
AN1305
Sensorless 3-Phase Brushless Motor Control with the PIC16FXXX
OVERVIEW

In 2002, I wrote my first application note on brushless
motor control, AN857, which described the operation of
sensored and sensorless brushless motors. The basic
motor operation concepts described in that application
note still apply today, therefore, I will not repeat them
here. In the time since then, enhancements to two of
the microcontroller peripherals have been made that
dramatically improve the microcontroller capabilities for
sensorless motor control applications. This application
note will describe those enhancements and how they
are used to create a sensorless motor control solution
with an 8 MHz PIC16FXXX device that has truly stellar
performance with seamless operation from 100 RPM to
over 90,000 RPM.

TYPICAL MOTOR CONNECTION

Figure 1 is a simplified block diagram of how a
sensorless, 3-phase brushless motor is configured with
the drive and control circuitry. Each phase of the motor
is connected to three circuits:

• a FET driver to the motor supply,

• a FET driver to the motor supply return, and 

• a voltage divider.

The voltage divider is necessary to reduce the phase
voltage down to a range acceptable to the microcon-
troller input. During each commutation period the
microcontroller drives one motor phase high, one motor
phase low, and compares the third undriven motor
phase to a fourth voltage divider connected to the
motor supply.

FIGURE 1: DRIVE AND CONTROL CIRCUITRY

Voltage to the motor from the motor supply is varied by
pulse-width modulating the driver FETs. Only one side
of the drive needs to be modulated: either the high side
motor supply or the low side supply return. This
requires that three of the microcontroller outputs to the
FET drivers have PWM capability, while the other three
can be general purpose output pins.

The microcontroller comparator is used to determine
when the undriven phase voltage reaches the
mid-point between the motor supply and motor return
potentials. Since there are three phase voltages and
one reference, this requires multiplexing each of the

three phase outputs to one input of the comparator
while the other comparator input remains on the fixed
reference.

We’ll now take a look at the new peripheral features to
see how they meet the FET driver and comparator
input requirements and how they are controlled.
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MICROCONTROLLER PERIPHERAL 
ENHANCEMENTS

Two relatively minor enhancements are now incorpo-
rated in some PIC16FXXX devices that significantly
improve the capabilities of the comparator and the
enhanced capture, compare, and PWM (ECCP)
peripherals. These enhancements are particularly
useful for brushless motor control applications. The
comparator now has four independently selectable
inputs to the inverting input and the ECCP has up to
four individually selectable outputs in single PWM
mode. 

COMPARATOR ENHANCEMENTS

Figure 1 shows a block diagram of the new comparator
configuration. As seen in the diagram, the non-inverting
input can be configured to sense one I/O pin, and the
inverting input can be configured to sense one of four
I/O pins. Sensorless brushless motor control needs
four comparator connections: the single non-inverting
comparator input is connected to a voltage divider off of
the high motor supply rail, and a voltage divider on
each motor terminal is connected to the input MUX of
the inverting comparator input. Two bits in the compar-
ator control register select which motor terminal is
directed to the inverting comparator input. At each
commutation state, when the high and low motor driv-
ers are configured, so are the comparator inputs, so
that the floating motor terminal can be compared to the
fixed reference. 

ECCP ENHANCEMENTS

The new Enhanced Capture Compare and PWM
peripheral (ECCP) has the capability to direct the PWM
output to four I/O pins. The PWM output for each pin is
individually selected by a bit in the PSTRCON control
register. In single PWM mode, the PWM signal can be
directed to any combination of the four outputs. For
brushless motor control three of the PWM outputs are
connected to three of the motor driver devices. The
PWM outputs are connected to the high side drivers for
high side modulation or the low side drivers for low side
modulation. For each of the six commutation states,
one PWM output is enabled to drive one motor terminal
with modulation, while another motor terminal is driven
steady state. The third motor terminal floats and is used
to detect motor position.

