment lines
are connected to pins on the microcontroller.

Multiplex drive panels reduce the overall amount of
interconnections between the LCD and the driver.
Basically, multiplex panels have more than one
backplane or common, as mentioned earlier in this
application note. A multiplex LCD driver produces an
amplitude-varying, time synchronized waveform for
both the segment and backplanes. These waveforms
allow access to one pixel on each of the backplanes.
This significantly increases the complexity of the driver.
The number of backplanes or common a panel has is
referred to as the multiplexing, duty cycle, duty, or MUX
ratios.

Duty or MUX Ratio

Duty cycle, or duty, or MUX ratios indicates the number
of commons, normally defined as the inverse of the
number of commons/backplanes. For example, if the
display has four commons, then the duty ratio is 1/4.
The process of refreshing an LCD with n number of
backplanes (commons) and m number of frontplanes
(segments) is similar to the matrixed keyboard opera-
tion. The driver selects one backplane (corresponding
to a column on a keyboard) and drives the appropriate
voltage levels to all frontplanes associated with that
backplane (corresponding to keyboard rows). The
remaining backplanes are driven to an unselected volt-
age level. This process is then repeated for all back-
plane electrodes of the display.
 2010 Microchip Technology Inc. DS01354A-page 7

AN1354
For more details on the LCDCON register and its bit
descriptions and functions, see Register 26-1 of the
device data sheet (DS41414).

LCD PHASE REGISTER (LCDPS)

For this application, this register is used to:

- set the waveform type to type-A,

- set the voltage Bias mode to 1/3 bias,

- set the LCD driver module to active status,

- not allow the LCD data registers to be written
to during a specific period of time and,

- set the LCD clock source prescaler to a 1-to-1
ratio.

WAVEFORM TYPE

Multiplexed LCDs can be driven by two types of
waveforms generated by the LCD module. These are
called Type A and Type B in LCD specifications and
data sheets (see Figure 5). Given that an AC signal
with an average DC bias of 0 volts is required to drive
the LCD, type A waveforms take a single frame to
maintain 0 volts DC. Type B waveforms take two
frames to maintain 0 volts DC. The main difference
between the two types of waveforms is in the
frequencies of voltages applied to the LCD pixels.

From Figure 5, it is clear that type A waveforms contain
many more edges than type B waveforms. The lower
frequencies in type B waveforms have one major

advantage. Because the LCD presents a capacitive
load, the drive current rises with frequency. Therefore,
type B waveforms result in lower power consumption.
This is especially important in battery powered
applications.

The length of the frame frequency or refresh rate is the
same for both types of waveform. Therefore, there are
no differences between type A and type B waveforms
in refresh rate dependent optical parameters of the
LCD segments. Contrast is dependent on the light
source available, viewing angle, Multiplex mode, and
the LCD voltage levels. The first three parameters are
directly related to LCD glass and the fourth can be
controlled by the LCD driver. The LCD bias adjustment
controls the contrast between the LCD segment in On
and Off states. This voltage must be optimized for best
appearance. A greater voltage separation between
common and segment pins allows better contrast.

When will the waveform type matter? And when is one
wave form type better than the other? Basically, the
waveform type matters when you are using an LCD
display that requires two or more commons. So, for
waveform type A you will get more contrast control,
because the waveform is changing less often, thus the
LCD segments spend less time in transition. Waveform
type B would be better for LCD displays with larger
segment sizes that require more transition time and
have shorter or limited refresh rates.

FIGURE 5: TYPE A VS. TYPE B WAVEFORMS

Type A Waveforms Type B Waveforms

Common

Segment

Common-
Segment

Common

Segment

Common-
Segment

1 Frame 1 Frame

Note: Shaded area indicates the LCD is energized.

1 Frame
DS01354A-page 8  2010 Microchip Technology Inc.

AN1354
Voltage Bias

What does bias mean? Bias is the number of voltage
steps to be applied to the LCD. To control LCDs with a
larger multiplex ratio, you must provide the waveform
generator with multiple bias voltage level points. The
resulting waveform sent to the LCD segment control
lines and backplane/commons contains a stair-stepped
waveform. This maintains specific AC voltages across
any given segment, dot, and pixel to keep it in its On or
Off state. The LCD bias number (for example, 1/3 bias)
indicates how many voltage reference points are cre-
ated to drive a specific LCD. Table 1 shows the relation-
ship between the number of driving bias voltages and
the display multiplex ratios typically used.

For the PIC16F1947 microcontroller, the LCD module
can be configured for one of three bias types:

a) Static Bias (2 voltage levels: VSS and VLCD)

b) 1/2 Bias (3 voltage levels: VSS, 1/2 VLCD and
VLCD)

c) 1/3 Bias (4 voltage levels: VSS, 1/3 VLCD, 2/3
VLCD and VLCD)

Being that the microcontroller and LCD used in this
application are configured for a 1/4 multiplex, the Bias
mode will be set to 1/3 bias. This will give you the
lowest possible LCD voltage, 1/3 VDD.

Frame Frequency

The LCD prescaler lets you divide the clock
frequencies to set the LCD frame clock rate which will
allow us to adjust the frame frequency. The frame
frequency is the rate at which the backplane or
common and the segment outputs of the LCD change,
this may also be called ‘Refresh Rate’. The range of
frame frequencies is from 25 to 250 Hz with the most
common being between 50 and 150 Hz. The higher
frequencies result in higher power consumption, while
lower frequencies cause flicker in the image on the
LCD panel. Figure 6 shows the LCD clock generation
path used to set the frame frequency. Table 4 shows
Figure 6 in equations form for each multiplex
configuration. Table 5 gives frame frequencies for
several LCD prescaler values.

For more details on the LCDPS register and its bit
descriptions and functions, see Register 27-2 of the
PIC16F1947 device data sheet (DS41414).

FIGURE 6: LCD CLOCK GENERATION

TABLE 4: FRAME FREQUENCY
CALCULATION

TABLE 5: FRAME FREQUENCIES FOR
DIFFERENT PRESCALER
VALUES

1/3

1/4

Static

1/2 4-bit Prog
Prescaler

 + 32
Counter

 + 1, 2, 3, 4
Ring Counter

+256Fosc

T1OSC 32 kHz
Crystal Osc.

LFINTOSC
Nominal = 31 kHz

CS<1:0>
LMUX<1:0>

+4

+2

To Ladder
Power Control

Segment

Clock

LP<3:0>

C
O

M
0

C
O

M
1

C
O

M
2

C
O

M
3

Multiplex Frame Frequency =

Static Clock source/(4x1x(LCD Prescaler)x32))

1/2 Clock source/(2x2x(LCD Prescaler)x32))

1/3 Clock source/(1x3x(LCD Prescaler)x32))

1/4 Clock source/(1x4x(LCD Prescaler)x32))

LP<3:0> Static 1/2 1/3 1/4

2 122 122 162 122

3 81 81 108 81

4 61 61 81 61

5 49 49 65 49

6 41 41 54 41

7 35 35 47 35
 2010 Microchip Technology Inc. DS01354A-page 9

AN1354
LCD REFERENCE LADDER
REGISTER (LCDRL)

For this application, this register is used to:

- set the LCD reference ladder A time power to
Low-power mode,

- set the LCD reference ladder B time power to
Low-power mode and,

- set the number of 32 kHz clocks that the A
time interval power mode is active to always
in ‘B’ power mode.

