
AN1284
Microchip Wireless (MiWi™) Application

Programming Interface – MiApp
INTRODUCTION

It is not an easy task to develop a short-range, low data
rate and low power wireless application. Apart from
complex Radio Frequency (RF) circuit designs, the
firmware development process may require the devel-
opers to understand the details of RF transceivers, as
well as the different wireless communication protocols.
Microchip has developed a way to handle the complex
and difficult RF hardware and/or communication proto-
col stack software development, which allows wireless
developers to focus on their own application develop-
ment. This is achieved through a concise, yet powerful
communication programming interface in the applica-
tion layer which is called MiApp, and it is defined in this
application note.

The MiApp specification defines the programming
interfaces between the application layer and Microchip
proprietary wireless communication protocols. The
MiApp programming interface is implemented in two
ways: as configuration parameters defined in the con-
figuration file, and as a set of function calls to the Micro-
chip proprietary wireless protocols. Complying with the
MiApp specification defined in this application note,
applications can use any Microchip proprietary wireless
protocols. With little or no modification in the applica-
tion layer, software development can be easily
changed between a proprietary P2P/star topology con-
nection protocol to a full mesh proprietary networking
protocol for small or big networks, depending on the
application needs.

FIGURE 1: BLOCK DIAGRAM OF MICROCHIP WIRELESS (MiWi™) STACK

Author: Yifeng Yang
Microchip Technology Inc.

User Application

MiApp

Interchangeable Wireless Communication Protocols

MiWi™ P2P

MiWi™ Mesh
Future Microchip Proprietary

Wireless Protocols ...

MiMAC

Interchangeable RF Transceivers

MRF24J40 Transceiver
MRF49XA Transceiver

Future Microchip RF
Transceivers ...

Application
Configuration

Protocol Configuration

RF Transceiver
Configuration
 2009 Microchip Technology Inc. DS01284A-page 1

AN1284
The MiApp specification benefits wireless application
developers in multiple ways:

• Wireless application development will focus on
the application itself. Complex RF or protocol con-
siderations will be handled transparently by the
MiApp programming interface.

• The MiApp specification allows maximum flexibil-
ity to choose a wireless protocol at any stage of
application software development with little effort,
thus greatly lowering the risk of software develop-
ment. Application requirement changes in net-
working capabilities have little or no impact in
application development.

• MiApp uses the same control interface for
Microchip wireless proprietary protocols. Once
you are familiar with MiApp, you can apply that
knowledge to the development of another applica-
tion even if it has a completely different network-
ing capability requirement.

• By communicating to the Microchip proprietary
protocols, MiApp indirectly talks to the Microchip
RF transceivers through the MiMAC interface. As
a result, MiApp indirectly enables the wireless
application developers to switch between
Microchip RF transceivers through MiMAC. This
flexibility, in turn, further reduces the development
risk of the wireless application project.

FEATURES

The MiApp programming interface has the following
features:

• Easy to learn and use

• Powerful interface to meet most requirements
from wireless applications

• Little or no extra effort to migrate the wireless
application between Microchip proprietary
wireless protocols

• Minimum footprint impact

CONSIDERATIONS

The MiApp specification is designed to support Micro-
chip proprietary wireless communication protocols.
Once a wireless application is implemented by the
MiApp programming interface, the Microchip RF trans-
ceivers are also supported through standardization in
MiMAC, the module defined in the Media Access Con-
troller (MAC) layer.

MiMAC standardizes the interface between Microchip
wireless protocols and Microchip RF transceivers.
MiMAC makes Microchip RF transceivers interchange-
able with little or no change in the software application
code. For details of MiMAC, please refer to application
note AN1283 “Microchip Wireless (MiWi) Media
Access Controller - MiMAC”.

MiMAC regulates the lower interface of the Microchip
proprietary wireless protocols, while MiApp regulates
the higher interface of the Microchip proprietary wire-
less protocols. Working together, both MiMAC and
MiApp provide wireless application developers the
maximum flexibility to choose the RF transceivers and
wireless communication protocols at any stage of soft-
ware development, thus further minimizing the risk of
software development.The block diagram in Figure 1
shows the Microchip Wireless (MiWi™) stack offerings.

There are three layers of configurations for application,
protocol stacks and RF transceivers. Application con-
figuration might change between devices in the same
application according to their hardware design, role in
the application and network. Wireless application
developers tend to do the majority of the configuration
in the application layer. Protocol configurations fine-
tune the behavior of the protocol stack. The majority of
protocol stack configurations define the timing and
routing mechanism for the chosen wireless protocol.
Transceiver configurations define the frequency band,
data rate and other RF related features of the RF trans-
ceiver. The default settings for the protocol and RF
transceiver configurations may work with the applica-
tion without any modification. The application configu-
rations, however, usually need to be changed to fit the
needs of different wireless applications.
DS01284A-page 2  2009 Microchip Technology Inc.