MOTOR CONTROL

The motor is controlled by synchronizing the commuta-
tion with both the motor position and the motor speed.
Motor speed at various supply voltage and load
conditions is a function of the motor design. The control
algorithm searches for this intrinsic speed and adjusts
the commutation period to match. The control algorithm
is similar to a Phase Lock Loop (PLL) in that error
between the commutation period and what the motor
needs is computed and added back into the commuta-
tion period. The error eventually accumulates to zero.
The biggest difference between motor control and
other Phase Lock Loop systems is that the motor con-
trol becomes discontinuous at any commutation rate
above the ideal rate. In other words, the motor cannot
keep up at any commutation rate above the ideal rate.
This discontinuity results in an abrupt loss of lock and
causes the motor to stop abruptly. The control algo-
rithm must avoid crossing this discontinuity boundary
by instantly responding to any condition that may cause
this breech. This is accomplished by resetting the time
to the next commutation at each zero-crossing event.
By definition, zero-crossing occurs in the middle of the
commutation period so the time to the next commuta-
tion is set to one half of the last computed commutation
period. If the commutation period becomes too short,
then the commutation will be early, resulting in a late
zero-crossing event. When this occurs, then the current
commutation period is instantly extended by the
amount of the delay. If the commutation period
becomes too long, then the zero-crossing event will
occur early and the current commutation will be short-
ened. This keeps the commutation cycles tightly cou-
pled to the motor position and allows for a narrow
bandwidth error feedback loop for better stability.

The motor position can be determined by sensing the
voltage on the undriven motor phase. The first half of
the section on Sensorless Motor Control in AN857
covers this in detail. One of the differences between the
approach of AN857 and this application note is that we
will be using a comparator to determine the voltage
instead of using an analog to digital converter. 
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COMMUTATION

When commutation is synchronized with the motor
position then the voltage of the undriven phase
transitions through the point at which it is equal to half
the motor supply voltage at the mid-point of the com-
mutation period. This is sometimes referred to as the
zero-crossing event. The supply voltage must be
applied to the driven phases to bias the undriven phase
to the proper level for zero-crossing detection. The con-
trol algorithm measures the time from commutation to
the zero-crossing event and computes the difference
between the actual and expected as the error. In any
case, the time from the zero-crossing event to the next
commutation is always half the uncorrected commuta-
tion period. In other words, even if the zero-crossing is
detected immediately after commutation, the time to
the next commutation will be half the previously calcu-
lated commutation time. Timer1 is used to both mea-

sure the time to the zero-crossing event and to time the
commutation events. Figure 2 shows a graphical repre-
sentation of this. The commutation time is N. Timer1 is
preset to –N so that it overflows after N counts. At the
zero-crossing event, the Timer1 count is captured; let’s
call this time X. The time to zero-crossing can then be
calculated as X – (-N) or X+N. At the zero-crossing
event Timer1 is also preset to –N/2, which will cause an
overflow, thereby triggering the next commutation
one-half commutation period later.

FIGURE 2: COMMUTATION

ZERO-CROSS DETECTION

The zero-crossing event cannot be detected on every
commutation period because of the nature of the drive
and detection circuitry. Consider pictures 3a and 3b in
Figure 3. Picture 3a (High Side Modulation) shows one
phase of a motor drive waveform for a high-side modu-
lated drive. Picture 3b (Low Side Modulation) shows
one phase of the motor drive waveform for a low-side
modulated drive. 
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FIGURE 3: ZERO-CROSS DETECTION

In Figure 3, a dotted line represents the comparator
reference input, which in our case, is half the motor
supply voltage. The motor terminal voltage is repre-
sented by the waveform and is on the other comparator
input. For the high-side modulated system, when the
motor terminal BEMF voltage is rising the comparator
output, after the inductive transient, is steady until
half-way through the commutation period. Once the
comparator transitions the first time, it continues to
transition at every PWM drive cycle for the remainder
of the commutation period, as shown in the lower half
of pictures 3a and 3b. On the same high-side modu-
lated system, when the BEMF is falling, the comparator
continues to transition at every PWM cycle until the last
half of the commutation period. The opposite is true for
low-side modulated systems, that is, when the BEMF is
falling, the comparator output is steady in the first half
and transitions in the last half of the commutation. 

Clearly, it is easier to detect the zero-crossing event at
the first comparator change than it is to detect when the
comparator stops changing. For this reason, the
zero-crossing event is detected only during rising
BEMF periods on high-side modulated systems and
only on falling BEMF periods on low-side modulated
systems. Since the BEMF alternates between rising
and falling in each commutation cycle, zero-crossing is
detected every second cycle. The periods in which the
zero-crossing events are not detected are commutation
only. The commutation-only interval is also when the
new commutation time is computed using the
zero-crossing event time captured during the previous
commutation and zero-cross period.