POWER MODES

As an LCD segment is electrically only a capacitor,
current is drawn only during the interval where the
voltage is switching. To minimize total device current,
the LCD internal reference ladder can be operated in a
higher power mode for the switching time interval of the
LCD segment, and a lower power mode for the
remainder of the frame time.

The LCDRL register allows you to switch between two
Power modes, ‘A’ and ‘B’. The ‘A’ Power mode is active
for a programmable amount of time, beginning at the
time the LCD segment transitions, or switches on. The
‘B’ Power mode is the remaining time before the LCD
segment or common changes again. This will give you
flexibility in running the LCD. For example, the LCD can
run in high power for a short amount of time and run the
LCD in the Low-power mode for a longer amount of
time. See Figure 7 and Figure 8 for examples of the
two power modes for both waveform types A and B.

FIGURE 7: LCD INTERNAL REFERENCE LADDER POWER MODE SWITCHING DIAGRAM-
TYPE A WAVEFORM (½ MUX, ½ BIAS DRIVE)
DS01354A-page 10  2010 Microchip Technology Inc.

AN1354
FIGURE 8: LCD INTERNAL REFERENCE LADDER POWER MODE SWITCHING DIAGRAM-
TYPE B WAVEFORM (½ MUX, ½ BIAS DRIVE)

The internal reference ladder may operate in one of
three power modes. The three different power modes
are; Low, Medium and High. One power mode is not
any better than the others for all microcontrollers. The
best power mode for a given microcontroller and/or
application will be dependent upon temperature, board
leakage, LCD leakage, capacitance of LCD, and your
understanding/preference of an acceptable contrast
level. Thus, it allows you to trade off LCD contrast for
power in a specific application. The larger the LCD
glass, the more capacitance is present on a physical
LCD segment, thus requiring more current to maintain
the same contrast level. The internal reference ladder
can also be disconnected for applications that wish to
provide an external ladder or to minimize power
consumption.

For more details on the LCDRL register and its bit
descriptions and functions, see Register 27-7 of the
PIC16F1947 device data sheet (DS41414).

LCD CONTRAST CONTROL
REGISTER (LCDCST)

For this application, this register is used to:

- set the LCD contrast resistance to the
minimum resistance (i.e., the resistor ladder
is shorted). (Therefore, the maximum con-
trast, where the LCD segments are at their
darkest).

FIGURE 9: CONTRAST CONTROL CIRCUIT

R R R R
VDDIO

3.072V

From FVR
Buffer

Internal Reference Contrast Control

LCDCST<2:0>

7 Stages

To Top of
Reference Ladder
 2010 Microchip Technology Inc. DS01354A-page 11

AN1354
Contrast Control

The contrast control circuit is used to decrease the
output voltage of the signal source by a total of
approximately 10%, thus the 7-stage resistor ladder is
at maximum resistance (minimum contrast), therefore
the LCD segments are at their lightest. Likewise, when
you increase the output voltage, the 7-stage resistor
ladder is at its minimum resistance (maximum
contrast), thus the LCD segments are at their darkest.

So, to save power, you will want to find a contrast
setting that will give you enough resistance to see the
LCD segments, but does not use maximum voltage.
However, keep in mind that the contrast can and will be
affected by the temperature of the LCD display glass,
for example, the environmental temperature the display
is in. Also, you can set up the LCD to use an external
contrast control circuit using pulse-width modulation
(PWM). This gives you the option of having a larger
contrast range (more than 10%) at a faster rate. See
Figure 10 for an example of an external contrast control
circuit using the pulse-width modulation (PWM)
peripheral of the PIC16F1947 microcontroller.

FIGURE 10: EXTERNAL CONTRAST
CONTROL CIRCUIT
EXAMPLE

For more details on the LCDCST register and its bit
descriptions and functions, see Register 27-4 of the
PIC16F1947 device data sheet (DS41414).

LCD REFERENCE VOLTAGE
CONTROL REGISTER (LCDREF)

For this application, this register is used to:

- set the LCD internal voltage reference on
(thus connecting to the internal contrast
control circuit),

- set the internal contrast control to be
powered by VDD,

- set the internal voltage reference ladder to
allow the Fixed Voltage Reference (FVR) to
shut down when the LCD voltage reference
ladder is in power mode ‘B’,

- disconnect the LCD voltage pins from the
bias voltage generator

This register gives you the option of two different
voltage references to drive the LCD and contrast
control circuit. You can select from VDD or the internal
Fixed Voltage Reference, as shown in Figure 11. This
will allow you to drive a 5V LCD or a 3V LCD display,
but only if the microcontroller is running at 5 volts. If the
microcontroller is running at 3 volts, you would only be
able to run a 3-volt LCD display.

VLCD3CCP1
DS01354A-page 12  2010 Microchip Technology Inc.

AN1354
FIGURE 11: LCD BIAS VOLTAGE GENERATOR BLOCK DIAGRAM

The block diagram in Figure 11 can also be modified
using external capacitors to reduce power
consumption. By putting external capacitors on the
VLCD3, 2 and 1 pins, the capacitors will charge up when
the LCD is not being used and will discharge when the
LCD is in use. Thus, reducing the amount of current
needed from the resister ladder and allowing you to
turn the ladder off. For an example of this modification,
see Figure 12.

For more details on the LCDREF register and its bit
descriptions and functions, see Register 27-3 of the
PIC16F1947 device data sheet (DS41414).

FIGURE 12: EXTERNAL CAPACITOR
CIRCUIT EXAMPLE

LCD SEGMENT ENABLE REGISTERS
(LCDSen)

For this application, this register is used to enable/turn
on all LCD segments that you will be using. Looking at
source code Example 1, all of the LCDSEn registers
have all segment bits associated to their corresponding
LCDDATAn register bits set to ‘1’ . This will enable all
of the LCD display segments associated with these
registers. Thus, the LCD source code shown in source
code Example 2 and in the complete application source
code shown in “Appendix A – Complete Source
Code”, will be able to turn on each LCD display
segment as or when needed by the main program.

See Section “Segment Mapping” and source code
Example 1.

VLCD3

VLCD3PE

VLCD2

VLCD2PE

VLCD1

VLCD1PE

VDD

1.024V from
FVR

x3
3.072V

LCDIRE
LCDIRS
LCDA

LCDIRE
LCDIRS
LCDA

LCDA

LCDCST<2:>

BIASMD

lcdbias3

lcdbias2

lcdbias1

lcdbias0

A

B2

2

2

Power Mode Switching
(LRLAP or LRLBP)

VLCD3

1µ

VLCD2

1µ

VLCD1

1µ
 2010 Microchip Technology Inc. DS01354A-page 13

AN1354
LCD DATA REGISTERS (LCDDATAn)

For this application, this register is used to make all of
the LCD segments either dark or clear as needed while
the program is running. As you look at source code
Example 1, you will notice that all of the LCDDATAn
registers are set to ‘0’. This will turn all of the LCD
display segments associated with these registers off.
The LCD source code shown in source code
Example 2 and in the complete application source code
shown in “Appendix A – Complete Source Code”,
will turn on (set to ‘1’) each LCD display segment as or
when needed by the main program.