AN1284
MiApp OVERVIEW

As discussed earlier, there are two parts defined in the
MiApp specification:

• Configuration parameters defined in the
configuration file

• Signatures of function calls to the Microchip
proprietary wireless communication protocols

The configuration file contains parameters that should
be set before compilation. Generally speaking, two
pieces of information are defined in the configuration
file:

• Hardware Definitions: Including MCU hardware
resources, peripherals definition and the RF
transceiver control pins’ definitions. The default
hardware definitions have already been defined
for several Microchip standard demo boards that
support Microchip RF transceivers. In these
cases, the definition of demo boards introduces
all hardware definitions automatically.

• Software Definitions: These definitions control
the code sections to be compiled into the firmware
hex file. The software definitions include selec-
tions of Microchip proprietary wireless protocol,
choice of Microchip RF transceiver and individual
functionalities. Proper definitions in this category
ensure the minimum firmware footprint with the
intended protocol capabilities.

Application Programming Interfaces (APIs) are the
function calls between the Microchip proprietary
wireless communication protocols with the wireless
developer’s application. As a rule, the application inter-
face must be clean, concise, easy to understand and
powerful.

There are five categories of interfaces for the APIs:

• The initialization interface allows wireless applica-
tion developers to properly initialize the Microchip
proprietary wireless protocol that has been
selected in the configuration file.

• The hand-shaking interface allows the wireless
nodes to discover and get connected with their
peers, or to join the network.

• Interfaces to send messages which enable appli-
cation developers to transmit information from the
current node to an intended audience over the air.

• Interfaces to receive messages which enable
application developers to receive information over
the air from other devices.

• Special functionalities which ensure the optimal
operating condition for wireless nodes through
environment noise control and power saving.

MiApp CONFIGURATION FILE

Of the two kinds of configurations in the MiApp config-
uration file, the hardware definitions depend heavily on
the demo board, MCU and RF transceiver choice.
Hardware definitions can be divided into following sub
categories:

• I/Os on the demo board – push buttons, LEDs,
serial ports, etc.

• MCU system resources – timers, interrupts, etc.

• Interconnections between MCU and RF
transceiver

Hardware definitions are mainly associated with hard-
ware selections of the wireless application system
design. They depend more on the hardware than the
software and vary across different designs. As a result,
MiApp does not have a set of standards for those
hardware definitions.

Selective compilation configurations select the features
among the list of available ones. Using the selective
compilation, application developers are able to config-
ure Microchip proprietary wireless protocols to perform
the desired functionality with the least possible system
resources. Table 1 describes the possible selective
compilation configurations, as well as the scope, value
and functionalities of those selections.

TABLE 1: SOFTWARE DEFINITIONS IN CONFIGURATION FILE

Example of Definition Functionality Restriction

#define PROTOCOL_MIWI
#define PROTOCOL_P2P

Selects the Microchip wireless
protocol to be used in the wireless
application.

Only one protocol can be defined at any
one time.

#define MRF24J40
#define MRF49XA

Selects the Microchip RF transceiver
to be used in the wireless application.

Only one transceiver can be defined at
any one time.

#define TX_BUFFER_SIZE 40 Defines the maximum size of the
application payload to be transmitted,
excluding all protocol headers.

There may be RF transceiver hardware
restrictions on the size of buffer that can
be transmitted. The hardware restriction
includes all protocol headers.
 2009 Microchip Technology Inc. DS01284A-page 3

AN1284
#define RX_BUFFER_SIZE 40 The maximum size of application pay-
load to be received, excluding all
protocol headers.

There may be RF transceiver hardware
restrictions on the size of buffer that can
be received. The hardware restriction
includes all protocol headers.

#define CONNECTION_SIZE
10

The size of connection table. Deter-
mines the maximum number of
devices that the node can connect to.

Depends upon available MCU RAM.

#define
ADDITIONAL_NODE_ID_SIZE 0

Defines the size of additional informa-
tion attached to the packets in the
hand-shake process. Primarily used to
identify the node in the application
layer.

The additional node identifier plays no
role in Microchip’s proprietary protocols.
However, it may play an important role in
the application. In a simple case of light
and switch, two lights may not be inter-
ested in connecting to each other, and
the same applies to two switches. Using
the additional node identifier enables the
application to identify the role of the
node in the application so that switches
only connect with lights.

