
AN1283
Microchip Wireless (MiWi™) Media Access Controller – MiMAC
INTRODUCTION
The primary function of wireless communication protocol
is to transmit and/or receive information between two
nodes. The Media Access Controller (MAC) layer
provides the basic channel access, addressing and data
transmission/receiving functionalities, on top of the
Physical (PHY) layer that handles raw data. In the
standard Open Systems Interconnection (OSI) model, it
serves as the Data Link Layer (DLL). Because of the
wide variety of possible implementations in the PHY
layer, the MAC is the lowest possible layer to
standardize in the software for communication protocols.

This application note defines the Microchip MAC layer,
MiMAC, for communication protocols and transceivers
supported by Microchip for short-range, low data rate
and low-power wireless applications.

Implementing MiMAC benefits wireless application
developers in multiple ways:

• Traditionally, wireless communication protocol
stacks are complicated to implement and difficult
to use. With the new definition of MiMAC, it is
possible to make the protocol stack available for
widely different RF transceivers.

• The learning curve for MiMAC can be flattened
and applied to all Microchip transceivers across
different frequency bands and modulations. It
significantly reduces the development risk for
wireless application developers by providing end
users the capability of changing different trans-
ceivers at any stage of software development.
Choosing a transceiver in the firmware is a
process that is transparent to the customer by
modifying a configuration parameter.

MiMAC FEATURES
The MiMAC implements the following features:

• Easy to learn, implement and support.
• Flexible enough to be implemented on

microcontrollers (MCUs) and RF transceivers
from Microchip.

• Powerful enough to address most short-range,
low data rate applications.

• Simple, but strong, security module with its
Security modes for transceivers that do not have
a hardware security engine.

• Concise, but powerful, programming interface
between MiMAC and all Microchip proprietary
wireless communication protocols.

• Minimum impact to the firmware footprint.

FIGURE 1: BLOCK DIAGRAM OF MICROCHIP WIRELESS (MiWi™) SOLUTIONS

Author: Yifeng Yang
Microchip Technology Inc.

User Application

MiApp

Interchangeable Wireless Communication Protocols

MiWi™ P2P

MiWi Mesh
Future Microchip Proprietary

Wireless Protocols ...

MiMAC

Interchangeable RF Transceivers

MRF24J40 Transceiver
MRF49XA Transceiver

Future Microchip RF
Transceivers ...

Application
Configuration

Protocol Configuration

RF Transceiver
Configuration
© 2009 Microchip Technology Inc. DS01283A-page 1

AN1283

Microchip Application Programming
Interface (MiApp)
In addition to standardizing in the MiMAC layer,
Microchip also aims to standardize the interfaces in the
application layer. The standard interface in the applica-
tion layer is called, Microchip Wireless Application Pro-
gramming Interface (API) or MiApp. The definition of
MiApp enables all Microchip proprietary wireless proto-
cols to be interchangeable, with little or no change in the
software application code. For details on MiApp, refer to
AN1284, “Microchip Wireless (MiWi™) Application
Programming Interface (MiApp)”.

MiMAC standardizes the interfaces between Microchip
wireless protocols and Microchip RF transceivers.
MiMAC makes all Microchip RF transceivers inter-
changeable with little or no change in the software
application code.

Both MiMAC and MiApp enable wireless application
developers the maximum flexibility to choose the RF
transceivers and wireless communication protocols at
any stage of software development, thus reducing
development risk to the minimum.

Microchip Wireless Configurations
There are three layers of configurations for application
protocol stacks and RF transceivers:

• “Application Configurations” might change
between devices in the same application
according to their hardware design, role in the
application and/or network. Wireless application
developers tend to do the majority of the
configurations in the application layer.

• “Protocol Stack Configurations” fine tune the
behavior of the protocol stack. The majority of the
configurations in the stack level is to set the timing
of the stack, specify the routing mechanism, etc.

• “Transceiver Configurations” define the frequency
band, data rate and other RF related features of
the RF transceiver.

The default settings for both protocol stack and
transceiver configurations might work fine with the
application without any modification. The application
configurations, however, tend to be changed to fit the
needs of different wireless applications.

Figure 1 demonstrates the Microchip Wireless
(MiWi™) solutions.

MiMAC OVERVIEW
The MiMAC layer consists of three separate, but
closely related, major parts. Among the three major
parts, the first and second are defined for Microchip
proprietary RF transceivers that have limited hardware
support in the MAC layer. The third is defined for all
Microchip RF transceivers. The three parts are:

1. MiMAC Frame Format

The frame format defines how the packet
appears over the air. Basically, the MiMAC
frame format decides the capability and
efficiency of the MiMAC specification. It serves
as the foundation for the other two parts in
MiMAC architecture.

2. MiMAC Security Module

For all wireless communication, the message is
transmitted through the open air. It is relatively
easier to intercept information from wireless com-
munication than from wired communication.
Therefore, security may be a serious consider-
ation for many applications. The MiMAC security
module defines a low-cost block cipher with
strong security strength. The MiMAC security
module also defines multiple Security modes to
work with the block cipher for different
requirements from the applications.

3. MiMAC Universal Programming Interface

The MiMAC universal programming interface
serves as a driver between all Microchip RF
transceivers and Microchip proprietary wireless
communication protocols. The programming
interface enables the Microchip RF transceivers
to work under any Microchip proprietary wireless
protocol; they also enable all Microchip proprie-
tary wireless communication protocols to use
Microchip RF transceivers.

The transceivers supported by Microchip differ widely
in features. Some transceivers have a well-defined
hardware MAC layer, including frame format and/or
security engine. There may be hardware features that
are built into the transceivers to comply with the speci-
fication. Microchip MRF24J40 is a good example of
such transceivers; it complies with the IEEE 802.15.4™
specification. MiMAC does not intend to regulate the
frame format and/or security engine if they are already
implemented in the transceiver hardware, as prior
experiences demonstrate that the hardware feature is
often faster and consumes less system resources.
DS01283A-page 2 © 2009 Microchip Technology Inc.

AN1283

For those transceivers that have built-in hardware
support in the frame format and/or security engine, it is
recommended to use the hardware implementation on
the transceiver and the MiMAC programming interface.

For other proprietary RF transceivers, there is very
limited, or virtually no, MAC layer defined in the hard-
ware. For these types of transceivers, all three major
parts of the MiMAC specification are recommended.
With a powerful MiMAC definition in the software,
Microchip enables those simple RF transceivers virtu-
ally the same communication or networking capability
in the software as their siblings, with much more
complexity in silicon.

Subsequent sections describe each of the three major
parts in the MiMAC specification.

MiMAC FRAME FORMAT
The MiMAC frame format definition ensures that it is
easy to learn and easy to support for wireless applica-
tion developers. As a byproduct, the universal packet
format simplifies the sniffer implementation – it is
possible to implement only one sniffer software running
on the PC, while using different hardware transceivers
to sniff the air and send packets to the PC to interpret
them. Since all packets have the same format in the
MiMAC frame format definition, the interpolation in the
MiMAC layer is the same across all RF transceivers
from Microchip.

The criteria to evaluate the frame format are its
capability and its efficiency. Compared to
IEEE 802.15.4, the virtual industrial standard for
short-range, low data rate and low-power wireless
PAN, the MiMAC frame format provides essentially the
same capability with more efficiency. As a comparison,
a typical minimum IEEE 802.15.4 frame is 9 bytes in
the MAC header, while MiMAC unicast can be as short
as 2 bytes.

Figure 2 shows the details of the MiMAC frame format.