For more details on the LCDDATAn register and its bit
descriptions and functions, see Register 27-6 of the
PIC16F1947 device data sheet (DS41414).

Tying It All Together.

When you have gone through and determined which
LCD display segments you want to drive, which
microcontroller LCD segments will drive them, and how
you want to configure the LCD module, you need to tie
the source code to the application.

For the source code used in this application example,
you do not need to use all segments of the LCD display.
You need only to use digits 1 through 5 as shown in the
LCD segment mapping worksheet, see Table 2. For
simplicity purposes, the source code has been written
to automatically use these digits as needed. See code
Example 2.

THE APPLICATION

The example application for this document is an
electronic combination lock. It works as follows:

Select a 3-digit code – for example: 4, 5, 6.

- Push button 1:

This button lets you select a number from 0 to 9.
Thus, as you press the button, the LCD will dis-
play numbers incrementing from 0 to 9, then
back to 0, and so on.

- Push button 2:

This is the Enter button. So, when the LCD dis-
plays the first number of the 3-digit code using
push button 1, enter the number using push but-
ton 2. Repeat this process until all 3 digits are
entered, then the LCD will display “UNLOC”
(Figure 1).

- Push button 3:

This is the Reset button. Press this button to
reset the device.

- Push button 4:

This is the LCD contrast control. As you press
this button, you will notice the brightness/
contrast of the pixels get lighter and lighter, then
back to maximum darkness.

See “Appendix A – Complete Source Code” for the
complete source code and schematic used in this
application.
DS01354A-page 14  2010 Microchip Technology Inc.

AN1354
EXAMPLE 2: LCD SEGMENT IMPLEMENTATION FOR DIGIT 1 (PART 1 OF 2)
/*
 * Update digit 1 - Labeled 1A-1G on the display
 */
lcd_tmp = seg7_cvt(Dig1);

/* Segment A */
if (lcd_tmp & SEG_A)

SEG1COM0 = 1;
else

SEG1COM0 = 0;

/* Segment B */
if (lcd_tmp & SEG_B)

SEG3COM0 = 1;
else

SEG3COM0 = 0;

/* Segment C */
if (lcd_tmp & SEG_C)

SEG3COM1 = 1;
else

SEG3COM1 = 0;

/* Segment D */
if (lcd_tmp & SEG_D)

SEG3COM2 = 1;
else

SEG3COM2 = 0;

/* Segment E */
if (lcd_tmp & SEG_E)

SEG1COM1 = 1;
else

SEG1COM1 = 0;

/* Segment F */
if (lcd_tmp & SEG_F)

SEG1COM3 = 1;
else

SEG1COM3 = 0;

/* Segment G */
if (lcd_tmp & SEG_G)

SEG3COM3 = 1;
else

SEG3COM3 = 0;
 2010 Microchip Technology Inc. DS01354A-page 15

AN1354
EXAMPLE 2: LCD SEGMENT IMPLEMENTATION FOR DIGIT 1 (PART 2 OF 2)
/* Convert the integer value to which segments need to be turned on or off */
unsigned char seg7_cvt(unsigned char digit)
{

switch (digit)
{

case '0':
case 0:

return SEG_A | SEG_B | SEG_C | SEG_D | SEG_E | SEG_F;
case '1':
case 1:

return SEG_B | SEG_C;
case '2':
case 2:

return SEG_A | SEG_B | SEG_D | SEG_E | SEG_G;
case '3':
case 3:

return SEG_A | SEG_B | SEG_C | SEG_D | SEG_G;
case '4':
case 4:

return SEG_B | SEG_C | SEG_F | SEG_G;
case '5':
case 5:

return SEG_A | SEG_C | SEG_D | SEG_F | SEG_G;
case '6':
case 6:

return SEG_A | SEG_C | SEG_D | SEG_E | SEG_F | SEG_G;
case '7':
case 7:

return SEG_A | SEG_B | SEG_C;
case '8':
case 8:

return SEG_A | SEG_B | SEG_C | SEG_D | SEG_E | SEG_F | SEG_G;
case '9':
case 9:

return SEG_A | SEG_B | SEG_C | SEG_D | SEG_F | SEG_G;
case 'L':

return SEG_F | SEG_E | SEG_D;
case 'O':

return SEG_A | SEG_B | SEG_C | SEG_D | SEG_E | SEG_F;
case 'C':

return SEG_A | SEG_F | SEG_E | SEG_D;
case 'U':

return SEG_F | SEG_E | SEG_D | SEG_C | SEG_B;
case 'n':

return SEG_E | SEG_G | SEG_C;
case ' ':

return 0;
case '-':

return SEG_G;

default: /* Display a visible pattern when we have something we don't understand
*/
 return 0;
 }
}

DS01354A-page 16  2010 Microchip Technology Inc.

AN1354
CONCLUSION

The PIC16F1947 microcontroller is ideally suited for
LCD applications such as clocks, meters, thermostats,
etc. This application note describes how to configure/
optimize the LCD module for low-power consumption
and implement it in a real world application.
Nevertheless, the configurations discussed will be
more dependent on the application and the LCD
display used. However, if you optimize your source
code to take advantage of the Sleep mode whenever
possible, optimize the LCD module settings to find the
perfect balance of contrast vs. power consumption and
use good power, ground and noise techniques when
designing your applications’ circuit, you will be well on
your way to maximizing the LCD module of
PIC16F1947 microcontroller and its features to
enhance any application.

Please refer to application note AN658, “LCD
Fundamentals using the PIC16C92X Microcontrollers”,
for a more detailed discussion on how LCD displays
are constructed.
 2010 Microchip Technology Inc. DS01354A-page 17

AN1354
NOTES:
DS01354A-page 18  2010 Microchip Technology Inc.

AN1354
APPENDIX A – COMPLETE SOURCE CODE

FIGURE 1: SCHEMATIC (1 OF 3)

PI
C
16
F1
97
4-
I/P
T

U
2

kH
z

 2010 Microchip Technology Inc. DS01354A-page 19

AN1354
FIGURE 2: SCHEMATIC (2 OF 3)

M
C
P7
94
10

kH
z

DS01354A-page 20  2010 Microchip Technology Inc.

AN1354
FIGURE 3: SCHEMATIC (3 OF 3)

P
IC

ki
t™

 2
 2010 Microchip Technology Inc. DS01354A-page 21

AN1354
EXAMPLE : COMPLETE SOURCE CODE
/*

--
 Filename: 1947comboLoc.c
 Date: March 2-2010

 File Version: 1.0
 Written by: John Mouton

 Company: Microchip Technology

 Files required: pic.h, LCD.c, and lcd.h

*/

#include <htc.h>
#include "lcd.h"

// Setup the configuration word for use with ICD2

__CONFIG(FOSC_INTOSC & WDTE_OFF & MCLRE_ON & PWRTE_ON & BOREN_ON & IESO_OFF &
 FCMEN_OFF & CP_OFF & CPD_OFF & CLKOUTEN_OFF);

__CONFIG(WRT_OFF & VCAPEN_OFF & PLLEN_OFF & STVREN_ON & DEBUG_OFF & LVP_OFF &
 BORV_19);

static unsigned charCombination_Number_Flag = 0;// Combonation number flag.