#define ENABLE_PA_LNA Enables the RF transceiver to use an
external power amplifier and/or a low
noise amplifier

For RF transceivers that can control an
external PA and/or LNA.

#define ENABLE_HAND_SHAKE Enables Microchip’s proprietary wire-
less protocol to establish connections
with peers automatically.

Hand-shake process enables two wire-
less nodes to know each other. In other
protocols, this process is also called
“Pairing”. Applications without hand-
shake only use broadcast to exchange
messages.

#define ENABLE_SLEEP Enables the RF transceiver to go to
sleep when idle to save power.

Sleep mode depends on the capability of
the RF transceiver.

#define ENABLE_ED_SCAN Enables the Microchip proprietary
wireless protocol and RF transceiver
to perform an energy detection scan.

The energy scan depends on the
capability of the RF transceiver.

#define
ENABLE_ACTIVE_SCAN

Enables the Microchip proprietary
wireless protocol to perform an active
scan to discover nodes and networks
in the neighborhood.

Active Scan is used to search for exist-
ing wireless devices of the same kind in
the neighborhood. Active Scan can be
used to decide which device to connect
to.

#define ENABLE_SECURITY Enables Microchip’s proprietary proto-
col to secure packets that are
transferred.

The security engine, security mode and
keys are defined in a configuration file
for the RF transceiver, as security is
defined as part of MiMAC.

#define
ENABLE_INDIRECT_MESSAGE

Enables the wireless node to cache
messages for sleeping devices and to
deliver them once the sleeping device
wakes up and asks for the messages.

Only wireless nodes that do not go to
sleep can cache message for sleeping
nodes. The number of messages which
can be cached depends on the available
MCU RAM.

#define
RFD_WAKEUP_INTERVAL 5

Defines, in seconds, the RFD devices'
wake-up time interval.

Only effective when indirect message is
enabled. This definition is used for
devices that are always awake to keep
track of timeouts for indirect messages.
The sleeping time of sleeping devices
depends on the WDT setting of the host
MCU.

TABLE 1: SOFTWARE DEFINITIONS IN CONFIGURATION FILE (CONTINUED)

Example of Definition Functionality Restriction
DS01284A-page 4  2009 Microchip Technology Inc.

AN1284
MiApp FUNCTION INTERFACES

Other than the options in the configuration file, the
application layer also uses function calls to communi-
cate with the Microchip proprietary wireless protocol
layer, thus controlling the transceiver indirectly to per-
form wireless communication. There are five catego-
ries of function calls to the protocol layers from the
application layer:

• Initialization

• Hand-shaking

• Sending Messages

• Receiving Messages

• Special Functionality

The following sections describe the function interfaces
in detail, as well as associated structure definitions.

Initialization

To initialize the RF transceiver and protocol stack, the
application layer only needs to trigger the initialization
process by calling the function ProtocolInit. The full
function signature is:

There is only one parameter for the initialization. The
input boolean decides if the network freezer feature is
performed during the initialization. When the network
freezer feature is performed, the old network settings
that are stored in nonvolatile memory will be restored.
The return value is a boolean to indicate if the operation
is successful.

Other than the normal initialization process, wireless
applications may need to change the transmit or
receive frequency during operation. MiApp defines the
following function to change the operating frequency of
the RF transceiver according to the predefined chan-
nel. Each channel defines the frequency either accord-
ing to the specification, or the RF transceiver settings
under different operating frequency bands. The
function signature is:

The only input parameter is the channel to be set. The
return value indicates if the operation is successful.
The possible channel numbers are from 0 to 31.
Depending on the RF transceiver, frequency band and
data rate, not all channels from 0 to 31 may be valid
under all conditions. If the input channel is invalid under
current conditions, the operating channel is not
changed and the return value will be FALSE to indicate
failure.

#define ENABLE_BROADCAST Enables the wireless node to handle
broadcast messages for sleeping
devices.

Only wireless nodes that do not go to
sleep can cache messages for sleeping
nodes.

#define
ENABLE_FREQUENCY_AGILITY

Enables Microchip’s proprietary wire-
less protocol to perform frequency
agility procedures.

N/A

#define HARDWARE_SPI Enables the MCU to use the hardware
SPI to communicate with the
transceiver.

Defining of HARDWARE_SPI enables
the MCU to use the hardware SPI to
communicate with the transceiver. Oth-
erwise, the MCU can use bit-bang to
simulate SPI communication with trans-
ceiver.