FIGURE 2: MiMAC FRAME FORMAT

LAYER PHY HEADER MAC HEADER

NAME

BYTE

Preamble SFD Packet
Len MAC Header MAC Payload CRC

Various Various 0 - 1 2 - 21 Various 0 - 2

NAME

BYTE

Frame Ctrl Extra Ctrl Sequence
Number

Destination
Address Source Address

1 0 - 3 1 0 - 8 0 - 8

NAME

BIT

Packet Type Broadcast Security Repeat Ack DstPrsnt SrcPrsnt

2 1 1 1 1 1 1
© 2009 Microchip Technology Inc. DS01283A-page 3

AN1283

The packet format of the RF transceivers consists of at
least two parts at the top layer:

1. PHY Layer
2. MAC Layer

PHY Layer
The PHY layer is used by the transceiver to synchronize
communication and ensure reliability of the communica-
tion. The functionalities of the individual field in the PHY
layer are:

a) Preamble is used to synchronize the communi-
cation. For different transceivers, the preamble
may be of different lengths and the contents
may be different. Some transceivers may be
able to configure the length and content of the
preamble. If the preamble is configurable,
simply try to configure the preamble according
to the recommendation mentioned in the RF
transceiver data sheet. The MiMAC frame
format does not regulate the Preamble field.

b) Start-of-Frame Delimiter (SFD) is usually used
with preamble to ensure synchronization of the
communication. Some transceivers may be able
to enable/disable the SFD or configure the con-
tents of the SFD. If the SFD is configurable, it is
strongly recommended to enable the SFD and
set the content according to the recommenda-
tions of the transceiver data sheet. The MiMAC
frame format does not regulate the SFD field.

c) The Packet Length field is to specify the length
of the MAC frame. Some transceivers have this
mode to only transmit packets with a fixed
length. In this case, the Packet Length field in
the PHY header can be omitted. The Packet
Length field is not regulated by the MiMAC
frame format.

MAC Layer
The MAC layer of the MiMAC frame format consists of
three sublayers; the MiMAC frame format regulates all
three parts:

• MAC Header
• MAC Payload
• Cyclic Redundancy Check (CRC)

MAC HEADER
The MAC Header field provides crucial information to
the receiver of the packet on how to interpret the
packet. It consists of five subfields:

• Frame Control
• Extra Control
• Sequence Number
• Destination Address
• Source Address

Frame Control
The Frame Control field is used to interpret the MAC
header. It has seven separate subfields to control
different aspects of the MAC layer. The detailed
descriptions of each subfield in Frame Control are:

• The 2-bit Packet Type field specifies how to inter-
pret the packet, including its payload. For different
packet types, the MiMAC layer should handle the
packet differently.
- For a data packet, the packet type is 0b00.

When receiving a data packet, MiMAC will
usually pass the MAC payload directly to the
upper protocol layer. A data packet may be
handled in the upper protocol layer, or
directly in the application.

- For a command packet, the packet type is
0b01. In this case, the first byte of the
effective MAC payload is the MAC command,
followed by optional command parameters.
When receiving a command packet, MiMAC
will usually pass the MAC payload to the
upper protocol layer, with a flag to indicate
that it is a command frame. It is for the upper
protocol layer to interpret the command. A
command packet is usually handled in the
upper protocol layer.

- For an Acknowledgement packet, the packet
type is 0b10. An Acknowledgement packet
has neither a source address nor a destina-
tion address. It depends on the sequence
number to identify the packet which is to be
Acknowledged. The Acknowledgement
packet will be handled by MiMAC; sometimes
only by the transceiver hardware. The
advanced features in the MiMAC layer, such
as automatic Acknowledgement and retrans-
mission, all depend on the Acknowledgement
packet. The Acknowledgement frame is not
passed to the upper protocol layer.

- The packet type, 0b11, is reserved for
advanced features for some transceivers and
Microchip proprietary protocols. The MiMAC
layer will directly pass the received packet
with this packet type to the upper protocol
layer. When the MiMAC layer receives a
request to send such a packet, it will send out
the packet without any modification.

• The 1-bit Broadcast field specifies if the packet is
a broadcast or unicast. When this bit is set to ‘1’,
this packet is a broadcast without the destination
address; otherwise, clearing this bit means a uni-
cast message with a destination that is either
present or inferred. By using 1 bit in the frame
control to specify the broadcast, the MiMAC frame
format specification essentially avoids
transmitting a special broadcast address in the
Destination Address field.
DS01283A-page 4 © 2009 Microchip Technology Inc.

AN1283

• The 1-bit Security field specifies if the MAC

payload has been encrypted during transmitting.
Setting this bit indicates that the MAC payload
requires a decryption process to get the raw data.
When security is enabled, an additional auxiliary
security header will be present after the MAC
header. Refer to the “MiMAC Security Module”
section to interpret the auxiliary security header.

• The 1-bit Repeat field specifies if the packet
needs a repeater to forward this packet. This bit is
useful only for the device with repeating capability.
When this bit is set, the repeater that receives this
packet will forward this packet to extend the range
of communication coverage, on the condition that
the destination address is not the repeater’s
address.

• The 1-bit Acknowledgement field specifies if an
Acknowledgement packet is expected from the
receiver. When this bit is set to ‘1’, an
Acknowledgement packet with the same
sequence number needs to be received by the
sender in a predefined period. The time-out
period for the Acknowledgment depends on the
transceiver design. This bit is different from the
packet type Acknowledgement. The
Acknowledgement bit indicates that a packet of
packet type Acknowledgement is expected to
confirm the delivery of the current packet. While
the packet of packet type Acknowledgement is the
response to the packet with the
Acknowledgement bit set.

• The 1-bit Destination Present field determines if
the destination address exists in the MAC header.
When this bit is set, the destination address, with
the length defined by the transceiver or the upper
communication protocol, is present in the MAC
header. When this bit is cleared, the destination
address does not show up in the MAC header.
The absence of the destination address can
happen in the following conditions:
- In the Acknowledgment packet, there is no

destination address. When the packet type is
0b10, the Destination Present bit must be
cleared.

- In a broadcast packet, there is no destination
address. When the Broadcast bit is set, the
Destination Present bit must be cleared.

- The destination address can be omitted if an
inferred destination is used. In such case, the
Destination Present bit must be cleared.
When the Inferred Destination mode is used,
the destination address is still used when cal-
culating CRC, but not transmitted. When
other transceivers receive the packet, they
will check the CRC with their own address
added into the packet at the position of the
destination address. A CRC error, in this
case, is either because of transmission error
or the message is not for this receiving node.
In any of the above conditions, the packet will
be discarded by the receiving node. Only the
intended target transceiver does not generate
a CRC error when its own address is used to
calculate the CRC as the destination
address, thus, the packet is accepted and
handled accordingly in the upper protocol
layer only by the intended target device.
Hiding the destination address not only saves
time and energy to transmit those addresses,
but also provides minimal protection to avoid
complete exposure of the network activities.

There is a very slight chance (about 0.0015% for
2-byte CRC) that two transceivers with different
addresses might generate the same CRC code in
the transmission range. The Inferred Destination
mode is suitable for the majority of applications.
For applications which require absolute certainty
of the destination, it is recommended to set the
Destination Present bit.

• The 1-bit Source Present field determines if the
source address exists in the MAC header. When
this bit is set, the source address, with the length
defined by the transceiver or the networking pro-
tocol, is present in the MAC header. When this bit
is cleared, the source address does not show up
in the MAC header. The existence of the source
address during normal data transmission depends
on the application needs.

Note: The inferred destination address method
is Microchip’s Intellectual Property (IP).
Patent application for this method is now
pending for approval.
© 2009 Microchip Technology Inc. DS01283A-page 5

AN1283
Extra Control
For some transceivers with advanced features, such as
an upper layer security module, adaptive data rate and
channel, more information is required to interpret the

MAC information. Usually, these fields are only
reserved for high-end transceivers that will be used by
the transceiver hardware, instead of software.

Figure 3 provides the definition for the Extra Control
field.

