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Single-Shunt Three-Phase Current Reconstruction 

Algorithm for Sensorless FOC of a PMSM
INTRODUCTION
A large number of motor control applications are
consistently and continuously looking for methods to
improve efficiency while reducing system cost. These
are the two main factors that are driving the efforts to
improve existing motor control techniques, such as
trapezoidal control, scalar control and Field-Oriented
Control (FOC).

FOC has become more popular in recent years due to
the fact that the cost required to implement this
technique is no longer a constraint. The available
technology and manufacturing process now make it
possible to implement this control technique in a 16-bit
fixed-point machine such as the dsPIC® Digital Signal
Controller (DSC).

Efficiency is another reason that has allowed FOC to
gain ground over scalar and trapezoidal control
techniques on low-cost and mid-cost applications. It is
also well suited in applications in which hard
requirements are low noise, low torque ripple and good
torque control over a vast speed range.

Field-oriented control can be implemented using
position sensors such as encoders, resolvers or Hall
sensors. However, not all motor control applications
require such granularity given by a resolver or encoder;
and, in many cases, they do not require control at zero
speed.

These applications are a perfect target for using
sensorless techniques in which the motor position can
be estimated using the information provided by the
currents flowing through the motor coils. There are two
popular approaches to this sensing technique: the
dual-shunt resistor and the single-shunt resistor.

The dual-shunt resistor technique utilizes the
information contained in the current flowing through
two motor coils in order to estimate the motor position.
The single-shunt resistor technique utilizes only the
information contained in the current flowing through the
DC bus to reconstruct the three-phase currents, and
then estimate motor position.

In this application note, the single-shunt approach is
discussed. For information on the dual-shunt resistor
approach, please refer to the application note, AN1078
“Sensorless Field Oriented Control of PMSM Motors”. 

CURRENT MEASUREMENT
The information contained in the current flowing
through the motor coils allows a motor control algorithm
to operate the motor in a region where the motor
produces the maximum torque, or to operate the motor
at certain performance, or even to be able to
approximate or estimate internal motor variables such
as position.

Three-phase AC Induction Motors (ACIMs),
Permanent Magnet Synchronous Motors (PMSMs) and
Brushless Direct Current (BLDC) motors in particular
use a three-phase inverter as the topology of
preference. This topology, which is shown in Figure 1,
allows individual control of the energy applied to each
coil, which enables the motor to be efficiently operated.

FIGURE 1: THREE-PHASE INVERTER TOPOLOGY
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The three-phase inverter is compounded by three legs.
Each leg contains two electronic switches that are
arranged in such a way that create a half-bridge
topology. Therefore, current can flow in both directions
to and from the legs. The electronic switches can be
either power MOSFETs or IGBTs.

Current MOSFET and IGBT manufacturing
technologies have allowed digital controllers to take
advantage of Pulse-Width Modulation (PWM)
techniques to control the amount of energy applied to
each coil. 

The most common techniques used are sinusoidal
modulation, third-harmonic modulation and Space
Vector Modulation (SVM). These PWM techniques are
suitable to operate the electronic switches in saturation
mode, which helps to increase system efficiency. 

In order to determine the amount of current flowing
through the coils, a shunt resistor is required on each
coil. A typical three-phase inverter with current
measurement on three phases is shown in Figure 2.

FIGURE 2: CIRCUIT FOR MEASURING 
CURRENT IN THREE 
PHASES

Assuming there is a balanced load, we can consider
that the sum of the three phases is equal to zero, as
described by Kirchhoff’s Current Law. This law is
shown in Equation 1.

EQUATION 1: KIRCHHOFF’S CURRENT 
LAW

Therefore, by measuring only two, the third can be
solved using Equation 1. A simplified version using two
shunt resistors is shown in Figure 3.

FIGURE 3: CIRCUIT FOR MEASURING 
CURRENT IN TWO PHASES

The intention of the algorithm presented in this
application note is to be able to measure all three
phases with a single-shunt resistor and a single
differential amplifier. A circuit showing a single-shunt
resistor is shown in Figure 4.