 // Combination Code
static unsigned charCombination_Digit_1 = 4; //### You select this value. #####

static unsigned charCombination_Digit_2 = 5; //### You select this value. #####
static unsigned charCombination_Digit_3 = 6; //### You select this value. #####

// Declarations
static unsigned char NUMBER_SELECT_BUTTON = 0; // flag indicating that SW1 was pressed.

static unsigned char ENTER_BUTTON = 0; // flag indicating that SW2 was pressed.
static unsigned char RESET_BUTTON = 0; // flag indicating that SW3 was pressed.
static unsigned char CONTRAST_CONTROL_BUTTON = 0; // flag indicating that SW4 was pressed.

static unsigned char state_variable = 0; // state counter variable.

static unsigned char Number_select_button_counter = 0; // counter variable for NUM_SELECT flag in

 debounce subroutine.
static unsigned char Enter_button_counter = 0; // counter variable for ENTER flag in

 debounce subroutine.
static unsigned char Reset_button_counter = 0; // counter variable for RESET flag in

 debounce subroutine.

static unsigned char Contrast_Control_button_counter = 0; // counter variable for CONTRAST_CONTROL
 flag in debounce subroutine.

static unsigned char Number_selection_counter = 0; // counter variable for Decide_1 function.
static unsigned char Decide_1_function_state_variable = 0; // state machine count variable for

Decide_1 function.

static unsigned char Decide_4_function_state_variable = 0; // state machine count variable for
Decide_4 function.

static unsigned char Decide1_output_flag = 0; // output flag variable for Decide_1
function.

static unsigned char Decide2_output_flag = 0; // output flag variable for Decide_2

function.
static unsigned char Decide3_output_flag = 0; // output flag variable for Decide_3

function.
static unsigned char Decide4_output_flag = 0; // output flag variable for Decide_4

function.
DS01354A-page 22  2010 Microchip Technology Inc.

AN1354
EXAMPLE : COMPLETE SOURCE CODE (CONTINUED)

unsigned long int Interrupt_count = 0; // 32 bit interrupt counter variable
static unsigned char lockup_flag; // interrupt variable to lockup

 the device if interrup occures.

 // function prototype

void INIT(void); // device initialization function.
void GET_inputs(void); // recieve all inputs function.
void Decide_1(void); // based on inputs, select a number function.

void Decide_2(void); // based on inputs, check/verify number selection function.
void Decide_3(void); // based on inputs, check/verify reset function.

void Decide_4(void); // based on inputs, check/verify contrast control selection
function.
void DO_outputs(void); // based on decisions, display proper outputs function.

void leds_on(void); // sub-fuction of DO_out function to turn LEDs on.
void leds_off(void); // sub-fuction of DO_out function to turn LEDs off.

void interrupt Time_out_int(void); // interrupt subroutine timeout function.

/*---
Subroutine: INIT

Parameters: none
Returns:nothing

Synopsys:Initializes flags, and variables, sets PORT direction,
configures analog/digital pins, and disables the comparator module

---*/

void INIT(void) {

 TRISA = 0b11000000; // set port A as outputs.
 TRISB = 0b11000000; // set port B bits 4,5,6,7 as outputs and RB0,1,2,3 as inputs.
 TRISC = 0x00; // set port C as outputs.

 TRISD = 0x00; // set port D as outputs.
 TRISE = 0x00; // set port E as outputs.

 TRISF = 0x00;
 TRISG = 0x00;

 ANSELA = 0x00; // make all analog outputs.

 ANSELE = 0x00; // make all analog outputs.
 ANSELF = 0x00;

 ANSELG = 0x00;

 LATA = 0x00;

 LATB = 0x00;
 LATC = 0x00;
 LATD = 0x00;

 LATE = 0x00;
 LATF = 0x00;

 LATG = 0x00;

 CM1CON0 = 0x07; // turn off the comparators.
 CM2CON0 = 0x07;

 CM1CON1 = 0x07;
 CM2CON1 = 0x07;

 OPTION_REG = 0x00; // clear the OPTION_REG.
 INTCON = 0xA0; // enable peripheral interrupts

 TMR0 = 0; // clear timer 0.
 RD4 = 0; // set RD4 to 0.
 RB7 = 0;

 PORTA = 0; // CLEAR ALL PORTS, variables, and flags.
 PORTB = 0;

 PORTC = 0;
 PORTD = 0;
 PORTE = 0;

 PORTF = 0;
 PORTG = 0;
 2010 Microchip Technology Inc. DS01354A-page 23

AN1354
EXAMPLE : COMPLETE SOURCE CODE (CONTINUED)

// Initialize variables

 Number_select_button_counter = 0;

 Enter_button_counter = 0;
 Reset_button_counter = 0;

 Contrast_Control_button_counter = 0;
 Number_selection_counter = 0;
 Decide_1_function_state_variable = 0;

 Decide_4_function_state_variable = 0;
 NUMBER_SELECT_BUTTON = 0;

 ENTER_BUTTON = 0;
 RESET_BUTTON = 0;
 CONTRAST_CONTROL_BUTTON = 0;

 Combination_Number_Flag = 0;
 Decide1_output_flag = 0;

 Decide2_output_flag = 0;
 Decide3_output_flag = 0;
 Decide4_output_flag = 0;

 // Initialize your combination value here.

 Combination_Digit_1 = 4; // ### You select this value. #####

 Combination_Digit_2 = 5; // ### You select this value. #####
 Combination_Digit_3 = 6; // ### You select this value. #####

 // Initializing the Interrupt routine variables.
 Interrupt_count = 0; // clear interrupt counter.

 lockup_flag = 0; // clear interrupt lockup flag.

 // Set up the LCD for use

 lcd_init(); // calls the lcd initialization function.
 SEG18COM0 = 1; // MCHP logo
}

/*---
Subroutine: main

Parameters: none
Returns:nothing

Synopsys:Main program function
---*/

void main(void)

{
INIT(); //Initialize all registers

while(1)

{
GET_inputs(); //Get inputs from off-chip
Decide_1(); //Make decisions based on inputs

 Decide_2(); //Make decisions based on inputs
 Decide_3(); //Make decisions based on inputs for Reset

 Decide_4(); //Make decisions based on inputs for Contrast Control
DO_outputs(); //Do outputs based on decisions
}

}

/*---

Subroutine: GET_inputs
Parameters: none
Returns:nothing

Synopsys:Gets the inputs from buttons on Mechatronics Demo Board.
---*/
DS01354A-page 24  2010 Microchip Technology Inc.