FIGURE 3: EXTRA CONTROL FIELD FOR ADVANCED FEATURES

The Extra Control field consists of three parts:

• Acknowledgement Information
• Header Index
• Payload Index

The Acknowledgement Information is present only if an
Acknowledgment is required and adaptive channel
feature or data rate feature is turned on. The Acknowl-
edgement Information is mainly used by the hardware to
decide the data rate or channel to be used to send back
an Acknowledgement. The Channel Info field is used for
the adaptive channel feature and the Data Rate Info field
is used for the adaptive data rate feature. The adaptive
channel feature enables the transceiver to transmit and
receive data at different frequencies. This feature is very
useful for big networks working in crowded, unlicensed
frequency band. For large networks, this feature enables
each and every individual wireless node to receive at the
frequency (channel) with the lowest noise and transmit
at the receiving frequency (channel) according to the
destination device. The adaptive data rate feature
enables the transceivers to transmit and receive packets
at different data rates. It is similar to the adaptive channel
feature and enables more efficient data transfers in the
network.

The Header Index and Payload Index are specifically
used for the hardware security engine, especially for
encryption and authentication procedures. It is used to
identify the authentication materials and secured materi-
als if the security is not performed in the MAC layer, but
at the higher protocol layers. The Header Index and Pay-
load Index are present only if security is enabled, but not
performed in the MiMAC layer. The MiMAC specification
does not define how to handle security that is not
performed in the MiMAC layer. It is up to the upper pro-
tocol layer to use these extra control fields to perform a
security operation in the corresponding security layer.

Sequence Number
The sequence number is used to identify individual
transmitting packets. The sequence number for any
transceiver must start from a random number and then
increase with every packet transferred. The sequence
number is usually used in the Acknowledgement
packet to identify the packet that is Acknowledged. As
a rule, the sequence number for the Acknowledgement
packet must be the same as the packet that is to be
Acknowledged.

When there is no network layer provided by the upper
protocol layer, the sequence number is used to identify
the broadcast message; thus, no rebroadcast is
necessary if such a rebroadcast has been performed
before.

Extra Control

NAME

BYTE

Ack Info Header Index Payload Index

0 - 1 0 - 1 0 - 1

NAME Channel Info Data Rate Info

BIT 0 - 4 0 - 4

Note: The adaptive channel feature is Micro-
chip’s Intellectual Property (IP). Patent
application for this method is pending for
approval.
DS01283A-page 6 © 2009 Microchip Technology Inc.

AN1283

Destination Address
The destination address defines the target address of
the unicast packet. This length of the field is 0 to
8 bytes. The destination address in the MAC header is
decided by the Destination Present flag in the Frame
Control field.

If the length of the Destination Address field is not zero,
the length of the destination address is decided by the
transceiver addressing mechanism and the applica-
tion. The application layer can select the address
length from 2 to 8 bytes, depending on the network size
and the specific application.

If the length of the Destination Address field is zero, the
possible scenarios are:

• The packet is an Acknowledgement.
• The packet is a broadcast message, indicated by

the Broadcast bit, which is set in the Frame Control
field.

• The destination address is inferred by using CRC.

Source Address
The source address defines the address of the trans-
mitting device. The length of this field is 0 to 8 bytes.
The source address is decided by the Source Present
flag in the Frame Control field.

If the length of the Source Address field is not zero,
the length of the source address is decided by the
transceiver addressing mechanism and the applica-
tion. The application layer can choose the address
length from 2 to 8 bytes, depending on the network
size and the specific application.

The address length for the destination and source
address must be identical for the same network. If the
length of the Source Address field is zero, the source
address of the unicast message is not essential for this
particular application. Whether to include the Source
Address field in the MAC header, during normal packet
unicast, can be configured in the MiMAC layer.

MAC PAYLOAD
The MAC payload is the information transmitted by
Microchip proprietary wireless protocols or by the
application layer. It is up to the Microchip proprietary
wireless protocol layers or customer application to
interpret the information. The MAC payload will be
directly passed to the Microchip proprietary wireless
protocol layers by the MiMAC programming interface
without any modification. If the MAC payload has been
secured, it will be unsecured by the MiMAC security
module first. Only the decrypted plain text of the MAC
payload will be passed to the upper layer by the MiMAC
programming interface. If the security checking failed
due to any reason, the whole packet will be discarded
in the MiMAC layer. With the MAC payload, its length
will also be passed to the upper protocol layer. The
MAC payload length is calculated from the packet
length from the PHY layer, minus the MAC header
length, and the possible adjustment for the security
module.

MAC CRC
The CRC field in the MAC layer is used to ensure the
integrity of the packet during transmission. Hardware
CRC generating/checking are provided in some RF
transceivers. For transceivers, which do not have the
hardware CRC generating/checking capability, the
CRC software is used.

When CRC software is used, both loop and look-up
table CRC generation methods can be used. Generally,
the loop CRC generation method uses about 600 bytes
less programming space, but runs 3-4 times slower
than the look-up table method. Both methods generate
an identical CRC value, thus they are interchangeable.
The choice of either method depends on the individual
application requirements.

In normal conditions, 2-byte CRC is preferred,
balanced by its reliability and simplicity. CRC is highly
recommended for all data transmissions. CRC is
mandatory when the destination address is omitted
during unicast. The “Destination Address” section
describes how to omit the destination address.
© 2009 Microchip Technology Inc. DS01283A-page 7

AN1283

MiMAC SECURITY MODULE
Due to the physical aspect of wireless communication,
the content of the information exchange over the air is
equally easy to access for all parties, either intended or
unintended listeners. Therefore, securing the packets
is essential to some applications. The MiMAC security
module helps to address the security needs of the
applications by the following ways:

• If the transceiver hardware supports a security
module, including cipher and different Security
modes, it is recommended to use the hardware
security engine directly. To encrypt and decrypt a
packet in firmware consumes a relatively large
amount of MCU system resources, thus it lowers
the throughput, and raises the speed and power
consumption requirement for the transceiver host
MCU. In this case, the MiMAC security
specification does not apply.

• If the hardware security engine provides only the
block cipher, but not Security modes, it is recom-
mended to use the hardware security cipher but
apply the software Security modes on top of the
hardware cipher. In this case, the MiMAC security
cipher does not apply but the MiMAC Security
modes specification applies.

• If the transceiver hardware does not provide any
security support, both Cipher and Security modes
in the MiMAC security specification apply. If users
prefer block cipher for the one chosen by MiMAC,
an alternative MiMAC security module provides a
predefined interface to invoke any block cipher.

Selecting Default MiMAC Security Engine
Selecting the default MiMAC security engine depends
on three criteria:

• Security Engine IP Issues
• Low-Cost Security
• Enhanced Security Strength

SECURITY ENGINE IP ISSUES
Among all the popular security engines that are in the
public domain, the good candidates which have no IP
issues are:

- Data Encryption Standard (DES/TDES)
- Blowfish/Twofish
- Serpent
- Advanced Encryption Standard (AES)
- Tiny Encryption Algorithm

(TEA/XTEA/XXTEA) Family

All these security engines are freely available, have
reference designs and are implemented in real
products in large volume.

LOW-COST SECURITY
Low-cost implementation ensures that the security
module can be implemented on a low-cost MCU with
limited system resources and computation speed.

DES/TDES – Previous generation of crypto standards;
known to be complex and require relatively more
system resources relative to their security strength.

Blowfish/Twofish, Serpent and AES – Provide more
secured algorithm while the implementation is simpler
than DES families. However, the system resources
required for these ciphers are still higher than expected
for an embedded system.

Note that, typical implementation of these encryption
engines requires at least a 4-Kbyte programming space.
On the contrary, the typical implementation of a TEA
family requires a couple hundred bytes of programming
space and the speed of execution is faster.

Considering the system resources for an embedded
system, the security engines of a TEA family meet the
requirement for this criterion.

ENHANCED SECURITY STRENGTH
A security engine with a known weakness is not
preferred for the MiMAC security specification.

Within the security engines of the TEA family, there are
3 variants: TEA, XTEA and XXTEA. TEA is the original
implementation, first published in 1994. It has a known
weakness of the equivalent keys. The best related key
attack on the TEA security engine requires 232 chosen
plain texts under a related key pair, with 232 time
complexity. Like XTEA, XXTEA was developed to
enhance the security strength beyond TEA. It is a
heterogeneous, unbalanced Feistel network block
cipher that does not restrict the block size. As a result,
XXTEA is likely to be more efficient to handle longer
messages, since XXTEA can be applied to an entire
message instead of encrypting block by block. How-
ever, XXTEA has the limitation of requiring at least
8 bytes of encryption data. XXTEA cannot become a
hands-on choice without modification to the security
engine itself.