FIGURE 4: CIRCUIT FOR MEASURING 
CURRENT FLOWING 
THROUGH DC BUS
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ADVANTAGES AND 
DISADVANTAGES OF USING A 
SINGLE-SHUNT RESISTOR 

Advantages
As previously mentioned, one of most important
reasons for single-shunt three-phase reconstruction is
cost reduction. Which in turn, simplifies the sampling
circuit to one shunt resistor and one differential
amplifier.

In addition to cost reduction benefits, the single-shunt
algorithm allows the use of power modules that do not
provide individual ground connection of each phase. 

Another benefit of single-shunt measurement is that
the same circuit is being used to sense all three
phases. Gains and offset will be the same for all
measurements, which eliminates the need to calibrate
each phase amplification circuit or compensate in
software.

Disadvantages
During single-shunt measurements, a modification on
the sinusoidal-modulation pattern needs to be made in
order to allow current to be measured. This pattern
modification could generate some current ripple. Due
to modification of patterns and correction of the same
modifications, more CPU is used to implement this
algorithm.

IMPLEMENTATION DETAILS
In order to drive the motor with AC signals, PWM
methods are used to drive the switching transistors
shown in the three-phase inverter. This modulation and
resulting modulated waveform are shown in Figure 5.

A sinusoidal waveform can be generated by loading a
series of duty cycle values into the PWM generator
module. The values in the lookup table represent a
modulated sine wave, so once these duty cycles are
fed into the motor windings through the inverter, the
motor windings will filter the switching pattern. The
resulting sine wave is shown Figure 5.

The downside of a lookup table with sine values is the
maximum value that can be achieved. This value is
limited to 86% of the input voltage. Another sinusoidal
modulation method is Space Vector Modulation, which
is used to overcome this limitation. SVM allows 100%
utilization of input voltage. SVM is described and used
in several application notes such as AN908 “Using the
dsPIC30F for Vector Control of an ACIM” and AN1017
“Sinusoidal Control of PMSM Motors with dsPIC30F
DSC”. The typical voltage shape generated using SVM
is shown in Figure 6.

FIGURE 5: SINUSOIDAL MODULATION
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FIGURE 6: SPACE VECTOR MODULATION (SVM)

When calculating the resulting voltage from line-to-line,
we get three sinusoidal waveforms phase shifted 120°,
as shown in Figure 7.

FIGURE 7: CALCULATED LINE-TO-LINE VOLTAGE
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SVM and Current Measurement 
Relationship
When measuring current through a single-shunt
resistor, the state of the bottom switches is critical. To
show this, Sector I of SVM is magnified in Figure 8. In
addition, PWM waveforms on each switching transistor
are also shown.

To observe the relationship between PWM modulation
and current measurement through a single-shunt
resistor, let us consider PWM Cycle 2 as an example.
Since we are only interested in the low-side switch
PWM, we will only show the PWMxL components of the
PWM (Figure 9).

FIGURE 8: PWM SIGNALS ON SWITCHING TRANSISTORS IN SECTOR I

FIGURE 9: SAMPLING TIME WINDOWS FOR MEASURING CURRENT
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Looking at the three-phase inverter, we will analyze all
of the different PWMxL combinations (T0, T1, T2 and
T3) for this period to see what the current
measurement represents. Starting with T0, we have the
following combination of the electronic switches
(MOSFETs or IGBTs) in the inverter, where we see that
there is no current flowing through the single-shunt
resistor (Figure 10).

FIGURE 10: NO CURRENT FLOWING 
THROUGH THE SHUNT 
RESISTOR

Moving on to T1, we see that PWM2L is active, while
PWM1H and PWM3H are active as well (not currently
shown, but assuming PWM outputs are
complementary). Since there is current flowing into the
motor through phases A and C, and coming out of
phase B, we can consider this current measurement to
represent –IB, as shown in Figure 11.