AN1354
EXAMPLE : COMPLETE SOURCE CODE (CONTINUED)
void GET_inputs(void) {

// DEBOUNCE FUNCTION FOR SW1.

if (RB6 == 0) Number_select_button_counter++; // this routine eliminates the contact
bounce of the SW1 button being pressed.

else Number_select_button_counter = 0;
if (Number_select_button_counter >= 9) Number_select_button_counter = 9; // it looks for 8

 consective lows before

if (Number_select_button_counter == 8) NUMBER_SELECT_BUTTON = 1; // it determines the button
 is pressed

// DEBOUNCE FUNCTION FOR SW2.

if (RB7 == 0) Enter_button_counter++; // this routine eliminates the contact bounce of the SW2
 button being pressed.

else Enter_button_counter = 0;
if (Enter_button_counter >= 9) Enter_button_counter = 9; // it looks for 8 consective lows

 before

if (Enter_button_counter == 8) ENTER_BUTTON = 1; // it determines the button is pressed

// DEBOUNCE FUNCTION FOR SW3.

if (RA6 == 0) Reset_button_counter++; // this routine eliminates the contact bounce of the SW3
 button being pressed.

else Reset_button_counter = 0;

if (Reset_button_counter >= 9) Reset_button_counter = 9; // it looks for 8 consective
 lows before

if (Reset_button_counter == 8) RESET_BUTTON = 1; // it determines the button is pressed

// DEBOUNCE FUNCTION FOR SW4.

if (RA7 == 0) Contrast_Control_button_counter++; // this routine eliminates the contact bounce

 of the SW4 button being pressed.
else Contrast_Control_button_counter = 0;
if (Contrast_Control_button_counter >= 9) Contrast_Control_button_counter = 9; // it looks

 for 8 consective lows before
if (Contrast_Control_button_counter == 8) CONTRAST_CONTROL_BUTTON = 1; // it determines the

 button is pressed

}

/*---
Subroutine: Decide_1
Parameters: none

Returns:nothing
Synopsys:This function steps through numbers 0 - 9, then back to 0, each time

 the user presses the SW2 button.
---*/

void Decide_1(void) {

 if (NUMBER_SELECT_BUTTON == 1)
 {

 Decide1_output_flag = 1;
 NUMBER_SELECT_BUTTON = 0;
 2010 Microchip Technology Inc. DS01354A-page 25

AN1354
EXAMPLE : COMPLETE SOURCE CODE (CONTINUED)

 switch(Decide_1_function_state_variable){ // State machine for the number
selection.

 case 0:
 {

 Number_selection_counter = 0;
 Combination_Number_Flag = Number_selection_counter;
 Decide_1_function_state_variable = 1;

 }
 break;

 case 1:
 {

 Number_selection_counter = 1;
 Combination_Number_Flag = Number_selection_counter;

 Decide_1_function_state_variable = 2;

 }

 break;

 case 2:
 {

 Number_selection_counter = 2;
 Combination_Number_Flag = Number_selection_counter;
 Decide_1_function_state_variable = 3;

 }

 break;

 case 3:

 {
 Number_selection_counter = 3;

 Combination_Number_Flag = Number_selection_counter;

 Decide_1_function_state_variable = 4;

 }
 break;

 case 4:
 {

 Number_selection_counter = 4;
 Combination_Number_Flag = Number_selection_counter;

 Decide_1_function_state_variable = 5;
 }

 break;

 case 5:
 {

 Number_selection_counter = 5;
 Combination_Number_Flag = Number_selection_counter;

 Decide_1_function_state_variable = 6;
 }

 break;
DS01354A-page 26  2010 Microchip Technology Inc.

AN1354
EXAMPLE : COMPLETE SOURCE CODE (CONTINUED)
 case 6:

 {
 Number_selection_counter = 6;
 Combination_Number_Flag = Number_selection_counter;

 Decide_1_function_state_variable = 7;

 }
 break;

 case 7:
 {

 Number_selection_counter = 7;
 Combination_Number_Flag = Number_selection_counter;
 Decide_1_function_state_variable = 8;

 }
 break;

 case 8:
 {

 Number_selection_counter = 8;
 Combination_Number_Flag = Number_selection_counter;

 Decide_1_function_state_variable = 9;

 }
 break;

 case 9:
 {

 Number_selection_counter = 9;
 Combination_Number_Flag = Number_selection_counter;

 Decide_1_function_state_variable = 0;
 }

 break;

 default:

 {
 Decide_1_function_state_variable = 0;

 }
 break;

 }
 }

}

/*---

Subroutine: Decide_2
Parameters: none

Returns:nothing
Synopsys:This function will check the numbers selected and entered as the three

 digit code to unlock the electronic lock.
---*/

void Decide_2(void) {

 if (ENTER_BUTTON == 1)
 {
 Decide2_output_flag = 1;

 ENTER_BUTTON =0;
 switch(state_variable){
 2010 Microchip Technology Inc. DS01354A-page 27

AN1354
EXAMPLE : COMPLETE SOURCE CODE (CONTINUED)
 case 0:

 if (Combination_Number_Flag == Combination_Digit_1) // checks the first
number entered of the three digit combo.

 {

 state_variable = 1; // increments state variable
 Decide_1_function_state_variable = 0;

 }
 else
 {

 state_variable = 0;
 Decide_1_function_state_variable = 0;

 }
 break;

 case 1:
 if (Combination_Number_Flag == Combination_Digit_2) // checks the second

number entered of the three digit combo.

 {
 state_variable = 2; // increments state variable

 Decide_1_function_state_variable = 0;
 }

 else
 {
 state_variable = 0;

 Decide_1_function_state_variable = 0;
 }

 break;

 case 2:

 if (Combination_Number_Flag == Combination_Digit_3) // checks the third
 number entered of the three digit combo.

 {

 state_variable = 3; // increments state variable, thus when
 the state variable

 // equals 3, the entire three digit combo
 is verified correct.

 Decide_1_function_state_variable = 0;

 }
 else

 {
 state_variable = 0;
 Decide_1_function_state_variable = 0;

 }
 break;

 case 3:

 {
 state_variable = 0;
 Decide_1_function_state_variable = 0;

 }
 break;

 default: // default case.

 {
 state_variable = 0;
 Decide_1_function_state_variable = 0;

 }
 break;

 }

 }

}

DS01354A-page 28  2010 Microchip Technology Inc.

AN1354
EXAMPLE : COMPLETE SOURCE CODE (CONTINUED)
/*---

Subroutine: Decide_3
Parameters: none
Returns:nothing

Synopsys:This function will monitor SW3 and if it is pressed, the demo will reset.
---*/

void Decide_3(void) {

 if (RESET_BUTTON == 1)
 {

 Decide3_output_flag = 1;
 RESET_BUTTON =0;
 INIT();

 }

}

/*---

Subroutine: Decide_4
Parameters: none

Returns:nothing
Synopsys:This function will change the brightness of the LCD digits.

---*/

void Decide_4(void) {

 if (CONTRAST_CONTROL_BUTTON == 1)
 {

 Decide4_output_flag = 1;
 LCDCST++;

 CONTRAST_CONTROL_BUTTON =0;
 }

}

/*---
Subroutine: DO_out

Parameters: none
Returns:nothing

Synopsys:This function will display Locked or unlocked
based on the outputs of the decision functions.