After analyzing all criteria for choosing a security
engine, we are left with the XTEA in the TEA family as
our choice of a default security engine in the MiMAC
security specification.
DS01283A-page 8 © 2009 Microchip Technology Inc.

AN1283

XTEA Block Cipher
XTEA is a 64-bit block cipher with 128-bit keys. It is
designed to bypass the weakness found in the TEA
cipher. It was first published in 1997 by David Wheeler
and Roger Needham of the Cambridge Computer
Laboratory in Cambridge University, UK, and now is in
the public domain. It is not subjected to any patent.

Figure 4 shows how an XTEA cipher works.

FIGURE 4: BLOCK DIAGRAM OF XTEA CIPHER

1st Half Block Plain Text 2nd Half Block Plain Text

Block

Delta 1st Half Key

XOR

ADD

ADD ADD XOR

<< 4

>> 5
<< 4

>> 5

XOR ADD XOR ADD

ADD

Delta 2nd Half Key

1st Half Encoded Text 2nd Half Encoded Text

Block
© 2009 Microchip Technology Inc. DS01283A-page 9

AN1283

The latest crypto analysis shows that XTEA can only be
broken with a related key differential attack under
extreme conditions. To perform the related key differen-
tial attack, the attacker needs to observe the cipher
operation under several different keys and obtain
encrypted contents for a set of known plain texts. The
best known attack result is 26, out of 64 rounds of
XTEA, requiring 220.5 chosen plain texts and a time
complexity of 2115.15. (Youngdai Ko, Seokhie Hong,
Wonil Lee, Sangjin Lee and Jongin Lim. “Related Key
Differential Attacks on 26 Rounds of XTEA and Full
Rounds of GOST”. In proceedings of FSE ‘04, lecture
notes in Computer Science, 2004 Springer-Verlag.)
This means that the conditions and complexity for
breaking the XTEA are extremely difficult. Even if every
condition has been met, the time to break XTEA on a
1000 MIPS computer will be 1.46 X 1018 years! On the
contrary, the latest estimate on the age of the universe
is only about 1.4 X 1010 years.

ADVANTAGES OF XTEA
One of the greatest advantages of XTEA is that the
system resources required to encrypt or decrypt the
information are very limited. A closer look at the XTEA
algorithm reveals that the volatile memory requirement
for XTEA is extremely low compared to other security
engines with similar strength. Therefore, the XTEA is
well known to be used in embedded systems with few
resources.

Another advantage of XTEA is that the required
resources and complexity of the algorithm can be fine
tuned by applying different round times to the algo-
rithm. Fewer rounds will perform the algorithm faster
and the complexity decreased linearly with the rounds.
However, it is easier to break the algorithm with fewer
rounds. For wireless applications that MiMAC serves,
the required security level and response time varies
significantly. The capability of easily adjusting the
security level and system resource requirement in
XTEA is very valuable for working with a wide range of
applications.

Modifying XTEA Block Cipher
The XTEA cipher engine suits the security needs of an
embedded system. However, XTEA needs further
modification to best fit into the MiMAC security strategy.

SECURITY MODES
Usually, a security engine applies different Security
modes to secure the data. The simplest implementa-
tion of a Security mode for block cipher is Electronic
CodeBook (ECB) mode. In simple words, the message
is divided into multiple blocks with the same block size
defined by the cipher, and then the cipher is applied to
each individual block to encrypt the input data.
Similarly, when a block cipher decoder is used, the
process is reversed and the data is decrypted.
Figure 5 shows how the block cipher works to encode
in ECB mode.

FIGURE 5: FLOW DIAGRAM FOR BLOCK CIPHER IN ECB MODE

Key Key Key

Plain Text

Block 1 Block 2 …...

Block Cipher Block Cipher Block Cipher

Block n

Cipher Text

Encoded Block 1 Encoded Block 2 …... Encoded Block n
DS01283A-page 10 © 2009 Microchip Technology Inc.

AN1283

However, the ECB mode has a disadvantage – it does
not hide the data pattern. For instance, if all the blocks
of plain text are the same, the output encrypted data
will also be the same, thus giving a significant hint to
the hackers on how to break the security engine.
To overcome the disadvantage of ECB mode, Counter
(CTR) mode uses a non-repeated nonce to hide the pat-
tern in the plain text. This requires additional resources,
but it significantly improves the security on the output
message.

The MiMAC security module specifies the nonce as the
MAC header.
• If the MAC header is longer than the block size, fill

the nonce with the MAC header up to the size
limit, starting from the frame control byte as the
lowest byte in the nonce.

• If the MAC header is shorter than the block size,
fill the nonce with the MAC header, starting with
the frame control as the lowest byte in the nonce
and fill the rest of the nonce as zero.
Finally, the highest byte of the nonce will be the
counter, starting at zero, and automatically
increased for the subsequent blocks.

Figure 6 shows how the block cipher works in CTR mode.

FIGURE 6: FLOW DIAGRAM FOR BLOCK CIPHER IN CTR MODE

Plain Text

Block 1 Block 2

Block CipherKey Block CipherKey Block CipherKey

Cipher Text

…... Block n

MAC Header with
Counter 0

MAC Header with
Counter 1

MAC Header with
Counter n

Encoded Block 1 Encoded Block 2 …... Encoded Block n

XOR XOR XOR
© 2009 Microchip Technology Inc. DS01283A-page 11

AN1283

The wireless communication should not only prevent
exposing the information, it should also ensure that the
information does not have interference over the normal
operation of the network, either intentionally or uninten-
tionally. The encryption of the information in CTR mode
may prove to be not enough for the following reasons:
• The replay attack can be performed easily with a

simple sniffer. It will seriously affect the network
operation in some applications. Replay attack is
performed by transmitting the identical packet
received. In some applications, a receive identical
message may be undesirable. A good example is
a message to toggle a light.

• The decryption process cannot detect any failure,
thus any random data transferred may be poten-
tially operable on the network after the decryption
process.

Apart from the CTR Encryption mode, MiMAC needs to
define operation modes to authenticate the message.
Authentication ensures that the transferred message
has not been altered in any way by checking the
attached Message Integrity Code (MIC). For the block
cipher, the Standard Authentication mode is the Cipher
Block Chaining Message Authentication Code
(CBC-MAC). CBC-MAC is an operation mode not
associated with any particular security engine. In the
IEEE 802.15.4 specification, CBC-MAC mode is
applied with the AES-128 engine. In the MiMAC
security specification, CBC-MAC can be applied to the
XTEA block cipher. In the MiMAC security specifica-
tion, Authentication modes, XTEA-CBC-MAC-32 and
XTEA-CBC-MAC-64, are defined to generate a 32-bit
or 64-bit MIC.
Figure 7 shows the CBC-MAC mode procedure.

FIGURE 7: FLOW DIAGRAM FOR BLOCK CIPHER IN CBC-MAC MODE

As shown in Figure 7, the XTEA block cipher acts as a
Hash function. To invoke CBC-MAC mode in XTEA, the
message is broken into small blocks with the block size
defined by the block cipher. By default, XTEA defines a
64-bit block size. If the final block is only partially full, fill
the rest of the block with zero. The first block is used as
the input to the XTEA engine with a predefined key.
After the crypto process, the output from the XTEA
engine will be XORed with the next block as the input
to the XTEA block cipher. After the final block has been
processed, the final output from the XTEA engine is the
MIC. For XTEA-CBC-MAC-64 mode, the full final block
will serve as the MIC; for XTEA-CBC-MAC-32, only the
lower 32 bits of the final result will serve as the MIC.
MiMAC will transmit the MIC attached to the end of the
packet. At the receiving side, the node will calculate the
MIC in exactly the same process. Then, the receive
node will compare the calculated MIC with the MIC that

is received as an attachment to the original message. If
the two MICs are identical, the entire received packet
will be accepted; otherwise, the packet will be
discarded.
CBC-MAC can be used to prevent a replay attack. Usu-
ally, the packet that has been sent with CBC-MAC
authentication will include a Frame Counter field with a
predefined length (typically 4 bytes) after the MAC
header. For every packet that is transmitted, the frame
counter will be increased by one. At the receiving side,
only the packet with a frame counter value higher than
the recorded value will be accepted. As a result, send-
ing a repeated packet as a replay attack is performed
and will be discarded. If the sender intentionally modi-
fies the frame counter to be a higher value, the packet
cannot pass the authentication check, since the frame
counter value is used to calculate the MIC that is
attached at the end of the packet.