FIGURE 11: CURRENT IB FLOWING 
THROUGH THE SHUNT 
RESISTOR

During T2, PWM2L and PWM3L are active, and
PWM1H is active. This combination gives us current IA
flowing through the single-shunt as shown in Figure 12.

FIGURE 12: CURRENT IA FLOWING 
THROUGH THE SHUNT 
RESISTOR

T3 is the same scenario as T0, where there is no
current flowing through the shunt resistor; therefore,
IBUS = 0 as shown in Figure 13.

FIGURE 13: NO CURRENT FLOWING 
THROUGH THE SHUNT 
RESISTOR

The pattern repeats the second half of the PWM period.
Looking at a complete PWM cycle, there are two
windows of time where current represents an actual
phase current. In this example –IB and IA were
measured in one PWM cycle. Since this is a balanced
system, IC can be calculated using Equation 2. This
allows three current measurements to be done in one
PWM cycle using a single-shunt resistor.

EQUATION 2: IC CALCULATION 

A truth table (Table 1) was created to help illustrate
what the measured current represents for all possible
combinations of the electronic switches. First, let us
name each electronic switch as shown in Figure 14.

VBUS 3 ~

IBUS = 0
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3 ~

IBUS = -IB

VBUS 3 ~

IBUS = IA
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3 ~

IBUS = 0

IC = -IB -  IA
DS01299A-page 6 © 2009 Microchip Technology Inc.



AN1299

FIGURE 14: SHUNT RESISTOR TRUTH 

TABLE NAMING 
CONVENTIONS

Table 1 shows what IBUS represents for all eight
possible combinations of the circuit. Keep in mind that
the H and L switches from the same leg cannot be ON
at the same time to avoid shoot-through, so these
combinations are not listed in the table. Also, any other
combination that does not allow any current flowing
through the shunt resistor is not listed in Table 1.

TABLE 1: SHUNT RESISTOR TRUTH 
TABLE

Special Cases
There are special situations that do not allow single-
shunt three-phase reconstruction.

DUTY CYCLES ARE SIMILAR OR EQUAL 
DURING HIGH-MODULATION INDEX
As sinusoidal waveforms are generated with SVM,
there are some PWM periods in which time windows
where current is sampled, are simply not wide enough.
One example of this situation is PWM cycle 1, which is
shown in Figure 8. If we zoom in, we notice that
PWM1L and PWM3L are the same, which leads to a T2
of ‘0’. Figure 15 shows a magnification of this condition.

This situation does not allow the controller to measure
a second current. Therefore, three-phase current
information cannot be constructed for that particular
cycle.

FIGURE 15: SAMPLING TIME WINDOW FOR SIMILAR DUTY CYCLES
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DUTY CYCLE SIMILARITY DURING LOW-
MODULATION INDEX
Low-modulation index means that the amplitude of the
modulating signal is low, as opposed to a high-
modulation index where the duty cycle can go all the
way to 100% due to a high-amplitude of the modulating
signal. Low-modulation index is usually done when
there is no load on the motor shaft. Therefore, the
amplitude of the modulating signal is low. Since
Complementary mode is used to modulate sinusoidal
voltages, duty cycles are centered in 50% duty cycle. If
we take the same sector as before, but for a low-
modulation index, we will end up with a situation similar
to what is shown in Figure 16.

We can see how close the duty cycles are to 50% duty
cycle. In fact, a modulation index of ‘0’ would be
generating by 50%, duty cycles on all PWM outputs.

Let us take a closer look at PWM cycle 4 to see what
the limitation is when using a single-shunt resistor to
reconstruct the three phases as shown in Figure 17.

The two windows used to measure current through
single-shunt, T1 and T2, may be too narrow to let the
differential amplifier stabilize its output to a steady state
value.

FIGURE 16: SIMILAR DUTY CYCLES DURING LOW-MODULATION INDEX

FIGURE 17: SAMPLING TIME WINDOW FOR SIMILAR DUTY CYCLES DURING LOW-
MODULATION INDEX 
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DEAD TIME
Additionally, dead time is also present during
Complementary mode, reducing these time windows
even further. Showing the same PWM cycle with high
side outputs and dead time, we end up with a situation
similar to what is shown Figure 18.