#define
NWK_ROLE_COORDINATOR
#define
NWK_ROLE_END_DEVICE

Defines the current device’s role in the
network.

This configuration is only used for net-
work protocol. P2P protocol, like MiWi™
P2P, does not use this configuration.

#define TARGET_SMALL Minimizes the footprint of Microchip’s
proprietary wireless protocols.

Some features of the Microchip proprie-
tary wireless protocol may not be sup-
ported when minimizing the footprint of
the protocol.

#define
ENABLE_NETWORK_FREEZER

Enables the Microchip proprietary
wireless protocol to store critical net-
work parameters and to recover from
power loss to the original network
setting.

Requires nonvolatile memory of either
MCU data EEPROM, external EEPROM
or programming space. Network size
and chosen wireless protocol decides
the total amount of nonvolatile memory
required.

TABLE 1: SOFTWARE DEFINITIONS IN CONFIGURATION FILE (CONTINUED)

Example of Definition Functionality Restriction

BOOL MiApp_ProtocolInit(BOOL bNetworkFreezer);

BOOL MiApp_SetChannel(BYTE Channel);
 2009 Microchip Technology Inc. DS01284A-page 5

AN1284
Hand Shaking

Unless hard coded in manufacturing, in most applica-
tions, the two communication endpoints need an intro-
duction before they can unicast messages between a
pair of wireless nodes. The introduction for a network-
ing protocol is sometimes called joining the network.
For the P2P protocol, this process can also be called
pairing. Since this strategy does not focus on any par-
ticular topology or protocol, this process can generally
be called the hand-shaking phase. Without a hand-
shaking process, wireless nodes can only use broad-
cast, which treats every wireless node in the source
radio range as the audience, to communicate with each
other.

The following function calls for hand-shaking are avail-
able to the application layer:

• MiApp_StartConnection

• MiApp_SearchConnection

• MiApp_RemoveConnection

• MiApp_ConnectionMode

MiApp_StartConnection

The function call MiApp_StartConnection will enable a
wireless node to start operating in different ways. There
are three ways to start a PAN: start a PAN directly on a
particular channel, or start a PAN after either of the two
channel assessments. The full function signature is:

The return value of the function call indicates if the
operation is successful.

The input parameter mode specifies the mode of start-
ing the PAN. The possible modes are:

• START_CONN_DIRECT: Start the connection at
the current channel without any channel assess-
ment.

• START_CONN_ENERGY_SCN: Start the con-
nection after an energy detection scan and the
PAN start at the channel with the lowest energy.

• START_CONN_CS_SCN: Start the connection
after a carrier sense scan and the PAN start at the
channel with the lowest carrier sense detected.

For the transceivers that do not support energy detec-
tion and/or carrier sense scan, those modes are not
valid and the function should start the PAN without any
channel assessment if such a mode is specified in the
input parameter.

The input parameter ScanDuration specifies the maxi-
mum time to perform the channel assessment. The
max-and-hold method should be applied for the scan
period, if multiple scans can be performed. In case the
starting mode specifies no channel assessment, this
input parameter will be discarded. The value of the
input parameter ScanDuration complies with the defini-
tion in the IEEE 802.15.4™ specification. Its range is
from 1 to 14. Equation 1 is the formula to calculate the
scan duration time.

EQUATION 1: SCAN DURATION
CALCULATION

As the formula shows, a ScanDuration of 10 is roughly
one second. An increase by one roughly doubles the
time, while a decrease by one roughly cuts the time in
half.

The input parameter ChannelMap specifies the chan-
nels to be scanned in the process. ChannelMap is
defined as a 4-byte double word. It uses bit-map to rep-
resent channel 0 to channel 31. When a bit is set in the
double word, it means that the corresponding channel
will perform the channel assessment. For instance, if
bit 0 of the input parameter ChannelMap is set, channel
0 will perform channel assessment. To perform channel
assessment on all available channels, the input param-
eter ChannelMap will be 0xFFFFFFFF.

MiApp_SearchConnection

The function call MiApp_SearchConnection searches
for and discovers the existing peer wireless nodes in
the neighborhood. This procedure is also known as
active scan. In some applications, this step informs the
device whether it should start a PAN or choose a PAN
to join. If a PAN is started, this procedure can be used
to decide which PAN identifier to chose. If the device
joins a PAN, this procedure is used to choose which
PAN and which device to join.

The full function signature is:

BOOL StartConnection(BYTE Mode, BYTE
ScanDuration, DWORD ChannelMap,
BYTE *DestAddr);

ScanTime(us) = 960 * (2ScanDuration + 1)

BYTE SearchConnection(BYTE ScanDuration,
DWORD ChannelMap);
DS01284A-page 6  2009 Microchip Technology Inc.