Plain Text

Block 1 Block 2

Block CipherKey Block CipherKey Block CipherKey

…... Block n

XOR XOR XOR0

…...

MIC
DS01283A-page 12 © 2009 Microchip Technology Inc.

AN1283

CBC-MAC mode is used to authenticate the message,
but the mode itself does not encrypt the message.
IEEE 802.11i uses Offset CodeBook (OCB) mode to
authenticate and encrypt the data at the same time,
thus saving requirements for computing power. How-
ever, OCB mode has appeared in a patent application.
Even though there is a special exemption to use OCB
mode under the GNU General Public License (GPL), it
is wise for the MiMAC security specification not to
depend on OCB mode with the potential IP issues.
As an alternative to OCB mode, Counter with
CBC-MAC (CCM) mode performs 2 passes to the mes-
sage instead of 1 pass in OCB mode, thus doubling the
computing resources requirement. The CCM mode is
basically applied to the CBC-MAC mode first to gener-
ate the 32-bit or 64-bit MIC, followed by applying CTR

mode to the message and the MIC to encrypt the mes-
sage. CCM mode requires doubling the computing
resources compared to CTR mode or CBC-MAC mode,
but provides the most complete protection over the
data transferred over the air. Depending on the length
of the MIC, there are two CCM modes available:
CCM-64 and CCM-32.
When MiMAC applies CCM mode, the complete
packet, including the MAC header, security auxiliary
header and MAC payload, are used to authenticate the
message, generating the MIC to protect the whole
packet. Only the MAC payload and the MIC will be
encrypted.
Figure 8 shows the entire CCM mode process.

FIGURE 8: FLOW DIAGRAM FOR BLOCK CIPHER IN CCM MODE

Block 1 Block 2

Block CipherKey Block CipherKey Block CipherKey

…... Block n

XOR XOR XOR0

…...

MIC

MAC Header Frame Counter Key Seq MAC Payload

MAC Payload

Block 1 Block 2 …... Block m

MAC Header with
Counter 0

Block CipherKey

XOR

MAC Header with
Counter 1

Block CipherKey

XOR

MAC Header with
Counter m

Block CipherKey

XOR

Block 1

Encrypted DataMAC Header Frame Counter Key Seq

Block 2 …… Block m
© 2009 Microchip Technology Inc. DS01283A-page 13

AN1283

When a wireless node receives a packet that is
secured by CCM:
• It first applies CTR mode to decrypt the MAC

payload.
The decrypted plain text consists of raw data and
the MIC.

• Then CBC-MAC mode is applied to the raw data
to calculate the MIC.

• Finally, the calculated MIC is compared with the
MIC decrypted from original data.
If the two MICs do not match, the whole packet is
discarded. Similar to CBC-MAC mode, a frame
counter can be included in the packet when CCM
mode is used. The additional Frame Counter field
in the packet can effectively prevent the replay
attack for the same reason that is described above
for CBC-MAC mode.

As a result of using Security modes on top of the XTEA
block cipher, one minor benefit is that only the encoding
function for XTEA is required to be implemented.

KEY STRENGTH
Generally, the longer the key, the more security
strength for the crypto engine. XTEA was first devel-
oped and published as a 64-bit block cipher with a
128-bit symmetric key.
However, export regulation from the U.S. government
requires particular steps to export an encryption engine
with a symmetric key of more than 64 bits.

Therefore, the XTEA security engine needs to be
demoted to support a 64-bit symmetric key as one of
the operating modes.
Even though XTEA is developed as a 64-bit block
cipher with 128-bit symmetric key, it can be modified to
support a 32-bit block cipher with a 64-bit symmetric
key following the same concept. The differences are
the block size and the definition of DELTA, the constant
magic number coming from the golden ratio. With the
introduction of a 32-bit block size and 64-bit key, there
are two modes for the XTEA block cipher: XTEA-128
and XTEA-64. For the XTEA-64, CBC-MAC-64 and
CCM-64 Security modes are no longer available due to
the reduced block size.
Because of demoting XTEA, it is expected that the
speed of the security process increases, while the
strength of the security module decreases. As the
XTEA-64 cipher is not a standard security engine, no
crypto analysis has been performed on this algorithm,
thus the complexity of breaking the algorithm is
unknown so far. It is believed that the XTEA-64 still
provides enough security for casual users of a crypto
engine. Users are encouraged to increase the round to
make the engine more secure to some extent. For
customers requiring more confidence about security,
the standard XTEA, or XTEA-128, is always ready to
deliver the stronger confidence upon authorization to
meet U.S. export regulation regarding a security
engine.
DS01283A-page 14 © 2009 Microchip Technology Inc.

AN1283

SECURED PACKET FORMAT
When the MiMAC packet is secured, additional
information is needed to ensure the successful process
of the decryption process. Basically, the transmitting
side needs to send all necessary materials that may be
useful to decrypt the packet, except the security key
itself.

Two parts are considered to be security materials that
are essential to the security process: frame counter
and security key sequence number. They are part of
the auxiliary security headers that immediately follow
the MiMAC header.
Figure 9 provides the frame format for a secured
packet.

FIGURE 9: FRAME FORMAT FOR SECURED PACKET

The frame format for a secured packet differs from an
unsecured packet in the following ways:
• The secEn flag in the frame control byte is set.
• Includes an additional auxiliary field, called

Security Header; it contains two parts:
- Frame counter of 4 bytes is used to avoid

replay attack. The details of how to avoid a
replay attack can be found in the “Security
Modes” section.

- Security Key Sequence Number is used to
identify which security key is to be used.

• The MIC that is attached to the end of the MAC
payload. The length of the MIC depends on the
Security modes to be used.

Under different Security modes, the secured portion in
the packet varies:
• For CTR mode, only the MAC payload is

encrypted; there is no MIC attached.
• For MAC-CBC mode, the authenticated informa-

tion starts from the MAC header until the end of
the MAC payload. The MIC is either 4 bytes or
8 bytes in length for the MAC-CBC-32 and
MAC-CBC-64 modes, respectively.

• For CCM mode, the authenticated information
starts from the MAC header until the end of the
MAC payload. The encrypted information starts
from the start of the MAC payload until the end of
the MIC. The MIC length is either 4 bytes or 8 bytes
for CCM-32 and CCM-64 modes, respectively.

ALTERNATIVE CIPHER ENGINE SUPPORT
XTEA-128 is a strong security engine, which is suitable
for a majority of the applications. However, for some
wireless application developers who require a particular
security engine, the MiMAC security module suggests
an alternative. A security engine interface has been
defined for block ciphers. Once this security interface
has been implemented for the alternative block cipher,
the new security engine can be used in MiMAC without
any further modification. Be aware that the three Secu-
rity modes, CTR, CBC-MAC and CCM, still apply to the
alternative security engine to ensure proper protection of
the data. Because of these Security modes, only the
encoding process for the alternative block cipher needs
to be implemented.
The interface to the alternative security engine is
shown below:

In the security interface function call encode, there are
two parameters: buffer and key.
• Buffer

The buffer parameter is the pointer to the plain text
when this function is called. When the function is
returned, this buffer will be replaced by encoded
data.