COMMUTATION DRIVE

For speed control and soft start-up, the motor supply
voltage is pulse-width modulated. The modulation is
applied to the motor driver switches and needs to be
applied only to either the high-side or low side drivers.
Sometimes it is necessary to modulate the low-side
drivers in order to cycle the high-side gate driver
charge pumps. Otherwise, high-side or low-side
modulation is a matter of personal preference. In each
commutation period, one motor terminal is driven high,
one terminal is driven low, and the third remaining
terminal is left floating. The modulated drive comes
from an ECCP PWM output pin. The unmodulated
drive comes directly from an output pin. There are four
ECCP PWM pins designated: P1A, P1B, P1C, and
P1D. The PWM output pins are individually controlled
by bits in the PSTRCON register. When the PWM is
active a 1 in the PSTRCON register corresponding to
the desired active output will modulate that pin. All
other PWM pins will output the level in the correspond-
ing PORT output latch. It is important not to perform
any output operations directly to the port sharing the
PWM outputs. The reason is that all writes to a register
are performed as read-modify-write operations. If the
active PWM is high when an operation, such as a
bit-set, is performed on a non-PWM output in the same
port as the PWM, then the output latch for the active
PWM pin will be changed to a high level. When the
PWM output eventually moves to the next drive phase
the output latch will drive the unmodulated pin high.
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COMMUTATION STATES

There are six commutation states in each electrical
revolution. Each state drives one motor phase high and
one motor phase low. The third undriven motor phase
is directed to the comparator inverting input through a
voltage divider. These three actions require setting the
PSTRCON register for the modulated drive, a PORT
latch register for the unmodulated drive, and the
CCP1CON register for comparator BEMF detection.

MOTOR CONTROL CODE

When the motor is running the motor control code has
two major functions: status monitoring and motor
control interrupts. The overall view of the motor control
code is shown in Figure 4. The main System Service
loop, in addition to status monitoring, controls the
start-up sequence. Two interrupt types are enabled to
control motor operation: Timer1 and comparator.
Timer1 interrupts are always enabled and invoke each
and every motor commutation. Comparator interrupts
are only enabled every second commutation period to
capture the zero-crossing event. 

FIGURE 4: MOTOR CONTROL CODE

SYSTEM SERVICES

System services control the start-up sequence and
monitor system status while the motor is running.
start-up consists of system initialization, warm-up, slow
start, and Phase Lock search. Status monitoring
includes stall monitoring and speed control. The fre-
quency of each start-up event and status check is
determined by the time base manager.

FIGURE 5: SYSTEM SERVICES
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TIME BASE MANAGER

The time base manager is a 10 millisecond period timer
based on Timer0. Each status monitor subroutine
keeps track of the time base manager time-ticks by
means of a flag. Every 10 milliseconds, the time base
manager sets a series of flags, one for each start-up
control and status monitor. The flag is an indication to
the respective control or status monitor to update its
own internal counter. The control or status function is
serviced when the corresponding counter reaches
zero. The counter is then reset to the time count for that
monitor or control and the service is performed.

SYSTEM INITIALIZATION

System Initialization sets the Special Function
Registers (SFRs) to configure the microcontroller and
sets all ports to their initial off state. Initialization occurs
at power-up and whenever the motor is stopped. The
motor may be stopped as a result of a Fault or because
the speed request is below the lowest run speed. When
initialization is active, all of the status functions, other
than speed request, are disabled.

WARM-UP

Warm-up allows the system to settle after initialization.
Warm-up commences immediately after initialization
and lasts for the warm-up time specified by the
TIMEBASE_WARMUP_ms constant. When warm-up is
complete, the motor drivers are enabled and slow start
commences.

CONTROL SLOW START

Control slow start prepositions the motor to a known
commutation state so that subsequent commutations
can start to accelerate the motor up to speed. Recall
that the drive voltage is applied to two of the three
motor windings. This causes the permanent magnet
rotor to align with the created magnetic field which is
between the active windings. Some motors have a
strong tendency to align the rotor magnets with one of
the motor windings when power is not applied. There
are 60 electrical degrees between windings, so that
applying power to such a motor will cause the rotor to
move at least 30 electrical degrees, or more if the rotor
was aligned to the winding not being powered. Other
motors have a weak alignment tendency, so that the
rotor may be aligned 180 degrees out of phase with the
generated magnetic field when power is applied. In this
case, the rotor will not move at all and will be in an
improper position to accelerate properly when commu-
tation begins. For this reason, motors that have a weak
alignment tendency must receive two slow start posi-
tioning drive periods of sequential commutation drive
states to ensure that the rotor is not stuck 180 degrees
out of phase when the actual commutation starts. The

amount of time to dwell in each slow start state
depends on the inertia of the motor and the drive volt-
age applied. High inertia motors need more dwell time
than low inertia motors. This allows the rotor to settle to
a known position which makes the acceleration
response to the first commutation drive more consis-
tent and predictable. The dwell time for each slow start
step is specified by the TIMEBASE_SLOW_STEP
constant. The start-up commutation period is set in
Timer1 and interrupts are enabled at the conclusion of
slow start. At this point, Timer1 interrupts have com-
plete control of the motor commutation and comparator
interrupts determine how to adjust Timer1 to achieve
Phase Lock with the BEMF signal.

