INTRODUCTION

This application note describes the design of a microcontroller-based KEELOQ® transmitter with receiver acknowledge using the KEELOQ encryption algorithm. This transmitter is implemented on the Microchip PIC16F636 microcontroller. Descriptions of the encoding process, the encoding hardware and description of the software modules are included within this application note. The software was designed to be backwards compatible with an HCS365 dual transmitter in terms of memory map programming.

The software used in this implementation makes use of the PIC16F636 internal encryption engine to generate the hopping codes required for transmission. This design can be used to implement a secure system transmitter that has the flexibility to be designed into various types of KEELOQ receiver/decoders. The Acknowledge is achieved by using an MRF49XA transceiver.

DUAL TRANSMITTER OPERATION

This firmware contains two transmitter configurations with separate serial numbers, transmitter keys, user values, counters and seed values. This means that the transmitter can be used as two independent systems. The SHIFT (S3) input pin is used to select between transmitter configurations. When the dual transmitter feature is disabled, the button acts as a local status request, displaying the last received status on the LEDs.

RECEIVER ACKNOWLEDGE

On any button press, a data packet is sent over the air. The transmitter then goes to Receive mode for a period of time. During this time, the MRF49XA transceiver is in Receive mode and waits for a data packet coming back from the receiver. If no packet is received from the receiver end, then the transmitter has the ability to re-send the data packet (if the feature is enabled). The Acknowledge indication is done using the two LEDs on the transmitter board.

SAMPLE BUTTONS/WAKE-UP

Upon power-up, the transmitter verifies the state of the buttons inputs and determines if a button is pressed. If no button press is detected, the transmitter will go to Sleep mode. The transmitter will wake-up whenever a button is pressed. Wake-up is achieved by configuring the input port to generate an interrupt-on-change. The button input values are then placed in the transmission buffer, in the appropriate section.

LOAD SYSTEM CONFIGURATION

After waking up and debouncing the input switches, the firmware will read the system Configuration bytes. All the system Configuration bytes are stored in the EEPROM. Below is the EEPROM mapping for the PIC16F636 transmitter showing the Configuration and data bits stored.

TRANSMITTER OVERVIEW

The transmitter has the following key features:

Security

- Two programmable 28-bit serial numbers
- Two programmable 64-bit encryption keys
- Two programmable 32-bit user values
- Each transmitter is unique
- 64-bit transmission code length
- 32-bit hopping code

Operation

- 2.0-5.5V operation
- Four-button inputs
- Automatic packet retry feature
- Nonvolatile synchronization data
- FSK modulation (handled internally by the MRF49XA)
- Dual transmitter functionality
FIGURE 1: SOFTWARE FLOW DIAGRAM

START

Sample Buttons

Get Config

Increment Counter

Encrypt

Transmit

ACK Rx Yet?

ACK Time Out?

Max Retry

Sleep

KeeLoq®

YES

YES

NO

NO

NO

YES
MRF49XA RADIO CONFIGURATION

The radio link parameters in the MRF49xA are set to a default configuration that is adequate for the majority of applications. The baud rate is 9600 bps, using an FSK modulation with deviation of 60 kHz. For a more detailed description on how to setup the MRF49XA, please refer to AN1252, "Interfacing the MRF49XA Transceiver to PIC® Microcontrollers".

The following considerations were made to select the MRF49XA Configuration Words.

The configuration considers the use of standard 30ppm crystal accuracy. Such a crystal will generate a frequency error of:

EQUATION 1:

\[
\Delta f_0 = \frac{30ppm}{10^6} \times 915 \times 10^6 = 27.45kHz
\]

The deviation can now be calculated:

EQUATION 2:

\[
\Delta f_{FSK} = 9600 + 2 \times \Delta f_0 + 10 \times 10^3
\]

For the above values, we get a result of 74.5 kHz. The closest deviation supported by the MRF49XA transceiver is 75 kHz. For a maximum power output and a 75 kHz deviation, a value of 0x9840 is loaded into the TXCREG register.

Now, we can calculate the baseband bandwidth:

EQUATION 3:

\[
BBBW = \text{deviation} \times 2 - 10 \times 10^3 \text{ Hz}
\]

For the above values, we get a result of 140 kHz. Picking a BBBW of 200 kHz, an RSSI of minus 97 dBm, and a maximum LNA gain, we get a value of 0x9481 to be loaded into the RXCREG register.

This code to configure the transceiver is contained in module MRF49XA.c.