FIGURE 18: SAMPLING TIME WINDOW AFFECTED BY DEAD TIME

Dead time also affects the time window where single-
shunt current measurements are done. The minimum
time window to measure current through single-shunt
depends on the following parameters:

• PWM Frequency:

This is because the higher the PWM frequency is,
the smaller all of these time window values are.

• Dead Time Required by the System:

As shown in the previous figure, dead time directly
affects the measurement window.

• Hardware:

Differential amplifier slew rate, output filter delay
and MOSFET switching noise affect this measure-
ment window as well. 

HARDWARE
In order to illustrate how the hardware affects the
single-shunt measurement, let us take a closer look at
the first half of the period of the last PWM cycle
(Figure 18) to see what the output of the actual single-
shunt conditioning circuitry (shown in Figure 19) looks
like.

FIGURE 19: HARDWARE UTILIZED FOR 
MEASURING CURRENT 
USING A SINGLE-SHUNT 
RESISTOR

The effective measurement window is reduced to
whenever the output of the amplifier is stable, which
means after MOSFET switching noise, dead time, the
operation amplifier’s slew rate, and the output RC filter
settling time. These effects are shown in Figure 20.
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FIGURE 20: HARDWARE EFFECTS ON SAMPLING TIME WINDOW

Zooming in to the transient response of the amplifier
(shown in Figure 21), the green box shows where it is
okay to sample at T1. However, since T2 is not wide
enough, current cannot be sampled during T2. The
transient response in gray represents the time to
sample T2 if it would have been wide enough.

FIGURE 21: MAGNIFICATION OF THE 
HARDWARE EFFECTS ON 
THE SAMPLING TIME 
WINDOW

In general, single-shunt reconstruction of three-phase
currents is not possible when modulating the shaded
areas from the hexagon shown in Figure 22.

FIGURE 22: CRITICAL SVM VECTOR 
AREAS TO RECONSTRUCT 
THREE-PHASE CURRENTS 
USING A SINGLE-SHUNT 
RESISTOR

The shaded areas represent the low-modulation index
region, and sections of mid-to-high modulation index
when transitioning from sector to sector.

For additional details on SVM, refer to the following
application notes:

• AN908 “Using the dsPIC30F for Vector Control of 
an ACIM” 

• AN955 “VF Control of 3-Phase Induction Motor 
Using Space Vector Modulation”

• AN1017 “Sinusoidal Control of PMSM Motors with 
dsPIC30F DSC”

• AN1078 “Sensorless Field Oriented Control of 
PMSM Motors”

If current reconstruction is done without any
modification of the SVM pattern, that is, ignoring the
fact that during some periods current cannot be
reconstructed, the resulting three-phase current
measurement are shown in Figure 23. The SVM
voltages are shown in Figure 24.
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FIGURE 23: RESULTING THREE-PHASE CURRENT MEASUREMENT

FIGURE 24: SPACE VECTOR MODULATION VOLTAGES

We can see how current measurement is quite noisy
during critical periods.
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Possible Techniques to Overcome These 
Problems
• One possible solution to this problem is to ignore 

current measurements during these critical peri-
ods. This is not desirable since some algorithms, 
including the one used in this application note, 
require information from all three currents in order 
to estimate the position of the rotor.

• Another solution is to estimate current measure-
ments. This could be one good solution, but 
requires fine tuning since current increase would 
depend on pass current measurement, motor 
parameters, and so on.

• The third solution is to expand the period of time 
where measurement is taking place. This would 
force a minimum time (critical measuring time) so 
that current stabilizes to a new value that is 
actually measurable by the Analog-to-Digital 
Converter (ADC).

We will focus on modifying the switching pattern to a
minimum measurement time window (TCRIT), which is
present all of the time.