CONTROL START-UP

Start-up commences immediately after slow start and
looks only slightly different than the normal run condi-
tion. The only difference between normal run mode and
start-up is the startup_complete flag. The
startup_complete flag is cleared during warm-up
and remains clear until the zero-crossing event is
detected within +/- 12% of the commutation mid-point.
The startup_complete flag is necessary to prevent
start-up from being detected as a stall condition. The
motor accelerates during start-up and the commutation
period shortens to catch up, because zero-crossing is
detected almost immediately after commutation. See
the Section  “Zero-Crossing During Start-up” for
more detail on how this works.

Control start-up routine does nothing more than check
that Phase Lock to the BEMF signal is achieved in a
reasonable amount of time. It does this by setting a
timer and checking that the startup_complete flag
is set when the start-up time is complete. If zero-cross-
ing fails to set the startup_complete flag within the
allowed start-up time, then the motor is stopped and
the start-up steps repeat from system initialization.

STALL MONITORING

Stall monitoring checks to make sure that the motor
responded properly to the start-up conditions and is
actually rotating. If a stall is detected then the motor is
stopped and a restart is attempted. There are various
reasons why the motor may not be rotating. For exam-
ple, the rotor could be held in position by some block-
age, or the rotor did not settle fully during slow start-up.
In both those cases commutation will go through the
acceleration process without the motor following. As
we will see later, a stalled motor will produce a
zero-crossing event almost immediately after commu-
tation. We allow for early zero-crossing for a short while
during start-up, because a starting motor is by defini-
tion stalled. If the motor does not sense the zero-cross-
ing event in the middle of the commutation period in a
reasonable amount of time, then the motor is assumed
to be stalled. What sometimes happens though, is that
DS01305A-page 6  2009 Microchip Technology Inc.
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the control algorithm continues to shorten the commu-
tation period as a result of acceleration until the com-
mutation period just happens to be twice the time to the
zero-crossing. The time from commutation to
zero-crossing did not change, only the commutation
period did. The commutation period is compared to the
speed control speed request and, if the commutation
period is much shorter than expected, then a stall
condition is assumed. 

SPEED MANAGER

The speed manager varies the voltage applied to the
motor. This is accomplished by pulse-width modulating
the motor driver switches. Even in systems where the
motor always runs at full speed, speed control is
needed to soft start the motor. Without soft start, the
start-up currents will be excessive and starting torque
could cause system damage. The speed control man-
ager always starts the motor at the same voltage. The
speed control manager starts increasing or decreasing
the applied voltage up to the desired level when the
zero-crossing detection senses that commutation is
synchronized with the motor. Voltage is varied by vary-
ing the on-period of the ECCP PWM. The value in
CCPR1L sets 8 Most Significant bits of the on-period.

Two more Least Significant bits of resolution are set by
the DC1B[1:0] bits in the CCP1CON register. The duty
cycle percentage of the PWM is calculated as
(CCPR1L: DC1B[1:0])/(PR2:0b00).

INTERRUPTS

Two types of interrupts are used to control the motor:
Timer1 interrupts set the commutation period and
comparator interrupts capture the time of the
zero-crossing event.

COMMUTATION INTERRUPT

At the beginning of each commutation interrupt the
commutation subroutine is called in which the motor
drivers and BEMF sense lines are switched for the
upcoming commutation period. Commutation time is
controlled by Timer1. Timer1 is preset so that overflow
will occur when the commutation time has elapsed. The
interrupt occurs when Timer1 overflows one commuta-
tion period later and the process is repeated for the
next commutation phase. Timer1, in effect, always
contains a negative number representing the time
remaining until the next commutation event.

FIGURE 6: COMMUTATION INTERRUPT
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At each commutation event, the commutation
subroutine is called to switch the motor drivers. The
commutation subroutine also sets a flag to let the
Interrupt Service Routine (ISR) know whether to setup
for a zero-crossing event or make error correction cal-
culations. The commutation interrupt has two purposes
other than switching the drivers: Zero-crossing setup
and commutation time calculation. In the first instance,
if the zero-crossing event will be captured in the
upcoming period, then the comparator interrupt must
set up for that occurrence. In the other instance, the
zero-crossing event cannot be captured so there is
more time available to make calculations to correct the
commutation period. In both cases, Timer1 is preset
with the negative of the last calculated commutation
time.