TABLE 1: EEPROM MAPPING FOR THE KEELOQ® TRANSMITTER

<table>
<thead>
<tr>
<th>Offset</th>
<th>Description</th>
<th>Description</th>
<th>MNEMONIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00</td>
<td>Sync Counter Transmitter 0</td>
<td>EE_CNT0</td>
<td></td>
</tr>
<tr>
<td>0x01</td>
<td>Sync Counter Transmitter 0</td>
<td>EE_CNT1</td>
<td></td>
</tr>
<tr>
<td>0x02</td>
<td>Sync Counter Transmitter 0</td>
<td>EE_SER0</td>
<td></td>
</tr>
<tr>
<td>0x03</td>
<td>Sync Counter Transmitter 0, Checksum AB</td>
<td>EE_CNT0</td>
<td></td>
</tr>
<tr>
<td>0x04</td>
<td>Sync Counter Transmitter 0, Checksum BC</td>
<td>EE_CNT0</td>
<td></td>
</tr>
<tr>
<td>0x05</td>
<td>Sync Counter Transmitter 0, Checksum AC</td>
<td>EE_CNT0</td>
<td></td>
</tr>
<tr>
<td>0x06</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>0x07</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>0x08</td>
<td>Sync Counter Transmitter 1</td>
<td>EE_CNT0</td>
<td></td>
</tr>
<tr>
<td>0x09</td>
<td>Sync Counter Transmitter 1</td>
<td>EE_CNT1</td>
<td></td>
</tr>
<tr>
<td>0x0A</td>
<td>Sync Counter Transmitter 1</td>
<td>EE_CNT1</td>
<td></td>
</tr>
<tr>
<td>0x0B</td>
<td>Sync Counter Transmitter 1, Checksum AB</td>
<td>EE_CNT0</td>
<td></td>
</tr>
<tr>
<td>0x0C</td>
<td>Sync Counter Transmitter 1, Checksum BC</td>
<td>EE_CNT0</td>
<td></td>
</tr>
<tr>
<td>0x0D</td>
<td>Sync Counter Transmitter 1, Checksum AC</td>
<td>EE_CNT0</td>
<td></td>
</tr>
<tr>
<td>0x0E</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>0x0F</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>0x10</td>
<td>32-BIT SERIAL NUMBER for TX#0 (MSB)</td>
<td>EE_CNT0</td>
<td></td>
</tr>
<tr>
<td>0x11</td>
<td>32-BIT SERIAL NUMBER for TX#0</td>
<td>EE_CNT1</td>
<td></td>
</tr>
<tr>
<td>0x12</td>
<td>32-BIT SERIAL NUMBER for TX#0</td>
<td>EE_CNT1</td>
<td></td>
</tr>
<tr>
<td>0x13</td>
<td>32-BIT SERIAL NUMBER for TX#0 (LSB)</td>
<td>EE_CNT0</td>
<td></td>
</tr>
<tr>
<td>0x14</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>0x15</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>0x16</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>0x17</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>0x18</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>0x19</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
TABLE 1: EEPROM MAPPING FOR THE Keeloq® TRANSMITTER (CONTINUED)