AN1284
The return value of this function indicates the total num-
ber of returned PANs. The result of the return PAN will
be stored in the global variable in the format of struc-
ture ACTIVE_SCAN_RESULT, which is defined as
following:

In this structure, element address indicates the address
of the device that responded to the active scan.

Element PANID indicates the PAN identifier, if avail-
able. The PAN identifier is used to specify the network
ID.

Elements RSSI and LQI indicate the strength and qual-
ity of the responding signal, respectively. This
information may not be available for all RF
transceivers.

Element Capability contains information regarding the
capability of the device that sends back the response.
It is a bitmap of capabilities, which is defined in the
union. Depending upon the protocol used under the
application layer, the capability information may not be
available.

MiApp_RemoveConnection

The function call MiApp_RemoveConnection allows
the current node to disconnect certain connections.
The full function signature is:

There is no return value for this function. The input
parameter ConnectionIndex specifies the index in the
connection table for the peer node to be removed. If the
ConnectionIndex is 0xFF, the device will remove all
connections and leave the network. In a network proto-
col, this also means that all the device’s children will
leave the network. In case that the ConnectionIndex
points to the parent node in a network protocol, the cur-
rent node and all of its children must leave the network.
If the connection index points to a node that is not the
current node’s parent, the connection is removed and
the device stays in the PAN.

MiApp_EstablishConnection

The function call MiApp_EstablishConnection will
establish a connection with one or more devices. The
full function signature is:

This function call will return a byte to indicate the index
of the new peer node in the connection table. If the
return value is 0xFF, it means the procedure to estab-
lish a connection has failed after attempting the pre-
defined retry times. If there are multiple connections
established during the procedure, the return value is
the index of the connection table for one of the connec-
tions.

The parameter ActiveScanIndex is the index in the
active scan result table for the node to establish con-
nection. If the value is 0xFF, the protocol will try to
establish a connection with any device. Because of
this, multiple connections may be established in the
process.

The parameter mode specifies the connection mode.
There are two modes defined:

• MODE_DIRECT: This mode directly establishes
a connection in the radio range. The P2P stack
uses this mode to establish a connection, while a
network protocol uses it to establish a connection
with a parent to join the network.

• MODE_INDIRECT: This mode is used by a net-
work protocol to establish a connection across the
network with one or more hops. The connected
devices may or may not be in the radio range of
the requesting node. In the MiWi application note
(AN1066), this kind of connection is also defined
as a cluster socket, if the input parameter Activ-
eScanIndex is 0xFF.

typedef struct
{
 BYTE Channel;
 BYTE Address[];
 WORD_VAL PANID;
 BYTE RSSI;
 BYTE LQI;
 union
 {
 BYTE Val;
 struct
 {
 BYTE Role: 2;
 BYTE Sleep: 1;
 BYTE SecurityEn: 1;
 BYTE RepeatEn: 1;
 BYTE AllowJoin: 1;
 BYTE Direct: 1;
 BYTE altSrcAddr: 1;
 } bits;
 } Capability
} ACTIVE_SCAN_RESULT;

void MiApp_RemoveConnection(BYTE
ConnectionIndex);

BYTE EstablishConnection(BYTE
ActiveScanIndex, BYTE Mode);
 2009 Microchip Technology Inc. DS01284A-page 7

AN1284
MiApp_ConnectionMode

The function call MiApp_ConnectionMode sets the
connection mode that regulates whether the current
wireless node is able to accept direct connections from
new devices. The full function signature is:

There is no return value for this function. The input
parameter “mode” indicates the mode of the operation.
The possible modes of operation are:

• ENABLE_ALL_CONN:: This mode enables the
connection under any condition. This is the
default mode when the application starts.

• ENABLE_PREV_CONN: This mode only enables
old connections. Connection requests from nodes
that are already on the connection table will be
allowed. Otherwise, the request will be ignored.

• ENABLE_ACTIVE_SCAN_RSP: This mode
enables the current node to respond to any active
scan request to identify itself.

• DISABLE_ALL_CONN: This mode disables all
connection requests, including active scan.

The connection privilege decreases from
ENABLE_CONN to DISABLE_ALL_CONN. Any higher
privilege has all the rights for the lower one.