COMMUTATION PERIOD MATH

Since Timer1 is a 16-bit timer, the Timer1 count regis-
ters (TMR1H:TMR1L) can contain a number from
0x0000 to 0xFFFF. Timer1 values from 0x8000 to
0xFFFF are treated as negative signed integers.
However, Timer1 values from 0x0000 to 0x7FFF are
treated as positive signed integers. Normally, this
wouldn’t matter because Timer1 could be treated as an
unsigned integer, but that causes problems when per-
forming math on partial commutation periods such as
the mid-commutation point, otherwise known as the
expected zero-crossing point. Signed integers are
necessary to accommodate positive and negative error
calculations. To avoid the need to do all commutation
period calculations with long signed integers, one
simple trick can keep the math to the size of a signed
integer and at the same time realize the full 16-bit count
capability of Timer1. 

Consider that the commutation period as written to
Timer1 is a 16-bit negative integer. If we assume that
the sign bit is the 17th unimplemented bit, then that bit
will always be ‘1’. The only time the commutation
period is measured is at the zero-crossing event. By
definition the zero-crossing time is half the commuta-
tion period. The expected zero-crossing value can be
calculated from the signed 16-bit commutation period
value by shifting the commutation value right by ‘1’ and
always setting the Most Significant bit to ‘1’ after the
shift. Therefore, values that have no sign bit to extend
will assume the negative sign of the unimplemented
17th bit which is always ‘1’. Negative integer values will
have their sign bit extended during the shift, so setting
the Most Significant bit makes no difference. Once we
have the expected zero-crossing value in signed 16-bit
integer format, all other calculations, such as the
zero-crossing error and next commutation period are
calculated with simple 16-bit signed integer math
functions. However, remember that the commutation
time is stored and used as a signed 16-bit number
which is always negative, even when the sign bit says
otherwise, because the implied 17th bit makes it so.

Since the value in Timer1 is always negative, the
Timer1 value captured at zero-crossing will also be
negative. The error between the expected zero-cross-
ing and the actual is computed, scaled, and accumu-
lated in the stored commutation time as follows:

EQUATION 1:

When zero-crossing occurs early, then ZCT will be a
larger negative number than CT/2 and the error will
reduce the commutation time. The opposite will be true
when zero-crossing occurs late. The scaling factor
determines how quickly the system responds to
commutation errors. A large scaling factor will provide
a slower response. However, a large scaling factor will
also introduce larger truncation errors since we are
performing all calculations in 16-bit integer math.
Small, low-inertia systems respond best to a small
scaling factor whereas high-inertia systems work better
with a large scaling factor.

SETTING UP TO CAPTURE THE 
ZERO-CROSSING EVENT

The zero-crossing event is captured by a comparator
interrupt. The comparator interrupts are sensed by an
exclusive-or gate comparing two mismatch latch
outputs. The two mismatch latches consist of a holding
latch and a temporary latch. The holding latch is set to
the comparator output value when the comparator
control register (CCPxCON) register is accessed (read
or written). The temporary latch is set to the comparator
output value at each instruction cycle. If the comparator
output changes after the holding latch is set, an
exclusive-or gate will signal the difference between the
holding and temporary latches and set the interrupt.
Therefore, it is imperative that when the comparator
interrupt is enabled, the comparator output is in the
state opposite the state it will change to when the
zero-crossing event occurs. The CCPxCON register is
accessed as part of the commutation switching routine
at which time the comparator output is indeterminate.
For this reason it is necessary to access the CCPxCON
register again later when setting up the comparator
interrupt.

ZCE = ZCT – CT/2

CT = CT + ZCE*EGain

Where: 

ZCE = Zero-Crossing error

CT = Commutation time

CT/2 = Expected zero-crossing

ZCT = Zero-Crossing time

EGain = Feedback Gain Factor
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There is one major obstacle that can prevent properly
setting up the comparator for the zero-crossing event.
At commutation, one motor coil is detached from the
supply and another is attached. The current in the
detached coil does not stop immediately because of
the coil inductance. The current must flow somewhere
so it flows through the body diode of either the
high-side switch or low-side switch. When the broken
connection is from the negative supply side then
affected current is flowing out of the coil towards the
driver switches. Both switches are off so the only path
through which the current can continue is the high-side
switch body diode. The current continues from there on
the motor supply line and back to the motor through the
high-side drive switch that is still on. This causes a high
transient on the BEMF sense line as shown in
Figure 3a (High Side Modulation). A negative spike
similarly occurs when the broken connection is from the
positive supply side. As motor current varies with the
load, so does the energy that must be dissipated in this
spike. During acceleration and high load conditions, the
energy in the coil inductance increases causing the
width of the transient to lengthen. Conversely, during
deceleration and light loads the width shortens. The
comparator interrupt cannot be setup until all the
energy in the transient has been dissipated. Avoiding
the transient period is called blanking. 