<table>
<thead>
<tr>
<th>Address</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x1A</td>
<td>—</td>
</tr>
<tr>
<td>0x1B</td>
<td>—</td>
</tr>
<tr>
<td>0x1C</td>
<td>DISC_0</td>
</tr>
<tr>
<td>0x1D</td>
<td>—</td>
</tr>
<tr>
<td>0x1E</td>
<td>64-BIT KEY (MSB) for TX #0</td>
</tr>
<tr>
<td>0x1F</td>
<td>64-BIT KEY for TX #0</td>
</tr>
<tr>
<td>0x20</td>
<td>64-BIT KEY for TX #0</td>
</tr>
<tr>
<td>0x21</td>
<td>64-BIT KEY for TX #0</td>
</tr>
<tr>
<td>0x22</td>
<td>64-BIT KEY for TX #0</td>
</tr>
<tr>
<td>0x23</td>
<td>64-BIT KEY for TX #0</td>
</tr>
<tr>
<td>0x24</td>
<td>64-BIT KEY for TX #0</td>
</tr>
<tr>
<td>0x25</td>
<td>64-BIT KEY-0 (LSB) for TX #0</td>
</tr>
<tr>
<td>0x26</td>
<td>32-BIT SERIAL NUMBER for TX#1 (MSB)</td>
</tr>
<tr>
<td>0x27</td>
<td>32-BIT SERIAL NUMBER for TX#1</td>
</tr>
<tr>
<td>0x28</td>
<td>32-BIT SERIAL NUMBER for TX#1</td>
</tr>
<tr>
<td>0x29</td>
<td>32-BIT SERIAL NUMBER for TX#1 (LSB)</td>
</tr>
<tr>
<td>0x2A</td>
<td>—</td>
</tr>
<tr>
<td>0x2B</td>
<td>—</td>
</tr>
<tr>
<td>0x2C</td>
<td>—</td>
</tr>
<tr>
<td>0x2D</td>
<td>—</td>
</tr>
<tr>
<td>0x2E</td>
<td>—</td>
</tr>
<tr>
<td>0x2F</td>
<td>—</td>
</tr>
<tr>
<td>0x30</td>
<td>—</td>
</tr>
<tr>
<td>0x31</td>
<td>—</td>
</tr>
<tr>
<td>0x32</td>
<td>DISC_1</td>
</tr>
<tr>
<td>0x33</td>
<td>—</td>
</tr>
<tr>
<td>0x34</td>
<td>64-BIT KEY (MSB) for TX#1</td>
</tr>
<tr>
<td>0x35</td>
<td>64-BIT KEY for TX#1</td>
</tr>
<tr>
<td>0x36</td>
<td>64-BIT KEY for TX#1</td>
</tr>
<tr>
<td>0x37</td>
<td>64-BIT KEY for TX#1</td>
</tr>
<tr>
<td>0x38</td>
<td>64-BIT KEY for TX#1</td>
</tr>
<tr>
<td>0x39</td>
<td>64-BIT KEY for TX#1</td>
</tr>
<tr>
<td>0x3A</td>
<td>64-BIT KEY for TX#1</td>
</tr>
<tr>
<td>0x3B</td>
<td>64-BIT KEY (LSB) for TX#1</td>
</tr>
<tr>
<td>0x3C</td>
<td>—</td>
</tr>
<tr>
<td>0x3D</td>
<td>EE_CFG</td>
</tr>
<tr>
<td>0x3E</td>
<td>—</td>
</tr>
<tr>
<td>0x3F</td>
<td>—</td>
</tr>
</tbody>
</table>
TABLE 2: TRANSMITTER CONFIGURATION OPTIONS

<table>
<thead>
<tr>
<th>BIT</th>
<th>Field</th>
<th>Description</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>MRT</td>
<td>Maximum number of transmission retries</td>
<td>00 – None</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>01 – Once</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10 – Twice</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11 – Three times</td>
</tr>
<tr>
<td>1</td>
<td>INDESEL</td>
<td>Dual Transmitter Enable</td>
<td>0 = Disable</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 = Enable</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Not used</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>TSEL</td>
<td>Time-out Select</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EE_SER0 AND EE_SER1

These locations store the 4 bytes of the 32-bit serial number for transmitter 1 and transmitter 2. There are 32 bits allocated for the serial number and the serial number is meant to be unique for every transmitter.

EE_DISC0 AND EE_DISC1

These locations store the 8-bit discrimination value. This value is typically the 8 LSBs of the serial number. This field can serve as a post decryption packet check.

EE_KEY0 AND EE_KEY1

The 64-bit encryption key is used by the transmitter to create the encrypted message transmitted to the receiver. This key is created using a key generation algorithm. The inputs to the key generation algorithm are the secret manufacturer’s code, and the serial number. The user may choose to use the algorithm supplied by Microchip or to create their own method of key generation.

SYNCHRONIZATION COUNTER STORAGE

The following addresses save the counter and the checksum values. The counter value is stored in the counter locations (EE_CNT0 for transmitter 1 and EE_CNT1 for transmitter 2) described in the EEPROM table. This code is contained in module counter.c.

Along with the counter values, three counter checksums are stored. These are calculated by a XOR operation between different bytes of the counter value. Thus, three new values are being used: A XOR B, B XOR A, and C XOR A. When reading the counter value from EEPROM memory, the counter values are being checked and, if necessary, they are being corrected using the checksum values. The firmware flow diagram is shown in Figure 2.
AUTOMATIC RETRY

Upon transmission of a data packet, the transmitter waits for reception of acknowledge from the receiver. The Acknowledge reception can occur after the transmission of a radio packet. A time-out period is used and, if the Acknowledge is not received, the reception is aborted. The time-out period is set according to the TSEL field of the Configuration register. If a packet acknowledge is not received, the transmitter has the ability to resend the data packet and wait for another acknowledge. The number of retries is defined in the MRT field of the Configuration register. This feature can be enabled, with a maximum of three retries, or it can be completely disabled. The sequence can be one of the following scenarios (see Figure 3).
In Figure 3 we see a total of six different acknowledge scenarios.

