INTRODUCTION

Power consumption has always been an important consideration for the design of any electrical system. This includes the embedded systems at the heart of countless modern devices and the microcontrollers that make most of these systems work. The expansion of embedded systems into markets, such as portable electronics, metering applications and medical devices, has caused power consumption to become one of the foremost concerns for embedded system designers. It is important that a microcontroller not only consume as little power as possible, but also provide features that allow for minimal power consumption in the rest of the design as well. To design the best possible system, the engineer must understand all of the power-saving features that a microcontroller might offer – not only to make the best device selection, but how to exploit these features for the most economical power system.

This application note reviews the power-saving technology in current PIC® microcontrollers, particularly nanoWatt and nanoWatt XLP Technologies. It also discusses how to select the best low-power device for a design and how to use these features to the best advantage.

UNDERSTANDING POWER CONSUMPTION

Before discussing the details of low-power operation, it may be useful to review the factors that make up power consumption. When we consider power consumption in microcontrollers, we are actually considering two components: dynamic power and static power.

Dynamic power is the current consumed by the switching of digital logic. It is mainly influenced by clock speed, although voltage and temperature also have an impact. For this reason, controlling dynamic power is largely a matter of controlling clock speed.

Static power is the current consumed when the main clock is disabled. It is composed mainly of transistor leakage and the current used by voltage supervisors. For many PIC devices, it also includes the clocking of logic necessary to resume operation from the Static mode (e.g., Watchdog Timers).

Static power is affected by the voltage level and temperature, which both have a large impact on the major component of transistor leakage. So, while much of static power consumption is dictated by device design and the manufacturing process, some elements may be influenced by the user.

Since voltage contributes to both static and dynamic power, an application with flexible voltage requirements can benefit from using the lowest supply voltage as the application will allow. For PIC devices with a separate core voltage input (VDDCORE), it is important to note that the core voltage has the most impact on both static and dynamic power.

nanoWatt AND nanoWatt XLP TECHNOLOGIES

For PIC microcontrollers, the original low-power standard was referred to as nanoWatt Technology. Since its introduction in 2003, nanoWatt Technology has become the standard for all new PIC microcontrollers. The primary requirement to be considered a nanoWatt device was an overall power consumption in the nanoWatt range while in Sleep mode. Several new power-saving features were also introduced at the same time:

• Idle mode
• On-chip, high-speed oscillator (INTOSC) with PLL and programmable postscaler
• WDT with extended time-out interval
• Ultra Low-Power Wake-up (ULPWU)
• Low-power option for Timer1 and the secondary (32 kHz) oscillator
• Low-power, software-controllable BOR

The most recent changes to nanoWatt Technology are collectively known as “nanoWatt XLP™ Technology”. This version represents a significant reduction of power consumption over the original nanoWatt Technology. To meet the nanoWatt XLP Technology specification, a PIC microcontroller is required to have typical current consumption of less than the following:

• 100 nA for Power-Down Current (IPD)
• 800 nA Watchdog Timer Current (IWDT)
• 800 nA Real-Time Clock and Calendar (IRTCC)
Currently, nanoWatt XLP Technology is available in the most recent members of Microchip’s non-DSP microcontrollers, including PIC16, PIC18, PIC24F and PIC32.

All versions of nanoWatt Technology use a combination of proprietary process geometry design techniques, as well as power management features, to reduce power consumption wherever possible. A key part of this strategy is the use of operating modes: a range of software-selectable hardware configurations that allow an application to change its power consumption during run time at will.

Table 1 summarizes the different operating modes available in nanoWatt and nanoWatt XLP Technologies. All of these (with the exception of Run mode, which represents baseline full-power operation) are explained in subsequent sections. A brief comparison of power consumption specifications for several Microchip nanoWatt devices, compared to similar devices from other manufacturers, is provided in Table 2.