Sending Messages

The most important functionality of a wireless node is
to communicate, or send and receive data. All proto-
cols have reserved buffers for the data transfer, with the
size equal or larger than TX_BUFFER_SIZE defined in
the configuration file. Two functions are defined to man-
age the TX buffer in the stack:

The function MiApp_FlushTx is used to reset the
pointer of the transmission buffer in the stack. It has no
parameter and no return value.

The function MiApp_WriteData is used to fill one byte
of data to the transmission buffer in the stack. The only
input parameter is the one byte of data to be filled into
the transmission buffer.

Usually, MiApp_FlushTx is called first to reset the buffer
pointer. Then MiApp_WriteData is called multiple times
to fill the transmission buffer, one byte at a time.

After the transmission buffer is filled, the next step is to
trigger the message to be transmitted by the protocol
layer. There are three ways to transmit a message:

• Broadcast

• Unicast to the node by its index in the connection
table

• Unicast to the node by its address, either the per-
manent address or the alternative network
address.

Broadcasting a message targets all devices regardless
of their addresses. The full function signature for a
broadcast can be found below:

The return value of this function call indicates if the
transmission is successful. The only input parameter,
SecEn, is a boolean to specify if the payload needs to
be secured.

Unicast targets a single device as a destination. There
are two ways to unicast a message: the destination is
represented by an index on the connection table, or the
destination address is clearly given, either the perma-
nent address or a network address.

The full function signature for unicast with an index of
the connection table is:

The return value of this function call indicates if the
transmission is successful. The input parameter Con-
nectionIndex is the index of the destination node in the
connection table. The input parameter SecEn is a bool-
ean to indicate if the payload needs to be secured.

The full function signature for unicast with a destination
address is shown below:

The return value of this function call indicates if the
transmission is successful.

The input parameter address is the pointer that points
to the destination address.

The input boolean parameter PermanentAddr indicates
if the destination address is a permanent address or an
alternative network address. For star or P2P topology
protocol, only the permanent address is used, thus the
input parameter PermanentAddr has no effect.

The input parameter SecEn indicates if the payload
needs to be secured.

Receiving Messages

The other important functionality of the transceiver is to
receive messages. The application layer needs to
know when a message is received, the content of the
message and, occasionally, how the message is
received. The application layer also needs to discard
the message so resources can be released and new
messages can be received and processed. To work
with the flow described, there are two function calls and
one structure to define.

void MiApp_ConnectionMode(BYTE Mode);

void MiApp_FlushTx(void);

void MiApp_WriteData(BYTE OneByteTxData);

BOOL MiApp_BroadcastMessage(BOOL SecEn);

BOOL MiApp_UnicastConnection(BYTE
ConnectionIndex, BOOL SecEn);

BOOL MiApp_UnicastAddress(BYTE *Address,
BOOL PermanentAddr, BOOL SecEn);
DS01284A-page 8  2009 Microchip Technology Inc.

AN1284
MiApp_MessageAvailable

The function call MiApp_MessageAvailable has no
input parameter and returns a boolean to indicate if a
new message has been received and is available for
processing in the application layer. The full function sig-
nature is:

DATA STRUCTURE FOR RECEIVED
MESSAGES

All received messages that are forwarded to the appli-
cation layer are stored in a global variable defined in
the format of RECEIVED_MESSAGE as follows:

Depending upon the transceiver and the Microchip pro-
prietary protocol used, not all elements in the structure
are valid.

MiApp_DiscardMessage

The function call MiApp_DiscardMessage has no input
parameter and returns no value. The application layer
calls this function to notify the Microchip proprietary
wireless protocol layer that the current packet is done
processing and it is ready to process the next packet.
The full function signature is:

Special Functionality

Some transceivers have special functionalities that
enable the protocol stack to be more robust and adapt-
able to the environment.

NOISE DETECTION SCAN

The noise detection scan enables the transceiver to
detect the noise level in the environment. It is valuable
to start a new PAN at a quiet frequency, as well as
deciding whether channel hopping is necessary and to
which channel to hop.

The full function signature is:

The function call MiApp_NoiseDetection returns the
channel with the least amount of noise. The function
has four function parameters:

• ChannelMap: This input parameter defines the
bitmap of channels to be scanned. For each
transceiver, the supported number of channels is
different; therefore, not all bitmaps in the input
parameter ChannelMap are valid.

• ScanDuration: This input parameter defines the
total times of noise detection on each channel.
The max-and-hold mechanism is used to detect
the noise level on each channel. Input parameter
ScanDuration follows the IEEE 802.15.4™ speci-
fication, which was detailed earlier in this applica-
tion note with a formula to calculate real time.

• DetectionMode: This input parameter defines the
detection mode to be used: energy detection or
carrier sense detection. Not all detection modes
are supported by all RF transceivers.