BLANKING

There are two ways to handle blanking: timed and
dynamic. The timed method is just as it sounds. After
commutation, a specific time is allowed before the
comparator interrupt is setup. The problem with timed
blanking is that the wait time for all blanking events
must be long enough to accommodate the worst case
spike. At high RPM rates, this could be a significant
percentage of the commutation period and may limit
the maximum speed attainable. Dynamic blanking
solves this problem. In dynamic blanking, a short
minimum blanking time is allowed to elapse, to make
sure the commutation switch is complete, and then the
level of the comparator output is tested until the
inductive transient is no longer present. The level of the
comparator output is in a known good state immedi-
ately after the transient, at which time the control
register can be read to set the mismatch holding latch.
Only then can the comparator interrupt be cleared and
enabled.

ZERO-CROSSING INTERRUPT

The zero-crossing interrupt occurs when the BEMF
voltage reaches the BEMF reference voltage. Two
things happen in the zero-crossing interrupt service:
First, the value of Timer1 is read, and then Timer1 is
preset with half the previously computed commutation
time. During steady state operation the value read from
Timer1 is essentially the same as the value written to

Timer1. Regardless of when zero-crossing occurs,
early or late, the value written to Timer1 will always be
half the previously computed commutation time. During
acceleration zero-crossing will occur early and the
value read from Timer1 will be a larger negative num-
ber than expected. The difference between the read
number and the expected number is the zero-crossing
error which will be used to correct the commutation
time when the new commutation time is computed as
part of the next commutation interrupt.

FIGURE 7:

ZERO-CROSSING DURING START-UP

When the motor is not rotating, it is not generating any
voltage. The undriven motor terminal then will be
approximately half the motor supply voltage because
the high-side and low-side drivers form a low-imped-
ance voltage divider. This is the voltage that will be
presented to the zero-crossing comparator input. The
inter-winding capacitance of the motor coils will cause
a small overshoot in the PWM drive signal so the
zero-crossing comparator will sense every PWM pulse
from the beginning of each commutation period. This
means that when the motor is starting the zero-cross-
ing interrupt will occur almost immediately after the
blanking period. At the same time, the motor will start
to accelerate and the calculated period for the next
commutation will be shorter because of the early
zero-crossing event. Until the motor comes up to
speed, it will be operating in step response to the
applied power. As the motor approaches the ideal
commutation rate, and the motor generated voltage
grows, the zero-crossing events will move toward the
center of the commutation period. When the period is
twice the time to zero-crossing, the control will be
synchronized with the motor.
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HARDWARE

The hardware for sensorless brushless motor control is
relatively simple. Six supply switches are needed as
are four voltage dividers. Of the six supply switches,
three are for switching the plus motor supply to the
three motor terminals, and the other three are for
switching the three motor terminals to the supply
return. Of the four voltage dividers, three scale the
motor terminal voltage for measurement by the
microcontroller and the fourth is used to scale the
motor supply voltage as a reference to which the motor
terminal voltages are compared.

PWM FREQUENCY AND PERIOD

The PWM frequency is a function of Timer2 and the
PR2 register. Timer2 is an 8-bit counter. When the
count reaches the value of PR2, then Timer2 is reset to
zero and the cycle repeats. The duty cycle period of the
PWM is a function of Timer2 and the CCPR1L register.
At the beginning of each PWM period, the PWM output
is high. When the Timer2 count equals the CCPR1L
register, the output is set low. Smaller values in PR2 will
produce higher PWM frequencies at the cost of duty
cycle resolution because CCPR1L does not have as
many bits to work with. There are actually two more bits
of duty cycle resolution in the CCP1CON0 register,
labeled DC1B1 and DC1B0. Timer2 increases by one
count every fourth system clock, or FOSC/4. The
DC1B0 bit changes with every FOSC clock and the
DC1B1 bit changes every second FOSC clock.

There are several factors to consider when choosing
the PWM frequency. Low frequencies will be audible at
slow motor speeds. High frequencies will cause greater
switching losses, especially under high load high
current conditions. A general rule of thumb is to choose
a PWM frequency from 16 kHz to 20 kHz.