TABLE 1: POWER-SAVING OPERATING MODES FOR nanoWatt TECHNOLOGY DEVICES

<table>
<thead>
<tr>
<th>Operating Mode</th>
<th>Active Clocks</th>
<th>Active Peripherals</th>
<th>Wake-up Sources</th>
<th>Typical Current</th>
<th>Typical Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deep Sleep[1]</td>
<td>Timer1/SOSC</td>
<td>RTCC</td>
<td>RTCC</td>
<td>< 50 nA</td>
<td>Long life, battery-based applications</td>
</tr>
<tr>
<td></td>
<td>INTRC/LPRC</td>
<td>DSWDT</td>
<td>DSWDT</td>
<td></td>
<td>Applications with increased Sleep times[3]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DSBOR</td>
<td>DSBOR</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>INT0</td>
<td>INT0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>RTC</td>
<td>RTC</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DSWDT</td>
<td>DSWDT</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DSBOR</td>
<td>DSBOR</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>INT0</td>
<td>INT0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MCLR</td>
<td>MCLR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sleep</td>
<td>Timer1/SOSC</td>
<td>RTCC</td>
<td>All device wake-up sources (see device data sheet)</td>
<td>50-100 nA</td>
<td>Most low-power applications</td>
</tr>
<tr>
<td></td>
<td>INTRC/LPRC</td>
<td>WDT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ADC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Comparators</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CVREF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>INTx</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Timer1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>HLVD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>BOR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Idle</td>
<td>Timer1/SOSC</td>
<td>All Peripherals</td>
<td>All device wake-up sources (see device data sheet)</td>
<td>25% of Run Current</td>
<td>Any time the device is waiting for an event to occur (e.g., external or peripheral interrupts)</td>
</tr>
<tr>
<td></td>
<td>INTRC/LPRC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A/D RC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doze[2]</td>
<td>All Clocks</td>
<td>All Peripherals</td>
<td>Software or interrupt wake-up</td>
<td>35-75% of Run Current</td>
<td>Applications with high-speed peripherals, but requiring low CPU use</td>
</tr>
<tr>
<td>Run</td>
<td>All Clocks</td>
<td>All Peripherals</td>
<td></td>
<td>N/A</td>
<td>See device data sheet</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Normal operation</td>
</tr>
</tbody>
</table>

Note 1: Available on PIC18 and PIC24 devices with nanoWatt XLP™ Technology only.

Note 2: Available on PIC24, dsPIC and PIC32 devices only.

Note 3: Refer to “Deciding Between Sleep and Deep Sleep” for guidance on when to use Sleep or Deep Sleep modes.
TABLE 2: COMPARISON OF ELECTRICAL SPECIFICATIONS FOR SELECT LOW-POWER DEVICES

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Device</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PIC16LF72X</td>
</tr>
<tr>
<td>Deep Sleep (nA)</td>
<td>—</td>
</tr>
<tr>
<td>Sleep (nA)</td>
<td>20</td>
</tr>
<tr>
<td>WDT (nA)</td>
<td>500</td>
</tr>
<tr>
<td>32 kHz Oscillator/RTCC (nA)</td>
<td>600</td>
</tr>
<tr>
<td>I/O Port Leakage (nA)</td>
<td>±5</td>
</tr>
<tr>
<td>1 MHz Run (μA)</td>
<td>110</td>
</tr>
<tr>
<td>Minimum VDD</td>
<td>1.8</td>
</tr>
</tbody>
</table>

Legend: All numbers are typical values at minimum device VDD as reported in the most recent device data sheet. Values for WDT and/or RTCC include base Sleep mode current. Sleep data is taken with BOR disabled, if possible.

Note 1: Data for 1.8V is not available for these specifications; data for 3V is shown.
Note 2: Typical data is not available, maximum value is shown.

Deep Sleep Mode

Deep Sleep mode is the lowest static power mode, producing the lowest power consumption possible without removing power to the part completely. Deep Sleep reaches this low-power state by internally removing power from most of the components of the part. The core, on-chip voltage regulator (if present), most peripherals, and (in some cases) RAM, are all powered down in Deep Sleep mode.

Deep Sleep offers exceptionally low current, even on devices using an internal regulator, which normally requires a few microamperes of current. Removing the power from most of the part has the additional benefit of lower current consumption at high temperatures, since there are fewer active circuits that leak current.