---*/

void DO_outputs(void)
{

 if (lockup_flag == 1) // if the interrupt lockup flag is set,
 // dashed lines will appear on the LCD

 {
 lcd_update ('-','-','-','-','-');
 }

 else

 {
 if(Decide1_output_flag == 1 && Decide2_output_flag == 0) // if SW2 is pressed but SW3 isn't,

then display the
 // current number value.
 {

 Decide1_output_flag = 0;
 lcd_update (' ',' ',' ',' ',Number_selection_counter);

 }
 2010 Microchip Technology Inc. DS01354A-page 29

AN1354
EXAMPLE : COMPLETE SOURCE CODE (CONTINUED)

 else if(Decide1_output_flag == 0 && Decide2_output_flag == 1) // If SW2 was pressed and the
number value you want is etered (via SW3)and it is
correct. Then display unlocked, if not display locked.

 {
 Decide1_output_flag = 0;

 Decide2_output_flag = 0;

 if (state_variable == 3)

 {
 RB7 = 1;

 lcd_update ('U','n','L','O','C');
 Interrupt_count = 0; // The interrupt counter will reset.
 lockup_flag = 0; // The interrupt lockup flag will reset.

 TMR0IE = 0; // The timer 0 enable bit will turn off so the
 // interrupt routine will not time out even if

 // the electronic combo lock is unlocked.
 }

 else
 {

 lcd_update (' ','L','O','C',' ');
 RB7 = 0;

 }
 }

 else
 {

 Decide1_output_flag = 0;
 Decide2_output_flag = 0;
 }

 }

}

/*---
Subroutine: Time_out_int

Parameters: none
Returns:nothing

Synopsys:This is the interrupt function that will lock you out of the
 electronic combination lock if you don't enter the correct 3 digit
 combination fast enough.

---*/

void interrupt Time_out_int(void) {

 if (TMR0IF == 1) // If the Timer 0 interrupt flag is set,

 { // increment the interrupt counter and
 Interrupt_count ++ ; // clear the Timer 0 interrupt flag.

 TMR0IF = 0;
 }

 if (Interrupt_count == 30000) // If the interrupt counter is equal to 30000,
 { // set the lockup flag.

 lockup_flag = 1;
 }

}

/*
DS01354A-page 30  2010 Microchip Technology Inc.

AN1354
EXAMPLE : COMPLETE SOURCE CODE (CONTINUED)

* CODE OWNERSHIP AND DISCLAIMER OF LIABILITY

*

* Microchip Technology Incorporated ("Microchip") retains all ownership and
* intellectual property rights in the code accompanying this message and in all
* derivatives hereto. You may use this code, and any derivatives created by

* any person or entity by or on your behalf, exclusively with Microchip’s
* proprietary products. Your acceptance and/or use of this code constitutes

* agreement to the terms and conditions of this notice.
*
* CODE ACCOMPANYING THIS MESSAGE IS SUPPLIED BY MICROCHIP "AS IS". NO

* WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED
* TO, IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY AND FITNESS FOR A

* PARTICULAR PURPOSE APPLY TO THIS CODE, ITS INTERACTION WITH MICROCHIP’S
* PRODUCTS,COMBINATION WITH ANY OTHER PRODUCTS, OR USE IN ANY APPLICATION.
*

* YOU ACKNOWLEDGE AND AGREE THAT, IN NO EVENT, SHALL MICROCHIP BE LIABLE,
* WHETHER IN CONTRACT, WARRANTY, TORT (INCLUDING NEGLIGENCE OR BREACH OF

* STATUTORY DUTY), STRICT LIABILITY, INDEMNITY,CONTRIBUTION, OR OTHERWISE, FOR
* ANY INDIRECT, SPECIAL, PUNITIVE, EXEMPLARY, INCIDENTAL OR CONSEQUENTIAL LOSS,

* DAMAGE, FOR COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE CODE,
* HOWSOEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR
* THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWABLE BY LAW,

* MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED* TO THIS CODE,
* SHALL NOT EXCEED THE PRICE YOU PAID DIRECTLY TO MICROCHIP SPECIFICALLY TO

* HAVE THIS CODE DEVELOPED.
*
* You agree that you are solely responsible for testing the code and

* determining its suitability. Microchip has no obligation to modify, test,
* certify, or support the code.

***/

/*
--

 Filename: LCD.c
 Date: March 2-2010
 File Version: 1.0

 Written by: John Mouton
 Company: Microchip Technology

*/

#include <pic.h>

#include "lcd.h"

//Function Prototype
void lcd_update(unsigned char Dig1, unsigned char Dig2 , unsigned char Dig3, unsigned char Dig4,
unsigned char Dig5);

/*

 * Update the LCD with the supplied numerical values
 *
 * Note that we use two back to back if statements when comparing bits rather

 * than if-else as it is smaller
 */
 2010 Microchip Technology Inc. DS01354A-page 31

AN1354
EXAMPLE : COMPLETE SOURCE CODE (CONTINUED)

/* Segments in a 7 segment display */
#define SEG_A 0x01
#define SEG_B 0x02

#define SEG_C 0x04
#define SEG_D 0x08

#define SEG_E 0x10
#define SEG_F 0x20
#define SEG_G 0x40

static bank1 unsigned char lcd_tmp;

unsigned char seg7_cvt(unsigned char digit);

void lcd_init(void)
{

 LCDSE0 = 0xFE; // enable first group of LCD segment outputs
 LCDSE1 = 0x8F; // enable second group of LCD segments
 LCDSE2 = 0xFF; // enable third group of LCD segments

 LCDSE3 = 0x00;
 LCDSE4 = 0x00;

 LCDSE5 = 0x00;
 LCDDATA0 = 0; // clear LCD segment registers

 LCDDATA1 = 0;
 LCDDATA2 = 0;
 LCDDATA3 = 0;

 LCDDATA4 = 0;
 LCDDATA5 = 0;

 LCDDATA6 = 0;
 LCDDATA7 = 0;
 LCDDATA8 = 0;

 LCDDATA9 = 0;
 LCDDATA10 = 0;

 LCDDATA11 = 0;
 LCDDATA12 = 0;
 LCDDATA13 = 0;

 LCDDATA14 = 0;
 LCDDATA15 = 0;

 LCDDATA16 = 0;
 LCDDATA17 = 0;
 LCDDATA18 = 0;

 LCDDATA19 = 0;
 LCDDATA20 = 0;

 LCDDATA21 = 0;
 LCDDATA22 = 0;
 LCDDATA23 = 0;

 // WAVEFORM TYPE A, LCD MODULE IS ACTIVE

 LCDPS = 0x20; // PRESCALER IS 1:1, BIAS IS 0 (CAN BE STATIC OR 1/3)
 // LCD MODULE IS ON, DRIVER MODULE IS ENABLED DURING SLEEP

 LCDCON = 0x8B; // NO WRITE FAIL ERROR, VLDC PINS ARE ENABLED, MULTIPLEX 1/4
 BIAS 1/3
 LCDREF = 0x80;

 LCDCST = 0x00;
 LCDRL = 0xF0;

}

DS01354A-page 32  2010 Microchip Technology Inc.