MODIFYING SVM PATTERNS TO ALLOW 
CURRENT RECONSTRUCTION
The method proposed in this application note is simple
and it can be easily implemented in a dsPIC DSC. This
case is shown in Figure 25, where T2 is not wide
enough to measure single-shunt current.

In order to allow a minimum time window for current
measurement, we modify this time. The new PWM
timing diagram is shown in Figure 26.

The modification of the SVM pattern allows a minimum
time to sample current through the single-shunt, which
then allows three-phase reconstruction using the
single-shunt. 

When this is done, we notice how timing has changed,
and also that the effective duty cycle during one PWM
period is changed. This would introduce an error on
voltage generation, since we are adding a delta to the
modulation. Software and control loops running inside
the dsPIC DSC would think that the output of the
controller was set to duty cycles, but in fact a different
value is applied to the PWM due to these modifications.

FIGURE 25: CASE WHEN SAMPLING WINDOW IS NOT WIDE ENOUGH

FIGURE 26: ADJUSTED PWM TO INCREASE SAMPLING TIME WINDOW
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Another task is then needed to compensate for any
modifications we made to the duty cycles to allow the
minimum window. The proposed solution corrects the
duty cycles during the next half period of the same
PWM cycle. If we refer to the last example, the final
duty cycle is shown in Figure 27, where compensation
is made on the second half of the period.

On PWM2L we see what the original PWM signal looks
like in light gray. We also show the modified and
compensated PWM signal in black. There is a simple
rule this algorithm follows. Whatever is added to the
first half of the PWM cycle, is subtracted on the second
half, just as was shown in the previous figure.

One important point is that current measurements are
done during the first half of the PWM period, so not
having enough window to measure current during the
second half is irrelevant.

To illustrate where the currents are measured in the last
example, we show a time diagram with current
sampling points. Figure 28 shows the sampling points.

The single-shunt reconstruction algorithm consists of
calculating what the modification should be according
to the current SVM state and also consists of a state
machine that executes all of these operations.

FIGURE 27: COMPENSATION ON THE SECOND HALF OF THE PWM CYCLE

FIGURE 28: SAMPLING POINTS WITH DUTY CYCLE COMPENSATION 
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For comparison purposes, Figure 29 shows a timing
diagram of events when two shunt measurements are
available without the need of modifying SVM patterns.

During event A, all control loops are executed. Since
there is no reconstruction needed, there is no need to
change the ADC trigger point. This is also an
advantage of having multiple sample-and-holds in the
dsPIC DSC so that up to four signals can be sampled
at the same time. 

During event B of the dual-shunt algorithm, two current
measurements are taken, since all three low side
switches are conducting. The only limitation of dual-
shunt measurement when this topology is available is
the minimum duty cycle in which the low side switches
are conducting.

The timing diagram where a series of events are shown
in Figure 30, provides more details on how the single-
shunt reconstruction algorithm is implemented in
comparison with dual-shunt.

FIGURE 29: TIMING DIAGRAM OF EVENTS FOR DUAL-SHUNT ALGORITHM

FIGURE 30: SINGLE-SHUNT VERSUS DUAL-SHUNT TIMING DIAGRAM OF EVENTS
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For simplicity, let us consider the four consecutive
PWM cycles as previously shown. A series of
operations and events happen every single cycle. We
have divided these events into four, represented with
the letters A through D.

Let us start with event C. This event happens after the
second conversion of the ADC takes place. The
Analog-to-Digital (A/D) interrupt is triggered and an
Interrupt Service Routine (ISR) is fetched. When the
single-shunt state machine is in this state, both currents
are already buffered and ready for processing. Before
returning from this interrupt, the duty cycle (previously
enlarged to allow current measurement) is then
compensated in the duty cycle registers. The PWM
module will take these new compensated duty cycles
and make them effective after the first half of the period,
since the PWM is configured for double update mode.

Event D is triggered by the PWM interrupt. By the time
this interrupt is fetched, the PWM module has already
loaded into the duty cycle registers what was
previously written based on duty cycle compensation.
Since there are two current measurements already
saved, a third current is then calculated in this event. All
other tasks are also performed in this event, such as
FOC, position estimation, speed control and so on. In
the case of this application note, Sensorless FOC for
PMSM is implemented along with the single-shunt
reconstruction algorithm. All of the sensorless
algorithm is executed here in event D. 