• NoiseLevel: This output parameter returns the
noise level on the best channel, or the channel of
the return value of this function call. This output
parameter enables the application layer to view
the noise level on the best possible channel. The
higher the NoiseLevel parameter value, the nois-
ier the environment is.

BOOL MessageAvailable(void);

typedef struct
{
 union
 {
 BYTE Val;
 struct
 }
 BYTE broadcast: 1;
 BYTE ackReq: 1;
 BYTE secEn: 1;
 BYTE repeat: 1;
 BYTE command: 1;
 BYTE srcPrnt: 1;
 BYTE dstPrnt: 1;
 BYTE altSrcAddr: 1;
 } bits
 } flags;

 BYTE *SourceAddress;
 BYTE *Payload;
 BYTE PayloadSize;
 BYTE RSSI;
 BYTE LQI;
} RECEIVED_MESSAGE;

void DiscardMessage(void);

BYTE MiApp_NoiseDetection(DWORD ChannelMap,
BYTE ScanDuration, BYTE DetectionMode, BYTE
*NoiseLevel);
 2009 Microchip Technology Inc. DS01284A-page 9

AN1284
TRANSCEIVER POWER STATE

To enable a wireless node powered by a battery, it is
necessary to set the radio transceiver to a different
power state, or to put it into sleep and wake it up period-
ically. The function call MiApp_TransceiverPowerState
is defined to achieve this goal:

The only input parameter for this function call is the
operation mode. The predefined operation modes are:

• POWER_STATE_SLEEP: Puts the transceiver
into Sleep mode.

• POWER_STATE_WAKEUP: Wakes up the trans-
ceiver without sending any data request.

• POWER_STATE_WAKEUP_DR: Wakes up the
transceiver and then sends out a data request to
its main associated device to ask for incoming
data.

The function call MiApp_TransceiverPowerState
returns a byte to indicate the status of the operation.
The predefined operation status return values are:

• SUCCESS: Indicates that every operation is
successful.

• ERR_TRX_FAIL: Indicates that the request to
sleep or wake up the transceiver failed.

• ERR_TXFAIL: Indicates that the request to send
out data failed. This option is only available when
WAKE_DR is the operation mode.

• ERR_RXFAIL: Indicates that the request to
receive data from the parent failed. This option is
only available when WAKE_DR is the operation
mode.

FREQUENCY AGILITY

The frequency agility is the capability to hop channels
during operation to bypass persistent noise at certain
frequency.

Not all transceivers and protocols support frequency
agility. Frequency agility functions are optional for
application interfaces.

There are two functions to establish frequency agility.
One function is used to initiate the frequency agility pro-
cedure. The other function is used to synchronize the
connection if communication is lost due to frequency
agility performed at the other end of the communica-
tion.

The full function signature to initiate the frequency agil-
ity procedure is:

The return value of the function call
MiApp_InitChannelHopping indicates if the channel
hopping operation was successful. The ChannelMap
input parameter indicates available channels to move
to. The ChannelMap parameter is a bitmap of possible
channels. If a channel is available, the corresponding
bit (nth bit for channel n) will be set; otherwise, it will be
cleared.

The MiApp specification does not define when to start
channel hopping. The trigger event can be continuous
transmission/receiving failures or just periodically
searching for the optimal frequency to operate the wire-
less application. It is up to the wireless application to
decide when to start the channel hopping process. The
MiApp specification provides the proper interface to the
Microchip proprietary wireless protocols to perform
these actions as dictated by the application layer.

Once the channel hopping procedure is done, it is pos-
sible that some of the wireless nodes, especially those
that were in sleep when idle, do not know that the net-
work has been moved to a different channel. It is nec-
essary to define a function to resynchronize the
connection:

The return value of the function
MiApp_ResynConnection indicates if the resynchroni-
zation procedure is successful. There are two input
parameters: ConnectionIndex and ChannelMap. Con-
nectionIndex is the index of the device to be synchro-
nized in the connection table. The parameter
ChannelMap is the bitmap of the possible channels to
synchronized to.

BYTE MiApp_TransceiverPowerState
(BYTE Mode);

BOOL MiApp_InitChannelHopping
(DWORD ChannelMap);

BOOL MiApp_ResyncConnection(BYTE Connec-
tionIndex, DWORD ChannelMap);
DS01284A-page 10  2009 Microchip Technology Inc.