COMPUTING THE VOLTAGE 
DIVIDERS

Resistive voltage dividers are used to scale the motor
supply and motor terminal voltages within a range
acceptable to the microcontroller inputs. The dividers
will be used to compare the motor BEMF voltage to the
motor supply. 

Compute the voltage divider for the reference such that
the reference voltage is well within the common mode
range of the microcontroller comparator input. A good
rule of thumb is to set the reference voltage to half the
microcontroller supply voltage. The reference is
connected to the motor voltage so the equation for the
reference divider is:

EQUATION 2:

Compute the BEMF voltage dividers from the values of
the reference divider:

EQUATION 3:

TROUBLESHOOTING

The most common troubles encountered when
attempting to use a new motor or driver circuit are
driver configuration, motor acceleration, and
zero-crossing detection. The easiest to detect and
remedy is the driver configuration. Start-up and zero
detect are more difficult because, unless the motor is
running, you cannot tell which is the problem and the
motor will not run unless the problem is corrected.
Debugging then becomes an iterative process by hold-
ing one parameter fixed then trying a range of the other
parameter. The following sections deal with each
aspect separately.

DEBUGGING DRIVER 
CONFIGURATION

There are too many possible issues with driver config-
uration to deal with individually. Here is a simple and
safe method to determine that all circuit elements are
working properly from the motor terminal back to the
microcontroller. The first step is to replace the motor
with a resistor network. Construct the network with
three resistors. One end of each resistor connects to
each of the driver outputs. The other end of all three
resistors is connected to a common node. The resistor
values must all be the same and high enough to pre-
vent damaging current flow at the maximum motor volt-
age, but low enough to allow proper biasing of the
output driver devices. A good rule of thumb value for a
15 to 20-volt system is 270 Ohms.

VDD/2 = Vmotor*Y/(X+Y) 

Where:

VDD = microcontroller supply

Vmotor = Motor supply

X = Resistor from Vmotor to non-inverting 
comparator input

Y = Resistor from non-inverting comparator input to 
ground

A = X

B = 2 * Y

Where:

A = Resistor from motor terminal to inverting 
comparator input

B = Resistor from inverting comparator input to 
ground

X and Y are resistor values determined in Equation 2.
DS01305A-page 10  2009 Microchip Technology Inc.
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With the network in place on the driver outputs, invoke
motor start-up and observe the waveform on each
driver output. For a low side modulated system, the
waveforms should look like those shown in Figure 8, if
they are then proceeded with debugging start-up with
the motor. If they are not, then use standard circuit
debugging techniques to determine where the fault lies.
For a high side modulated system rotate the figure right
by 180 degrees.

FIGURE 8: DEBUGGING DRIVER CONFIGURATION

DEBUGGING START-UP

The most difficult aspect of sensorless motor control is
starting the motor. Before the motor starts spinning,
and generating a BEMF voltage, the motor is respond-
ing to commutation more like a stepping motor than like
synchronous motor. Because every motor is different
the response to applied voltage will also be different.
We want to start the motor as quickly as possible to
avoid excessive current in the stepping mode. How-
ever, if the ever shortening steps between commutation
times are too large, then the steps can easily skip over
the zone where BEMF crosses near the middle of the
commutation period. If the steps are too small, then
more time is spent in Stepping mode with the
associated excessive current.

The start-up algorithm always begins with a fixed PWM
duty cycle. The challenge is to determine what the duty
cycle should be for optimum start-up performance
when the desired nominal motor voltage is applied.
One method is to set the PWM duty cycle to an arbitrary
value that will prevent excessive current damage even
when the motor is stopped. A good starting point is
25%. Then apply a voltage to the motor below where
the motor will operate. Try starting the motor with this
combination. It is unlikely that the motor will start
reliably. Gradually increase the applied voltage and
retry to start the motor at each level until the motor
starts reliably. Use the combination of fixed PWM duty
cycle and the reliable starting voltage to compute the
duty cycle needed to start the motor when the desired
nominal voltage is applied.

DEBUGGING ZERO-CROSS

A perfectly sinusoidal motor with perfectly balanced
windings and perfectly equal drivers will produce a
back EMF on the open terminal that is exactly equal to
half the motor supply voltage at exactly midway
through the commutation period. Nothing in the real
world is perfect but it’s usually close enough. However,
in some cases adjustments need to be made. This is
especially true for non-sinusoidal wave shapes.
Offsetting the zero-crossing reference voltage can
compensate for just about every imperfection. 