Reaching power consumption this low has some trade-offs. Deep Sleep has only a few wake-up sources compared to the variety available in Sleep mode:

- POR Event
- MCLR Event
- RTCC Alarm
- External Interrupt
- Deep Sleep WDT

As a result of removing power from the core, a wake-up from Deep Sleep causes a device Reset rather than resuming from the next instruction, like Sleep mode. The Program Counter and SFRs are reset and the device resumes program execution from the Reset vector. Unlike other Resets, all I/O states, as well as the Timer1/SOSC and RTCC, are maintained to allow for uninterrupted operation of the system as a whole. Additionally, Deep Sleep indication bits are set, and some RAM locations are maintained, in order to notify the software that the Reset is a Deep Sleep wake-up and allow the firmware state to be properly restored.

After a Deep Sleep wake-up occurs, the application needs to Acknowledge the wake-up, reconfigure peripherals and I/O registers, and then resume operation as normal. A high-level flow of the process is shown in Figure 1. Refer to the device data sheet for specific Deep Sleep entry and exit sequences.

WHEN TO USE DEEP SLEEP MODE

It is important when designing an application to know which low-power mode to use. Deep Sleep mode is intended for use with applications that require very long battery life. The additional requirements for reconfiguring the device after wake-up mean that Sleep mode is better for some applications and Deep Sleep for others.

Ideally, applications that use the Deep Sleep mode have one or more of these characteristics:

- Use long Sleep times (one second or more typical)
- Do not require any peripherals while asleep
- Require accurate timekeeping with minimal current
- Operate in environments with extreme temperatures
FIGURE 1: PROCEDURE FOR WAKE-UP FROM DEEP SLEEP MODE

Sleep Mode

Sleep mode is the standard low-power mode for virtually all PIC microcontrollers; its implementation predates the original nanoWatt Technology. In Sleep mode, the main CPU clock and most peripheral clock sources are shut down, bringing the device to a low-power state. The current device state is maintained, including RAM, SFRs and the Program Counter (PC).

Wake-up sources vary between device families. All PIC devices can use the WDT, the 32 kHz Timer (Timer1 on most devices) and one or more external interrupt sources. PIC18, PIC24 and PIC32 devices also have a number of peripherals that are capable of waking up the device; these include the ADC, comparators and serial communications modules. Total wake-up times also vary between families; most devices implement options to change wake-up time and allow flexibility in design.

WHEN TO USE SLEEP MODE

Sleep mode is the most commonly used and most flexible of the available modes. Typically, there is a very fast wake-up time that requires little to no overhead to handle entry and exit. As a result, it is the best low-power mode for applications that require short Sleep times, and fast wake-up and processing. Sleep is often used in applications with the following characteristics:

- Short loop times with frequent wake-up (generally less than 1 second)
- Require peripheral wake-up sources
- Perform analog sampling with ADC or comparators while asleep

Deciding Between Sleep and Deep Sleep

A helpful way to determine whether Sleep or Deep Sleep is more effective is to calculate the Breakeven Time \(T_{BE} \) for a particular application. This time indicates how long a device must remain in Deep Sleep mode to have lower total power consumption than Sleep mode, once the higher power requirements for restart from Deep Sleep are accounted for. \(T_{BE} \) can be calculated using the three formulas shown in Equation 1.

The first step is to calculate the total charge consumed using Sleep \((Q_{SLP}) \) and Deep Sleep \((Q_{DS}) \). In Sleep, this is simply the Sleep static current \((I_{PD}) \) multiplied by the time the device is in Sleep \((T_{PD}) \) (formula [1]). Charge is used instead of energy because in both cases, the voltage will stay constant, so it can be ignored. Charge also gives an easy comparison to battery capacity specifications when performing power budgeting.

For Deep Sleep, there are three components to the equation: power-up, software initialization and Deep Sleep (formula [2]). The Deep Sleep component, similar to the Sleep energy calculation, is just the Deep Sleep static current \((I_{PD}) \) times the Sleep period \((T_{PD}) \).
The POR component includes the POR time (T_{POR}), which starts when the DS wake-up interrupt occurs, until the first instruction is executed. Details on POR time can be found in device data sheets. The POR current (I_{POR}) varies based on a number of device settings and application factors, so it is best taken experimentally. Note that on devices with an internal regulator, the POR time and current will include the time and current required for the regulator to charge the capacitor on the VCAP pin if it has discharged while the device is in Deep Sleep.