AN1284
CONCLUSIONS

For wireless application developers who are looking for
a short range, low data rate solution, the requirements
differ from point to point communication to routing mes-
sages across several hops. The MiApp specification
from Microchip provides a low-cost and low-complexity
solution to address nearly all those applications. It
enables the wireless application developer to use
Microchip’s proprietary wireless protocols with little or
no modification in the migration path. Working with
MiMAC at the lower layer, it also indirectly enables
developers to choose any existing and future RF trans-
ceivers supported by Microchip. It is highly recom-
mended that the readers of this application note also
read application note “Microchip Wireless (MiWi™)
Media Access Controller - MiMAC” (AN1283) to under-
stand the total solution available for wireless applica-
tions from Microchip. Standardization of the lower MAC
layer as MiMAC and the higher application layer as
MiApp offers wireless application developers maximum
flexibility in the software development process.

REFERENCES

IEEE Std 802.15.4-2003, Wireless Medium Access
Control (MAC) and Physical Layer (PHY) Specifica-
tions for Low Rate Wireless Personal Area Networks
(WPANs). New York: IEEE, 2003.

Microchip Wireless (MiWi™) Media Access Control -
MiMAC, Yifeng Yang, Microchip Technology Inc. 2009.

MRF24J40 Data Sheet – IEEE 802.15.4™ 2.4GHz RF
Transceiver (DS39776), Microchip Technology Inc.
2008

MRF49XA Data Sheet – ISM Band Sub-GHz RF Trans-
ceiver (DS70590), Microchip Technology Inc. 2009

AN1066, MiWi™ Wireless Networking Protocol Stack
(DS01066), David Flowers and Yifeng Yang, Microchip
Technology Inc., 2007

AN1204, Microchip MiWi™ P2P Wireless Protocol
(DS01204), Yifeng Yang, Microchip Technology Inc.,
2008
 2009 Microchip Technology Inc. DS01284A-page 11

AN1284
REVISION HISTORY

Revision A (July 2009)

• This is the initial release of this document.
DS01284A-page 12  2009 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.
 2009 Microchip Technology Inc.
Trademarks

The Microchip name and logo, the Microchip logo, dsPIC,
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,
rfPIC and UNI/O are registered trademarks of Microchip
Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,
MXDEV, MXLAB, SEEVAL and The Embedded Control
Solutions Company are registered trademarks of Microchip
Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard,
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial
Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB
Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code
Generation, PICC, PICC-18, PICkit, PICDEM, PICDEM.net,
PICtail, PIC32 logo, REAL ICE, rfLAB, Select Mode, Total
Endurance, TSHARC, WiperLock and ZENA are trademarks
of Microchip Technology Incorporated in the U.S.A. and other
countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2009, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

 Printed on recycled paper.
DS01284A-page 13

Microchip received ISO/TS-16949:2002 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

DS01284A-page 14  2009 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com

Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260

Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445

Toronto
Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431

Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889

China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431

China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470

China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066

China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760

China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118

China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130

China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4080

India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632

India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513

Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122

Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302

Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934

Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859

Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068

Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069

Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-6578-300
Fax: 886-3-6578-370

Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803

Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820

WORLDWIDE SALES AND SERVICE

03/26/09

	AN1284
	Introduction
	FIGURE 1: Block Diagram of Microchip Wireless (MiWi™) Stack

	Features
	Considerations
	MiApp Overview
	MiApp Configuration File
	TABLE 1: Software Definitions in Configuration File

	MiApp Function Interfaces
	Initialization
	Hand Shaking
	MiApp_StartConnection
	EQUATION 1: Scan Duration Calculation

	MiApp_SearchConnection
	MiApp_RemoveConnection
	MiApp_EstablishConnection
	MiApp_ConnectionMode

	Sending Messages
	Receiving Messages
	MiApp_MessageAvailable
	Data Structure for Received MessageS
	MiApp_DiscardMessage

	Special Functionality
	Noise Detection Scan
	Transceiver Power State
	Frequency Agility
	Conclusions
	References
	Revision History
	Microchip Wireless (MiWi™) Application Programming Interface – MiApp
	Corporate Office
	Atlanta
	Boston
	Chicago
	Cleveland
	Fax: 216-447-0643
	Dallas
	Detroit
	Kokomo
	Toronto
	Fax: 852-2401-3431
	Australia - Sydney
	China - Beijing
	China - Shanghai
	India - Bangalore
	Korea - Daegu
	Korea - Seoul
	Singapore
	Taiwan - Taipei
	Fax: 43-7242-2244-393
	Denmark - Copenhagen
	France - Paris
	Germany - Munich
	Italy - Milan
	Spain - Madrid
	UK - Wokingham
	Worldwide Sales and Service