• Key
The key parameter is the pointer to the security
key for the block cipher.

LAYER MAC FRAME

NAME

BYTE

MAC Header Security Header MAC Payload

NAME FRAME COUNTER SECURITY KEY SEQUENCE NUMBER

BYTE 4 1

MIC CRC

2 - 21 5 Various 0/4/8 0 - 2

BOOL encode(BYTE *buffer, BYTE *key);
© 2009 Microchip Technology Inc. DS01283A-page 15

AN1283
MiMAC UNIVERSAL PROGRAMMING
INTERFACE
As already discussed, standardizing the frame format
and security module in the MiMAC layer provides great
advantages for wireless application developers. The
next step is to standardize the software programming
interface between MiMAC and Microchip upper
proprietary protocol layers.
Microchip supports multiple short-range, low data rate
RF transceivers. As discussed before, the MiMAC
universal programming interface:
• Makes all Microchip RF transceivers

interchangeable in the software development
process.

• Reduces the software development risk for
wireless application developers.

• Considers the potential of the different
transceivers, while still providing a simple inter-
face to work with the upper protocol layers,
without any major footprint increase.

There are two kinds of interfaces defined to work with
different Microchip RF transceivers: configuration file
and function calls.
For different Microchip RF transceivers, the hardware
interface, functionality and register settings vary
greatly. For configurations that apply only to individual
RF transceivers, a configuration file has been defined.
These configurations are unlikely to change when the
application runs. Usually, the configurations in the file
will be set in the initialization process.
For all wireless protocols, all function calls can be
divided into four major categories:
• Configuration
• Transmitting Packets
• Receiving Packets
• Special Functionality
The MiMAC programming interface defines one or
more function calls for each function category. Calling
those programming interfaces from the upper protocol
layers will perform virtually all functionality of the RF
transceivers. The succeeding sections define the
programming interfaces by function categories.

MiMAC Configuration
The MAC layer configuration interface is called from
the upper protocol layer to the MiMAC layer to config-
ure the behavior of the RF transceiver. Unlike the
configuration parameters defined in the configuration
file, the configuration in these function calls may be
changed when the wireless applications run. For those
features supported by the transceiver hardware, it is
expected that the MiMAC layer should set correspond-
ing register bits in the transceiver. For those features
not supported by the transceiver hardware, it is
expected that MiMAC layer firmware should handle it
before transferring control to the upper layer. The
following functions are used to configure the MAC
layer:
• MiMAC_Init

• MiMAC_SetPower

• MiMAC_SetChannel

• MiMAC_SetAltAddress

MiMAC_Init

MiMAC_Init function call initializes the behavior of the
MiMAC layer. The following MAC behavior can be
configured:
• Permanent Address
• Enable/Disable Repeater Mode
This function is called as one of the first steps in Micro-
chip upper protocol layers. After this function call, the
MiMAC layer behavior will be initialized in the RF
transceiver.
To represent all the configurable information to the
MiMAC layer, the following structure is defined and
served as an input parameter to the MiMAC_Init
function call.

typedef struct
{

union
{

BYTE Val;
struct
{

BYTE RepeaterMode:1;
BYTE PAddrLength:4;

} bits;
} actionFlag;

BYTE *PAddress;
} MACINIT_PARAM;
DS01283A-page 16 © 2009 Microchip Technology Inc.

AN1283

The description of this structure is:
• RepeaterMode

Enables the transceiver to forward the packets
when the Repeat bit is set in the frame control byte
in the MAC header.

• PAddrLength

Defines the length of the permanent address for
the transceiver. The length can be defined from
between 2 to 8 bytes.

• PAddress

The pointer that points to the permanent address
of the transceiver.

The full signature of the function call is shown below.
The return value indicates if the operation was
successful.

MiMAC_SetPower

MiMAC_SetPower function call sets the output power
of the transceiver. It is a PHY function call instead of a
MiMAC layer. Here, the MiMAC layer is just an interme-
diate layer to pass the setting to the PHY layer of the
transceiver. Instead of using it as a parameter in the
MiMAC_Init function call, this interface is defined
separately to give the upper protocol layer, or applica-
tion layer, flexibility to adjust output power freely during
run based on application needs.
The full signature of the function call is shown below. The
return value indicates if the operation is successful.

The input parameter, outputPower, is represented by
one byte. The individual transceiver should be
responsible to interpret the input value and set the
proper output power. It is highly recommended for the
firmware in the upper protocol layer, or application
layer, to use a predefined value recognized by the
transceiver, probably in the definition header file of the
target transceiver.

MiMAC_SetChannel

MiMAC_SetChannel function call sets the operating
frequency of the RF transceiver. The full signature of the
function call is shown below. The return value indicates
if the operation is successful.

There are two input parameters to this function call: the
channel and the offset frequency.
• Channel

Defines the center frequency that the RF trans-
ceiver works on. The channel number is defined
from 0 to 31.

• Offset Frequency
It is used in some of the RF transmitters as an
additional configuration to set the center frequency
at any frequency not defined by the channel.
Usually, the offset frequency cannot be larger than
the frequency gap between adjacent channels.

When combining the proper setting of the channel and
offset frequency, it is possible to fine tune the center
frequency of the RF transceiver to be any possible
value. For transceivers that define the fixed channel
center frequency, strictly in the specification, the
offsetFreq parameter can be discarded.
Not all channels are supported for every transceiver
and data rate or frequency band. If the input parameter
channel is not supported by the RF transceiver at the
current condition, the current operating channel will not
be changed and the return value will be FALSE to indi-
cate the failure of the changing channel. Otherwise, the
operating channel will be changed in the transceiver
and the return value will be TRUE.

MiMAC_SetAltAddress

MiMAC_SetAltAddress function call sets the alter-
native network address after the wireless node joins
the network. This function is used only when the trans-
ceiver supports multiple addresses and the concept of
the Personal Area Network Identifier (PANID). The
PANID and the alternative network address are
specified by the IEEE 802.15.4 specification. It is not
mandatory for all transceivers to support this function.
For the transceivers that do not support multiple
addresses or PANID, the input parameters will be
discarded and the return value will be FALSE.
The full signature of the function call is:

There are two input parameters to this function call: the
pointers that point to the address and the PAN
identifier.
• The Address

It is required for those transceivers that support
network addresses to identify the device in the
network.

• PANID
It is used to identify the network itself.

BOOL MiMAC_Init(MACINIT_PARAM initValue);

BOOL MiMAC_SetPower(BYTE outputPower);

BOOL MiMAC_SetChannel(BYTE channel,
BYTE offsetFreq);

BOOL MiMAC_SetAltAddress(BYTE *Address,
BYTE *PANID);
© 2009 Microchip Technology Inc. DS01283A-page 17

AN1283

MiMAC RF TRANSCEIVER CONFIGURATION
FILE
Apart from the function calls to configure the RF trans-
ceiver from the upper protocol layer on the parameters
that are defined in all RF transceivers, various RF trans-
ceivers have their special parameters of configurations,
which are hard to unify under the same umbrella. For
those configurations, the default values, usually not
modified once the RF transceiver is up and running, are
configured in a separate configuration file under the RF
transceiver’s directory. The MiMAC specification does
not regulate the individual settings of these control
variables. Refer to the RF transceiver data sheet to
understand and modify those configuration parameters
as required.
Communication is the main functionality of an RF
transceiver. There are two steps for the reliable
communication between two ends of the packet:
transmitting and receiving.

Transmitting Packets
The interfaces to transmit packets are defined in this
section.
To configure the transceiver to send the packet in the
desired way, the following structure is defined to be
used as an input parameter to transmit a packet.

Each variable is described in the following structure:
• Flags are the collections of configurations used to

transmit a packet. The flags parameter contains
the following configuration options:
- packetType is used to define the packet

type. In the universal MAC strategy, the
packet type is defined as the following:

- The broadcast element defines if the
packet is a unicast or broadcast. Setting this
bit enables broadcast operation for the
current packet. Once this bit is set, the
destPrsnt bit should be cleared and the
Destination Address field in the MAC header
should not exist.