A time constraint to consider is that whatever the
algorithm or operations needed to be executed in event
D, a maximum execution time of the PWM period
divided by 2 is allowed. This is because the result of all
control loops and operations done during this period
are written back to the PWM module, which will reload
duty cycle values as soon as a new PWM period starts.

After control loops and operations are executed, new
SVM output is calculated in event D. Then, these new
values are analyzed by the single-shunt algorithm to
see if SVM pattern modification is needed for the next
PWM cycle. If correction is needed, additional duty
cycle is added to the resulting SVM output, which takes
effect as soon as a new cycle is started. The last thing
done in event D is to configure the Special Event
Trigger register on the ADC to enable the first current
measurement on the next PWM cycle. This makes sure
that during the next PWM cycle, current measurements
are taken during a valid measurement window.

Event A is initiated by a PWM interrupt at the beginning
of the PWM cycle. All corresponding duty-cycle
adjustments done in a previous PWM cycle take effect
in this event. The first A/D sample is also configured
into the Special Event Trigger mode register
(SEVTCMP) during Event A.

Event B is triggered by the A/D as a result of the first
conversion. The value is saved, and a second trigger
point is set in the SEVTCMP register.

The critical time window and the dead time influence the
value assigned to SEVTCMP. The SEVTCMP register
value at event A is calculated when the PWM is counting
down. There is a unique SEVTCMP value for each SVM
sector. The average value of PDC1, PDC2 and PDC3 is
used to calculate the next ADC triggering point. This
average value is right shifted one position in order to
match the size of the SEVTCMP register (15 bits) and
the PDCx registers (16 bits). Hence, the next SEVTCMP
value is equal to the sum of the PDCx registers divided
by 4  plus the dead time. As shown in Equations 3
through 8.

EQUATION 3: SECTOR 1

EQUATION 4: SECTOR 2

EQUATION 5: SECTOR 3

EQUATION 6: SECTOR 4

EQUATION 7: SECTOR 5

EQUATION 8: SECTOR 6

SEVTCMP A PDC1 PDC3+( )
4

------------------------------------------- Dead Time+=

SEVTCMP B PDC1 PDC2+( )
4

------------------------------------------- Dead Time+=

SEVTCMP A PDC2 PDC3+( )
4

------------------------------------------- Dead Time+=

SEVTCMP B PDC1 PDC3+( )
4

------------------------------------------- Dead Time+=

SEVTCMP A PDC2 PDC3+( )
4

------------------------------------------- Dead Time+=

SEVTCMP B PDC1 PDC2+( )
4

------------------------------------------- Dead Time+=

SEVTCMP A PDC1 PDC2+( )
4

------------------------------------------- Dead Time+=

SEVTCMP B PDC2 PDC3+( )
4

------------------------------------------- Dead Time+=

SEVTCMP A PDC1 PDC3+( )
4

------------------------------------------- Dead Time+=

SEVTCMP B PDC2 PDC3+( )
4

------------------------------------------- Dead Time+=

SEVTCMP A PDC1 PDC2+( )
4

------------------------------------------- Dead Time+=

SEVTCMP B PDC1 PDC3+( )
4

------------------------------------------- Dead Time+=
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Registers PDC1, PDC2 and PDC3 contain the actual
PWM duty cycles calculated after the SVM pattern
modification. The compensation is calculated twice
during a PWM cycle. When the PWM counter is
counting up, the TCRIT value is subtracted from the
SVM pattern. This ensures that the correct PWM duty
cycles are applied for the compensation occurring at
the second half of the PWM cycle. 

When the PWM counter is counting down, the TCRIT is
added to the SVM pattern in order to ensure that the
time window is wide enough for the next sampling
events A and B. Equations 9 through 17 show the
relationship between the SVM pattern modification and
the TCRIT. These are the equations utilized for the
compensation occurring at the second half of the PWM
cycle.