The first one is the most simple and will occur for the majority of time under normal conditions. Immediately after a transmission, the transmitter goes to Listening mode waiting for acknowledge. In this case, acknowledge is received on time and no time-out event occurs.

The second case represents a transmitter that has the automatic retry feature disabled. After a time-out event, the transmitter is not sending a new transmission.

In cases 3 and 4, we can see the transmitter’s automatic retry feature. After a time-out event, the transmitter sends a new data packet. In case 4, no acknowledge is received, even though the transmitter retried three times – the maximum allowed by the MRT setting.

In cases 5 and 6, we have a successful acknowledge on the first transmission retry and on the third transmission retry.
CODE TRANSMISSION FORMAT

The following is the data stream format transmitted (Table 3):

<table>
<thead>
<tr>
<th>Plain Text (32 bits)</th>
<th>Encrypted (32 bits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serial number (32 bits)</td>
<td>Function code (8 bits)</td>
</tr>
<tr>
<td>Discrimination (8 bits)</td>
<td>Counter (16 bits)</td>
</tr>
</tbody>
</table>

A KEELOQ transmission consists of 32 bits of hopping code data and 32 bits of fixed code data.

HOPPING CODE PORTION

The hopping code portion is calculated by encrypting the function code, serial number, user code, counter, and a checksum with the Transmitter Key (KEY). A new hopping code is calculated every time a button is pressed. The user code can be programmed with any fixed value to serve as a post decryption check on the receiver end. This code portion is transmitted in encrypted format.

FIXED CODE PORTION

The fixed code portion consists of 32 bits of serial number and, therefore, is transmitted in non-encrypted format (plain text).

FIRMWARE MODULES

The following files make up the KEELOQ transmitter firmware:

- main.c: this file contains the main loop routine, as well as the wake-up, debounce, read configuration, load transmit buffer and transmit routines.
- packet.c: this file loads the transmit buffer according to the encryption algorithm.
- MRF49XA.c: this file contains all the functions that control the MRF49XA transceiver.
- counter.c: this file loads the synchronization counter, checks its validity and automatically corrects any errors.
- encryption.c: this file contains the functions that provide the encryption algorithm. Because of statutory export license restrictions on encryption software, the source code listings for the AES algorithms are not provided here.

FIRMWARE CONFIGURATION

The transmitter firmware is fully configurable. The encryption algorithm can be changed very easily. All the necessary functions and definitions are contained in the encryption.c and encryption.h modules. Changing the encryption algorithm is as simple as replacing the above module and recompiling the source code.

CONCLUSION

This KEELOQ transmitter firmware has all the features of a standard hardware transmitter. What makes this firmware implementation useful is that it gives the designer the power and flexibility of modifying the encoding and/or transmission formats and parameters to suit their security system. In addition, this system allows the user to receive acknowledge from the intended receiver.

REFERENCES

C. Toma, AN1252, “Interfacing the MRF49XA Transceiver to PIC® Microcontrollers”, (DS01252), Microchip Technology Inc., 2009.

ADDITIONAL INFORMATION

Microchip’s Secure Data Products are covered by some or all of the following:

- Code hopping encoder patents issued in European countries and U.S.A.
- Secure learning patents issued in European countries, U.S.A. and R.S.A.

REVISION HISTORY

Revision B (June 2011)

- Added new section Additional Information
- Minor formatting and text changes were incorporated throughout the document
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277

Technical Support: http://www.microchip.com/support

Web Address: www.microchip.com

Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Boston
Westborough, MA
Tel: 774-447-0087
Fax: 774-447-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260

Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445

Toronto
Mississauga, Ontario, Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2448-3431

Australia - Sydney
Tel: 61-2-8868-6733
Fax: 61-2-8868-6755

China - Beijing
Tel: 86-10-8599-7000
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8865-5511
Fax: 86-28-8866-7889

China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500

China - Hangzhou
Tel: 86-571-2819-3180
Fax: 86-571-2819-3189

China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431

China - Nanjing
Tel: 86-25-8473-2640
Fax: 86-25-8473-2647

China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066

China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760

China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118

China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130

China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123

India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632

India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513

Japan - Yokohama
Tel: 81-45-471-6166
Fax: 81-45-471-6122

Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302

Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859

Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068

Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069

Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-6578-300
Fax: 886-3-6578-370

Taiwan - Kaohsiung
Tel: 886-7-213-7830
Fax: 886-7-330-9305

Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820

18/02/11