- The secEn element indicates if the transmit-
ting packet needs to secure the MAC
payload. The security level and security key
should have been defined before in the
application layer. The MAC payload from the
Microchip upper protocol layer should be the
plain text. The MiMAC layer will add the
security auxiliary header automatically, as
described in the “MiMAC Security Module”
section. The MAC payload will be encrypted
and/or authenticated before transmitting over
the air.

- The repeat element indicates that this
message needs a repeater between the
sender and the receiver to pass the
message. The repeater will only forward
packets, which are between nodes that are
out of radio range of each other. This
prevents excessive messages from the
repeater, even if the sender and receiver can
communicate directly.

typedef struct
{

union
{

BYTE Val;
struct
{

BYTE packetType: 2;
BYTE broadcast: 1;
BYTE secEn : 1;
BYTE repeat : 1;
BYTE ackReq: 1;
BYTE destPrsnt: 1;
BYTE sourcePrsnt: 1;

} bits;
} flags;

#if defined(IEEE_802_15_4)
BOOL altDestAddr;
BOOL altSrcAddr1;
BYTE *DestPANID;

#endif
BYTE *DestAddress;

} MAC_TRANS_PARAM;

0b01 Data Packet —
0b10 Acknowledgement

Packet
Handled in the MiMAC layer,
thus, no need for upper pro-
tocol layer to transmit such a
packet; it is not used.

0b11 Command Packet —
0b00 0b00

Reserved
Reserved for special
functionality for certain trans-
ceiver hardware or protocol
layer.
It is not supported by all
transceivers. MiMAC will
transmit this kind of packet
directly without any further
processing.
DS01283A-page 18 © 2009 Microchip Technology Inc.

AN1283

- The ackReq element is used by the receiving

end to send Acknowledgement to ensure
reliable delivery of the message. The MiMAC
layer, either hardware or software, should be
able to handle the Acknowledgement frame
sending at the receiving end. The sender
MiMAC layer should be able to handle the
retransmission if no Acknowledgement is
received within the predefined time.

- The dstPrsnt element indicates if a
destination address is included in the MAC
header. The destination address can be
absent if the packet is broadcast or the desti-
nation address is inferred. The destination
address can only be inferred if 2-byte CRC is
used. Even if the destination address is
inferred, a valid destination address should
always be provided to the MiMAC layer for
calculating the CRC.

- The sourcePrsnt element indicates if a
source address is included in the MAC
header. When the device first tries to
establish the connection(s), the source
address is required in the MAC header to
make the peer node aware of whom it talks
to. For the application layer data, however,
the source address is optional, depending on
the application needs.

• altDestAddr is a boolean to indicate if the
destination address is an alternative address or
permanent address.

• altSrcAddr is a boolean to indicate if the source
address is an alternative address or permanent
address.

• DestPANID is the pointer that points to the
destination, PANID. This field is only valid in IEEE
802.15.4 mode, where PANID is used as one of
the filters to address the destination device,
combining with the destination address.

• DestAddress is the pointer that points to the
destination address. In IEEE 802.15.4 mode, this
address can either be a permanent address or an
alternative network address, depending on the
settings of altDestAddr. This field will not be
effective if the Broadcast field is set to ‘1’.

The full function signature to transmit the packet follows.
The return value indicates if the operation is successful.

In the MiMAC_SendPacket function call, the
transParam parameter regulates all aspects of the
transmission options. The input parameter,
MACPayload, points to the buffer to be transferred.
The input parameter, MACPayloadLen, specifies the
length of the MAC payload.

Note: For both the altDestAddr and
altSrcAddr, a setting of ‘0’ means the
source address is a permanent address,
while ‘1’ means an alternative address. This
field is only valid in IEEE 802.15.4 mode,
when the RF transceiver is capable of send-
ing a packet from either a permanent
address or an alternative network address.

BOOL MiMAC_SendPacket(MAC_TRANS_PARAM
transParam, BYTE *MACPayload,
BYTE MACPayloadLen);
© 2009 Microchip Technology Inc. DS01283A-page 19

AN1283

Receiving Packets
Apart from transmitting a packet, the other most impor-
tant functionality of the transceiver is to receive a
packet. Because of the nature that a packet can be
received at any time, while the upper protocol firmware
is running, there are two ways to handle the message:
• First approach – By invoking a callback function

and letting the upper process layer process the
packet immediately.
This approach has faster response time, but
invokes a set of function calls across layers up to
the application, thus filling the stack space quickly.

• Second approach – By interpreting the packet,
storing it in a global variable, and labelling an
event to let the upper protocol layer be aware that
a packet is available.
This option better suits the state machine
architecture of common Microchip stacks.

Both approaches are fine.
To implement the second approach, the following type
is defined to contain the information from the packet:

Defined in this MAC_RECEIVED_PACKET structure, the
element, flags, specifies the configuration of the
received packet. The definition of the flags element is
virtually the same as the flags defined in the
structure, MAC_TRANSMIT_PARAM.

Element, SourceAddress, is a pointer that points to
the source address if the source address is present in
the packet. If the RF transceiver supports IEEE
802.15.4, the source address can be either a permanent
address or an alternative network address, decided by
the settings in the altSourceAddress element. Also,
only in IEEE 802.15.4 mode, the SourcePANID
element is available to specify the PAN identifier of the
transmitter.
Element, Payload, is a pointer that points to the buffer
of the MAC payload. The MAC payload size is specified
in the PayloadSize element. If the MAC payload has
been encrypted and/or authenticated, the payload
passed to the Microchip upper protocol layer should
have been decrypted and/or the authentication
checked. The security auxiliary header should also be
removed from the payload passed to the upper protocol
layer. Only the secEn bit in the flags element will
indicate to the upper protocol layer if security has been
applied to the original data.
The RSSI and LQI elements indicate the physical
aspect of the received packet. RSSI is the representa-
tive of the average signal strength of the received
packet, while LQI represents the signal quality of the
received packet. RSSI and LQI are not supported by
all the RF transceivers.
Once the packet is received, the content of the packet
will be placed into this structure and will be available to
the upper protocol layer to process.
The upper protocol layer needs to periodically checked
if a packet has been received. Once the upper protocol
layer is aware that a packet has been received, it will
handle this global structure. There are two function call
interfaces by the upper protocol layer to handle a
received packet: MiMAC_ReceivedPacket and
MiMAC_DiscardPacket.

MiMAC_ReceivedPacket

The MiMAC_ReceivedPacket function call is called
by the upper protocol layer to periodically check if a
packet has been received. It has no input parameters
and returns a boolean to indicate if a packet has been
received. The full function signature can be found
below:

The MiMAC_ReceivedPacket function call runs the
MiMAC stack and checks if a packet has been
received.
Once the return value of this function call is TRUE, the
content of the MAC_RECEIVED_PACKET structure has
been filled and is ready for the upper protocol layer to
process.

typedef structure
{

union
{

BYTE Val;
struct
{

BYTE packetType: 2;
BYTE broadcast: 1;
BYTE secEn : 1;
BYTE repeat : 1;
BYTE ackReq: 1;
BYTE destPrsnt: 1;
BYTE sourcePrsnt: 1;

} bits;
} flags;

BYTE * SourceAddress;
BYTE * Payload;
BYTE PayloadSize;
BYTE RSSI;
BYTE LQI;

#if defined(IEEE_802_15_4)
BOOL altSourceAddress;
BYTE * SourcePANID

#endif

} MAC_RECEIVED_PACKET;

BOOL MiMAC_ReceivedPacket(void);
DS01283A-page 20 © 2009 Microchip Technology Inc.