EQUATION 9: SVM PATTERN 
COMPENSATION 
REQUIRED AT TIME T1

EQUATION 10: SVM PATTERN 
COMPENSATION NOT 
REQUIRED AT TIME T1

EQUATION 11: SVM PATTERN 
COMPENSATION 
REQUIRED AT TIME T2

EQUATION 12: SVM PATTERN 
COMPENSATION NOT 
REQUIRED AT TIME T1

These are the equations utilized for the compensation
occurring at the first half of the PWM cycle.

EQUATION 13: WHEN T1 ≥ TCRIT

EQUATION 14: WHEN T1 ≥ TCRIT

EQUATION 15: WHEN T1 < TCRIT

EQUATION 16: WHEN T2 ≥ TCRIT

EQUATION 17: WHEN T2 < TCRIT

Figure 31 shows the relationship between TCRIT, the
dead times, T1 and T2, and the results of these
compensations.

SVM Pattern B SVM Pattern C T1 T1 TCRIT–( )–+=

SVM Pattern B SVM Pattern C T1+=

SVM Pattern A SVM Pattern B T2 T2 TCRIT–( )+ +=

SVM Pattern A SVM Pattern B T2+=

SVM Pattern B SVM Pattern C T1+=

SVM Pattern B SVM Pattern C T1+=

SVM Pattern B SVM Pattern C TCRIT+=

SVM Pattern A SVM Pattern B T2+=

SVM Pattern A SVM Pattern B TCRIT+=
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FIGURE 31: RELATIONSHIP BETWEEN TCRIT, DEAD TIMES, T1 AND T2

PRACTICAL RESULTS
After implementing three-phase reconstruction using a
single-shunt resistor, the resulting current is shown in
Figure 32.

If we zoom in and add the IBUS signal in orange, we get
the results shown in Figure 33.

FIGURE 32: RECONSTRUCTED CURRENTS BASED ON THE SINGLE-SHUNT RESISTOR
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FIGURE 33: RECONSTRUCTED CURRENTS VERSUS CURRENT ON THE DC BUS
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SVM looks as follows for high-modulation index. It is
possible to see the adjustments to SVM to allow the
minimum measurement window, as illustrated in
Figure 34.

FIGURE 34: SVM FOR HIGH-MODULATION INDEX

Figure 35 shows an actual waveform, displaying all
PWM signals and the IBUS signal.

FIGURE 35: ACTUAL PWM WAVEFORMS VERSUS IBUS
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Figure 36 shows a magnified section of Figure 35. In
this figure, a few key points are marked. Note that the
ADC starts sampling within a valid sampling time
window to allow current measurement. We also show a
pin toggling when the ADC ISR is executed.

FIGURE 36: SAMPLING POINTS SHOW THE ACTUAL PWM AND IBUS WAVEFORMS
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CONCLUSION
This application note illustrates the advantages,
limitations and constraints of the single-shunt
algorithm.

The single-shunt algorithm method is able to recreate
the current flowing through the motor phases using a
single-shunt resistor to sense the current flowing
through the DC bus. In order to obtain the information
contained in the DC bus current, Space Vector
Modulation is used.

SVM creates a series of sampling time windows that
allows the observation of the current flowing through
the motor phases. These time windows are classified
and grouped in the shunt resistor truth table (Table 1).
This truth table shows the relationship between the
information present at the shunt resistor versus the
state of the electronic switches.

However, it is not possible to obtain the desired
information from the DC bus current in certain SVM
areas. This limitation is overcome by modifying the
SVM switching patterns. Modifying these patterns
makes it possible to extract the desired information
from the single-shunt resistor in every SVM operating
state. 

These practical results demonstrate that the single-
shunt resistor technique provides information accurate
enough to meet the requirements of Field-Oriented
Control. It is possible to obtain the motor information
such as position and torque based on the
reconstructed information extracted from the current
flowing through the DC bus.
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