Consider the waveforms in Figure 9. Pictures 9a and
9b show the phase wave shapes for a balanced
sinusoidal motor running at about 30% and 60% of
maximum speed, respectively. These diagrams are for
a high-side modulated system. Notice the symmetry of
the wave shapes: the slope and relative position to
mid-voltage of the rising voltage on the left is reflected
mirror image on the right.

Phase U

Phase V

Phase W
 2009 Microchip Technology Inc. DS01305A-page 11
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Now consider the waveforms in pictures 9c and 9d. In
picture 9c, the left and right slopes are equal, but
appear to be offset to the right. In fact, the left slope in
picture 9c is offset down and the right side is offset up
by the same amount. This is because the zero-crossing
is being detected when the motor is only about 25%
through the commutation period. In other words,
zero-cross is being detected early. That moves the left
slope down and the right slope up by an equal amount.
Moving the zero-cross reference voltage up, as shown

in picture 9d, moves the zero-cross detection later in
the commutation period and aligns the drive cycle with
the maximum motor generated back EMF for optimum
performance.

If there is a problem with the zero-cross reference
voltage, then that will also offset the BEMF waveform.
Consider pictures 9e and 9f. Picture 9e shows the
response when the reference is too high, and picture 9f
shows the response when the reference is too low.

FIGURE 9: DEBUGGING DRIVER CONFIGURATION

PERFORMANCE

Maximum speed is a function of how quickly the micro-
controller can capture and process zero-crossing
events and compute the necessary corrections. The
time it takes to commutate and compute will determine
the minimum commutation period. The time it takes to
commutate and setup for zero-cross will determine the
minimum half commutation period. The shorter of these
two will determine the maximum speed. Minimum
speed will be determined on the longest period that can
be measured by Timer1.

I claimed at the beginning a speed range from 100
RPM to over 90,000 RPM with a system clock of 8
MHz. This is easily verified with the MPLAB® simulator.
There are six commutations in one electrical revolution.
RPM is converted to commutation time with the
formula: 10/RPM = Seconds/Commutation Period. At
90,000 RPM, the commutation period is 111.11 µs and
half the commutation period is 55.56 µs. Using the
MPLAB simulator with options set for 8 MHz system
clock, the debug stopwatch indicates a total elapsed
time 100 µs for the commutation interrupt and 55 µs for

the commutation with blanking setup. Those times
include context saving and restore before and after the
interrupt service.

DRIVER CIRCUIT AND SOFTWARE

An example circuit for evaluating the concepts of this
application note is shown in Appendix A. “Schematics”.
This circuit is of the PIC16F1937 evaluation board (F1
Starter Kit) with BLDC add-on. The software to operate a
brushless motor with the starter kit is available for down-
load from the Microchip web site in the same location as
this application note. The BLDC add-on board is supplied
with a motor to ensure the best possible initial experience.
The default code configuration is for the supplied motor. A
terminal strip on the BLDC board permits connection of
any BLDC motor requiring less than 7 amps peak current.
Driving motors other than the supplied motor will most
likely require some modifications to the motor header file
as mentioned in the Debugging Start-up section of this
document.

f.e.

d.c.

b.a.
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The software is divided into several separate files to
simplify mixing and matching different drivers, motors,
speed controllers, and microcontrollers. In most appli-
cations, changing from one speed control technique or
microcontroller is simply a matter of swapping out the
corresponding file in the software project.

The software has three header files: one for the motor
type, one for the driver circuit, and the main header file.
The header files are easily identified in the Project View
window of MPLAB. The motor type and driver header
files contain definitions unique to the motor type or
driver circuit. The main header file has definitions com-
mon to all motor types and drivers. The main header
file also determines which motor and driver header files
to include in the project by means of definition macros.
Those definition macros are defined in the build options
dialog of MPLAB. The dialog is accessed with the
pull-down menu Project->Build Options->Project.
Select the Compiler tab and Add or Remove defines
as appropriate. See the main header file, BLDC.h, for
examples.

User adjustable parameters are contained, and
explained, in the motor header file.
 2009 Microchip Technology Inc. DS01305A-page 13
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Sensorless 3-Phase Brushless Motor

Control with the PIC16FXXX

Appendix A. Schematics
FIGURE A-1: F1 EVALUATION PLATFORM
 2009 Microchip Technology Inc. DS01305A-page 15



Sensorless 3-Phase Brushless Motor Control with the PIC16FXXX
FIGURE A-2: F1 EVALUATION PLATFORM – BLDC ADD-ON BD
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