AN1354
EXAMPLE : COMPLETE SOURCE CODE (CONTINUED)

void lcd_update(unsigned char Dig1, unsigned char Dig2, unsigned char Dig3, unsigned char Dig4,
unsigned char Dig5)
{

/*
 * Microchip Logo

 */
SEG18COM0 = 1; /* Turn All off to start */

/*

* Update digit 1 - Labeled 1A-1G on the display
*/
 lcd_tmp = seg7_cvt(Dig1);

 /* Segment A */

 if (lcd_tmp & SEG_A)
 SEG1COM0 = 1;
else (!(lcd_tmp & SEG_A))

SEG1COM0 = 0;

/* Segment B */
if (lcd_tmp & SEG_B)

SEG3COM0 = 1;
else (!(lcd_tmp & SEG_B))

SEG3COM0 = 0;

/* Segment C */

if (lcd_tmp & SEG_C)
SEG3COM1 = 1;

else (!(lcd_tmp & SEG_C))

SEG3COM1 = 0;

/* Segment D */
if (lcd_tmp & SEG_D)

SEG3COM2 = 1;

else (!(lcd_tmp & SEG_D))
SEG3COM2 = 0;

/* Segment E */
if (lcd_tmp & SEG_E)

SEG1COM1 = 1;
else (!(lcd_tmp & SEG_E))

SEG1COM1 = 0;

/* Segment F */

if (lcd_tmp & SEG_F)
SEG1COM3 = 1;

else (!(lcd_tmp & SEG_F))
SEG1COM3 = 0;

/* Segment G */
if (lcd_tmp & SEG_G)

SEG3COM3 = 1;
else (!(lcd_tmp & SEG_G))

SEG3COM3 = 0;
 2010 Microchip Technology Inc. DS01354A-page 33

AN1354
EXAMPLE : COMPLETE SOURCE CODE (CONTINUED)

/*
 * Update digit 2 - Labled 2A-2G on the display
 */

lcd_tmp = seg7_cvt(Dig2);

/* Segment A */
if (lcd_tmp & SEG_A)

SEG6COM0 = 1;

else (!(lcd_tmp & SEG_A))
SEG6COM0 = 0;

/* Segment B */
if (lcd_tmp & SEG_B)

SEG16COM0 = 1;
else (!(lcd_tmp & SEG_B))

SEG16COM0 = 0;

/* Segment C */

if (lcd_tmp & SEG_C)
SEG16COM1 = 1;

else (!(lcd_tmp & SEG_C))
SEG16COM1 = 0;

/* Segment D */
if (lcd_tmp & SEG_D)

SEG6COM2 = 1;
else (!(lcd_tmp & SEG_D))

SEG6COM2 = 0;

/* Segment E */

if (lcd_tmp & SEG_E)
SEG6COM1 = 1;

else (!(lcd_tmp & SEG_E))
SEG6COM1 = 0;

/* Segment F */
if (lcd_tmp & SEG_F)

SEG6COM3 = 1;
else (!(lcd_tmp & SEG_F))

SEG6COM3 = 0;

/* Segment G */

if (lcd_tmp & SEG_G)
SEG16COM3 = 1;

else (!(lcd_tmp & SEG_G))

SEG16COM3 = 0;

/*
 * Update digit 3 - Labled 3A-3G on the display

 */
lcd_tmp = seg7_cvt(Dig3);

SEG22COM3 = 0;

/* Segment G */

if (lcd_tmp & SEG_G)
SEG21COM3 = 1;

else (!(lcd_tmp & SEG_G))

SEG21COM3 = 0;
DS01354A-page 34  2010 Microchip Technology Inc.

AN1354
EXAMPLE : COMPLETE SOURCE CODE (CONTINUED)

/* Segment A */
if (lcd_tmp & SEG_A)

SEG11COM0 = 1;

else (!(lcd_tmp & SEG_A))
SEG11COM0 = 0;

/* Segment B */
if (lcd_tmp & SEG_B)

SEG23COM0 = 1;
else (!(lcd_tmp & SEG_B))

SEG23COM0 = 0;

/* Segment C */

if (lcd_tmp & SEG_C)
SEG23COM1 = 1;

else (!(lcd_tmp & SEG_C))
SEG23COM1 = 0;

/* Segment D */
if (lcd_tmp & SEG_D)

SEG11COM2 = 1;
else (!(lcd_tmp & SEG_D))

SEG11COM2 = 0;

/* Segment E */

if (lcd_tmp & SEG_E)
SEG11COM1 = 1;

else (!(lcd_tmp & SEG_E))
SEG11COM1 = 0;

/* Segment F */
if (lcd_tmp & SEG_F)

SEG11COM3 = 1;
else (!(lcd_tmp & SEG_F))

SEG11COM3 = 0;

/* Segment G */

if (lcd_tmp & SEG_G)
SEG23COM3 = 1;

else (!(lcd_tmp & SEG_G))

SEG23COM3 = 0;

/*
 * Update digit 4 - Labeled 4A-4G on the display

 */
lcd_tmp = seg7_cvt(Dig4);

/* Segment A */

if (lcd_tmp & SEG_A)
SEG22COM0 = 1;

else (!(lcd_tmp & SEG_A))

SEG22COM0 = 0;

/* Segment B */
if (lcd_tmp & SEG_B)

SEG21COM0 = 1;

else (!(lcd_tmp & SEG_B))
SEG21COM0 = 0;
 2010 Microchip Technology Inc. DS01354A-page 35

AN1354
EXAMPLE : COMPLETE SOURCE CODE (CONTINUED)

/* Segment C */
if (lcd_tmp & SEG_C)

SEG21COM1 = 1;

else (!(lcd_tmp & SEG_C))
SEG21COM1 = 0;

/* Segment D */
if (lcd_tmp & SEG_D)

SEG22COM2 = 1;
else (!(lcd_tmp & SEG_D))

SEG22COM2 = 0;

/* Segment E */

if (lcd_tmp & SEG_E)
SEG22COM1 = 1;

else (!(lcd_tmp & SEG_E))
SEG22COM1 = 0;

/* Segment F */
if (lcd_tmp & SEG_F)

SEG22COM3 = 1;
else (!(lcd_tmp & SEG_F))

/*
 * Update digit 5 - Labeled 5A-5G on the display

 */

lcd_tmp = seg7_cvt(Dig5);

/* Segment A */

if (lcd_tmp & SEG_A)
SEG5COM0 = 1;

else (!(lcd_tmp & SEG_A))
SEG5COM0 = 0;

/* Segment B */
if (lcd_tmp & SEG_B)

SEG4COM0 = 1;
else (!(lcd_tmp & SEG_B))

SEG4COM0 = 0;

/* Segment C */

if (lcd_tmp & SEG_C)
SEG4COM1 = 1;

else (!(lcd_tmp & SEG_C))

SEG4COM1 = 0;

/* Segment D */
if (lcd_tmp & SEG_D)

SEG5COM2 = 1;
else (!(lcd_tmp & SEG_D))

SEG5COM2 = 0;

/* Segment E */

if (lcd_tmp & SEG_E)
SEG5COM1 = 1;

else (!(lcd_tmp & SEG_E))

SEG5COM1 = 0;
DS01354A-page 36  2010 Microchip Technology Inc.