AN1283

MiMAC_DiscardPacket

The MiMAC_DiscardPacket function call is called by
the upper protocol layers to notify the MiMAC layer that
the current received packet has been processed and
can be discarded. It is important to discard the packet
which has already been processed. Otherwise, the
host MCU may run out of memory resources quickly.
The MiMAC_DiscardPacket function call has no
input parameter and no return value. The full function
signature is:

Special Functionality
Apart from transmitting or receiving a message, most of
the RF transceivers are able to perform certain special
functionalities to make sure that the RF transceivers
are able to work at optimal conditions. Two common
functionalities that may be valuable to all protocol lay-
ers are the capability to perform energy scan and save
power. The following functions are defined in the
MiMAC programming interface:
• MiMAC_ChannelAssessment

• MiMAC_PowerState

MiMAC_ChannelAssessment

The MiMAC_ChannelAssessment function call will
perform a channel assessment to determine if a channel
or frequency is suitable for reliable communication.
This operation should not be confused with the
CSMA-CA clear channel assessment used before
transmission.
The CSMA-CA operation would be done in the lower
MAC layer in the MiMAC_SendPacket function call to
avoid transmitting an RF packet at the same time as the
neighboring peer nodes. The operation of channel
assessment, sometimes called energy detection scan at
the protocol layers, is mainly used to check the noise
level at different frequencies to decide which frequency to
be used in the communication. This operation is usually
called by the protocol layers, either before starting a
network, or before a frequency agility operation.
The full function signature is:

The MiMAC_ChannelAssessment function call has
one input parameter to indicate the Channel
Assessment mode.

There are two possible Channel Assessment modes:
• Energy Detection

Measures total noise level in the operating channel
from all possible sources. Usually, energy detec-
tion assessment is used to evaluate noise from
natural sources, signal from other modulations
and signal from neighboring wireless nodes of the
same modulation.

• Carrier Sensing
It is used to detect the communication of the same
kind of RF transceivers. It only counts the signal
strength of communication that this RF transceiver
can receive and interpret. It is usually used to avoid
operating a network at a frequency with several
neighboring wireless nodes of the same kind.

The Input mode parameter specifies which method is
used for channel assessment. Not all RF transceivers
are able to perform channel assessment by all, or any,
of these Assessment modes. For transceivers that
support no Assessment mode, this function will not be
supported. For transceivers that support only one of the
Assessment modes, the other mode will be discarded.
The MiMAC_ChannelAssessment function call will
return the assessment result to the upper layer. A
higher return value represents a noisier environment.

MiMAC_PowerState

The MiMAC_PowerState function call is used only by
the node that may go to Sleep to conserve power when
it is Idle. This is not a MAC function; it is a direct PHY
function. Here, the MiMAC interface just passes this
function directly to the PHY layer. The full function
signature is:

The MiMAC_PowerState function call has one input
parameter, PowerState, to indicate the desired power
state for the transceiver. There are only two generic
power states that are defined:
• DEEP_SLEEP –The Sleep state for the transceiver

with the lowest power consumption.
• OPERATE – Full operating state for the transceiver.
All the values, between 0x00 and 0xFF, may represent
certain power states. The detailed definitions will
depend on the particular transceiver. As a general rule,
it is preferred to define the Sleep state with low-power
consumption, next to the Deep Sleep state as 0x01,
and increase the value as the Sleep mode consumes
more current.

void MiMAC_DiscardPacket(void);

BYTE MiMAC_ChannelAssessment
(BYTE AssessmentMode);

BOOL MiMAC_PowerState(BYTE PowerState);
© 2009 Microchip Technology Inc. DS01283A-page 21

AN1283
CONCLUSIONS
For developers looking for a short range, low data rate,
wireless solution, the choices are plenty across multiple
frequency bands, at different data rates and other
features. The Microchip MAC (MiMAC) specification
provides a low-cost and low-complexity design solution
for application developers. It enables RF transceivers,
supported by Microchip, to be hooked up with any
Microchip proprietary wireless protocols. It is highly
recommended for the readers of this application note to
refer to the companion application note, AN1284,
“Microchip Wireless (MiWi™) Application Programming
Interface (MiApp)”.
• MiApp is designed to allow the flexibility of using

any Microchip proprietary wireless protocol with
little or no modification in the application layer.

• MiMAC is designed to allow the flexibility of using
any Microchip RF transceiver with the same
Microchip proprietary protocol layer.

MiMAC and MiApp work together to offer Microchip
customers maximum flexibility in the entire software
development process.

REFERENCES
• IEEE Std 802.15.4™ 2003, Wireless Medium

Access Control (MAC) and Physical Layer (PHY)
Specifications for Low Rate Wireless Personal
Area Networks (WPANs). New York: IEEE, 2003.

Visit the Microchip web site (www.microchip.com) for
the following application notes:
• AN1284, “Microchip Wireless (MiWi™) Application

Programming Interface (MiApp)”.
• “MRF24J40 Data Sheet” – IEEE 802.15.4 2.4

GHz RF Transceiver (DS39776)
• “MRF49XA Data Sheet” – ISM Band Sub-GHz RF

Transceiver (DS70590)
• AN1066, “MiWi™ Wireless Networking Protocol

Stack” (DS01066)
• AN1204, “Microchip MiWi™ P2P Wireless

Protocol Stack” (DS01204)
DS01283A-page 22 © 2009 Microchip Technology Inc.

www.microchip.com
www.microchip.com

Note the following details of the code protection feature on Microchip devices:
• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.
© 2009 Microchip Technology Inc.
Trademarks

The Microchip name and logo, the Microchip logo, dsPIC,
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,
rfPIC and UNI/O are registered trademarks of Microchip
Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,
MXDEV, MXLAB, SEEVAL and The Embedded Control
Solutions Company are registered trademarks of Microchip
Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard,
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial
Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB
Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code
Generation, PICC, PICC-18, PICkit, PICDEM, PICDEM.net,
PICtail, PIC32 logo, REAL ICE, rfLAB, Select Mode, Total
Endurance, TSHARC, WiperLock and ZENA are trademarks
of Microchip Technology Incorporated in the U.S.A. and other
countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2009, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

 Printed on recycled paper.
DS01283A-page 23

Microchip received ISO/TS-16949:2002 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

DS01283A-page 24 © 2009 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260
Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445
Toronto
Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431
China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130
China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256
China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4080
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513
Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122
Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934
Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859
Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850
Taiwan - Hsin Chu
Tel: 886-3-6578-300
Fax: 886-3-6578-370
Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803
Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820

WORLDWIDE SALES AND SERVICE

03/26/09

	Introduction
	MiMAC Features
	FIGURE 1: Block Diagram of Microchip Wireless (MiWi™) Solutions
	Microchip Application Programming Interface (MiApp)
	Microchip Wireless Configurations

	MiMAC Overview
	MiMAC Frame Format
	FIGURE 2: MiMAC Frame Format
	PHY Layer
	MAC Layer
	MAC Header
	FIGURE 3: Extra Control Field for Advanced Features

	MAC Payload
	MAC CRC

	MiMAC Security Module
	Selecting Default MiMAC Security Engine
	Security Engine IP Issues
	Low-Cost Security
	Enhanced Security Strength

	XTEA Block Cipher
	FIGURE 4: Block Diagram of XTEA Cipher
	Advantages of XTEA

	Modifying XTEA Block Cipher
	Security Modes
	FIGURE 5: Flow Diagram for Block Cipher in ECB Mode
	FIGURE 6: Flow Diagram for Block Cipher in CTR Mode
	FIGURE 7: Flow Diagram for Block Cipher in CBC-MAC Mode
	FIGURE 8: Flow Diagram for Block Cipher in CCM Mode

	Key Strength
	Secured Packet Format
	FIGURE 9: Frame Format for Secured Packet

	Alternative Cipher Engine Support

	MiMAC Universal Programming Interface
	MiMAC Configuration
	MiMAC_Init
	MiMAC_SetPower
	MiMAC_SetChannel
	MiMAC_SetAltAddress
	MiMAC RF Transceiver Configuration File

	Transmitting Packets
	Receiving Packets
	MiMAC_ReceivedPacket
	MiMAC_DiscardPacket

	Special Functionality
	MiMAC_ChannelAssessment
	MiMAC_PowerState

	Conclusions
	References
	Worldwide Sales and Service