AN1354
EXAMPLE : COMPLETE SOURCE CODE (CONTINUED)

/* Segment F */
if (lcd_tmp & SEG_F)

SEG5COM3 = 1;

else (!(lcd_tmp & SEG_F))
SEG5COM3 = 0;

/* Segment G */
if (lcd_tmp & SEG_G)

SEG4COM3 = 1;
else (!(lcd_tmp & SEG_G))

SEG4COM3 = 0;

}

/* Convert the integer value to which segments need to be turned on or off */

unsigned char seg7_cvt(unsigned char digit)
{
 switch (digit)

 {
 case '0':

 case 0:
 return SEG_A | SEG_B | SEG_C | SEG_D | SEG_E | SEG_F;

 case '1':
 case 1:

 return SEG_B | SEG_C;

 case '2':
 case 2:

 return SEG_A | SEG_B | SEG_D | SEG_E | SEG_G;
 case '3':
 case 3:

 return SEG_A | SEG_B | SEG_C | SEG_D | SEG_G;
 case '4':

 case 4:
 return SEG_B | SEG_C | SEG_F | SEG_G;

 case '5':

 case 5:
 return SEG_A | SEG_C | SEG_D | SEG_F | SEG_G;

 case '6':
 case 6:

 return SEG_A | SEG_C | SEG_D | SEG_E | SEG_F | SEG_G;

 case '7':
 case 7:

 return SEG_A | SEG_B | SEG_C;
 case '8':
 case 8:

 return SEG_A | SEG_B | SEG_C | SEG_D | SEG_E | SEG_F | SEG_G;
 case '9':

 case 9:
 return SEG_A | SEG_B | SEG_C | SEG_D | SEG_F | SEG_G;

 case 'L':
 return SEG_F | SEG_E | SEG_D;
 case 'O':

 return SEG_A | SEG_B | SEG_C | SEG_D | SEG_E | SEG_F;
 case 'C':

 return SEG_A | SEG_F | SEG_E | SEG_D;
 case 'U':
 return SEG_F | SEG_E | SEG_D | SEG_C | SEG_B;
 2010 Microchip Technology Inc. DS01354A-page 37

AN1354
EXAMPLE : COMPLETE SOURCE CODE (CONTINUED)

 case 'n':
 return SEG_E | SEG_G | SEG_C;
 case ' ':

 return 0;
 case '-':

 return SEG_G;

 default: /* Display a visible pattern when we have something we don't understand */

 return 0;
}

}

/*
--

 Filename: lcd.h
 Date: March 2-2010
 File Version: 1.0

 Written by: John Mouton
 Company: Microchip Technology

*/

#ifndef _LCD_H
#define _LCD_H

/* Update the LCD with the supplied data */

void lcd_update(unsigned char Dig1, unsigned char Dig2, unsigned char Dig3, unsigned char Dig4,
unsigned char Dig5);

/* Initialize the LCD for use */
void lcd_init(void);

#endif /* _LCD_H */
DS01354A-page 38  2010 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.
 2010 Microchip Technology Inc.
Trademarks

The Microchip name and logo, the Microchip logo, dsPIC,
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,
PIC32 logo, rfPIC and UNI/O are registered trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,
MXDEV, MXLAB, SEEVAL and The Embedded Control
Solutions Company are registered trademarks of Microchip
Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard,
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial
Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified
logo, MPLIB, MPLINK, mTouch, Omniscient Code
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,
PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance,
TSHARC, UniWinDriver, WiperLock and ZENA are
trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2010, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

 Printed on recycled paper.

ISBN: 978-1-60932-534-3
DS01354A-page 39

Microchip received ISO/TS-16949:2002 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

DS01354A-page 40  2010 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com

Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260

Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445

Toronto
Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431

Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889

China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500

China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431

China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470

China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066

China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760

China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118

China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130

China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123

India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632

India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513

Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122

Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302

Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934

Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859

Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068

Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069

Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-6578-300
Fax: 886-3-6578-370

Taiwan - Kaohsiung
Tel: 886-7-213-7830
Fax: 886-7-330-9305

Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820

Worldwide Sales and Service

08/04/10

http://support.microchip.com
http://www.microchip.com

	Introduction
	Getting Started
	FIGURE 1: VLS5573 LCD Display
	How Much LCD Can the Microcontroller Handle?
	FIGURE 2: LCD Common Pin Configuration
	TABLE 1: Varitronix VLS5573 LCD Pinout

	Segment Mapping
	FIGURE 3: LCD Segment Layout
	FIGURE 4: Digit Segment Layout
	TABLE 2: LCD Segment Mapping WorkSheet
	TABLE 3: Completed LCD Segment Mapping WorkSheet

	LCD Module Configuration
	EXAMPLE 1: Initialization of the LCD Module

	LCD Control register (LCDCON)
	Clock Sources
	Drive Modes
	Duty or MUX Ratio

	LCD Phase Register (LCDPS)
	Waveform Type
	FIGURE 5: Type A vs. Type B Waveforms
	Voltage Bias
	Frame Frequency
	FIGURE 6: LCD Clock Generation
	TABLE 4: Frame Frequency Calculation
	TABLE 5: Frame Frequencies for Different Prescaler Values

	LCD Reference Ladder Register (LCDRL)
	Power Modes
	FIGURE 7: LCD Internal Reference Ladder Power Mode Switching Diagram- Type A waveform (½ MUX, ½ Bias Drive)
	FIGURE 8: LCD Internal Reference Ladder Power Mode Switching Diagram- Type B waveform (½ MUX, ½ Bias Drive)

	LCD Contrast Control register (LCDCST)
	FIGURE 9: Contrast Control Circuit
	Contrast Control
	FIGURE 10: External Contrast Control Circuit Example

	LCD Reference Voltage Control Register (LCDREF)
	FIGURE 11: LCD Bias Voltage Generator Block Diagram
	FIGURE 12: External Capacitor Circuit Example

	LCD Segment Enable Registers (LCDSEn)
	LCD Data Registers (LCDDATAn)
	Tying It All Together.

	The Application
	EXAMPLE 2: LCD Segment Implementation for Digit 1 (Part 1 of 2)
	EXAMPLE 2: LCD Segment Implementation for Digit 1 (Part 2 of 2)

	Conclusion
	Implementing an LCD Using the PIC16F1947 Microcontroller
	Appendix A – Complete Source Code
	FIGURE 1: Schematic (1 of 3)
	FIGURE 2: Schematic (2 of 3)
	FIGURE 3: Schematic (3 of 3)
	EXAMPLE : Complete Source Code
	EXAMPLE : Complete Source Code (Continued)
	EXAMPLE : Complete Source Code (Continued)
	EXAMPLE : Complete Source Code (Continued)
	EXAMPLE : Complete Source Code (Continued)
	EXAMPLE : Complete Source Code (Continued)
	EXAMPLE : Complete Source Code (Continued)
	EXAMPLE : Complete Source Code (Continued)
	EXAMPLE : Complete Source Code (Continued)
	EXAMPLE : Complete Source Code (Continued)
	EXAMPLE : Complete Source Code (Continued)
	EXAMPLE : Complete Source Code (Continued)
	EXAMPLE : Complete Source Code (Continued)
	EXAMPLE : Complete Source Code (Continued)
	EXAMPLE : Complete Source Code (Continued)
	EXAMPLE : Complete Source Code (Continued)
	EXAMPLE : Complete Source Code (Continued)

	Worldwide Sales and Service