The initialization component is the initialization time (T_{INIT}) and current (I_{DD}), starting when the device begins code execution and lasting until the main loop is entered. Both of these vary by application and are best assessed with measurement. However, they can be approximated using published dynamic current specifications to determine current and the Stopwatch feature in MPLAB® IDE to measure the initialization execution time.

Breakeven Time is the point where Q_{DS} and Q_{SLP} are equal. Mathematically, this is the same as setting [1] and [2] to be equal to each other. Solving generically for T_{PD} provides formula [3]; at this point, time in Sleep or Deep Sleep is equivalent to T_{BE}. Deep Sleep should be used if the Sleep duration is longer than T_{BE} and Sleep mode should be used if the Sleep time is shorter than T_{BE}. An application with varying Sleep times can use both Sleep and Deep Sleep to get the most efficient current consumption.

\[
\begin{align*}
Q_{SLP} &= T_{PD} \times I_{PDSL} \\
Q_{DS} &= (T_{INIT} \times I_{DD}) + (T_{POR} \times I_{POR}) + (T_{PD} \times I_{PDDS}) \\
T_{BE} &= T_{PD} = \frac{(T_{INIT} \times I_{DD}) + (T_{POR} \times I_{POR})}{I_{PDSL} - I_{PDDS}}
\end{align*}
\]

where:
- Q_{DS} = Total Charge Spent in Deep Sleep
- Q_{SLP} = Total Charge Spent in Sleep
- T_{BE} = Breakeven Time (interval at which $Q_{DS} = Q_{SLP}$)
- T_{INIT} = Initialization Time to Resume Full-Power Operation
- T_{PD} = Sleep or Deep Sleep Period (defined by context)
- T_{POR} = Time Required for Power-on Reset
- I_{POR} = POR Current
- I_{PDSL} = Static Current in Sleep mode
- I_{PDDS} = Static Current in Deep Sleep mode
Idle and Doze Modes

Idle and Doze modes are dynamic power reduction modes that are intended to allow more peripheral functionality than static power modes, such as Sleep, while still reducing current consumption below Run mode. These modes allow for significant power reduction at times when peripheral operation is critical, but CPU activity is not.

Idle mode is a feature introduced with the original version of nanoWatt Technology. In Idle mode, the system clock is removed from the CPU, but is still provided to the peripherals. Depending on the device family, some or all of the peripherals may continue to operate in Idle mode. For PIC24, dsPIC and PIC32 devices, operation in Idle is configurable on a ‘per module’ basis.

In Doze mode (available on PIC24, PIC32 and dsPIC33 devices only), the system clock is split into separate CPU and peripheral clocks. The CPU clock is divided by a specific user-defined factor, while the peripheral clock continues to run at the system clock speed.

WHEN TO USE IDLE AND DOZE MODES

Idle and Doze mode are dynamic modes, so while they consume less power than Run mode, they still consume significantly more power than static modes, like Sleep. As a result, they should be used in cases where it is not possible to enter Sleep, such as:

- Making large DMA transfers (on devices with DMA only)
- Sending or receiving serial data
- Performing high-speed ADC sampling
- Waiting for time-out from synchronous timer
- Waiting for data capture with IC
- Waiting for event using output compare

Any time a loop waiting for a peripheral interrupt to occur would be used, it can be replaced with an entry into Idle or Doze mode. These cases are frequently overlooked, so it is important to review a design for places where the CPU is not being fully utilized to minimize power consumption.

Clock Switching

Also introduced in the original nanoWatt Technology, clock switching is an important low-power feature. This is because it offers enormous flexibility for reducing dynamic current consumption, as clock speed is the most important factor in dynamic power. While Idle and Doze mode both allow the reduction of the speed of the CPU clock, the peripherals are still clocked at full speed and consume full current. Therefore, it is important to be able to reduce the speed of the clocks to the entire device.

The flexible clock switching systems implemented in PIC microcontrollers allow for switching to the most appropriate clock source for a given situation. For example, an application may use a slow clock for code sections that are not time critical, then switch to a full-speed clock source for processing computation intensive or time critical code. Such flexibility is necessary when implementing a low-power system in order to ensure the lowest power consumption possible.

WHEN TO USE CLOCK SWITCHING

As with the other dynamic power-saving modes, clock switching is best used in cases where the use of Sleep or Deep Sleep is not possible. Clock switching should be used instead of Idle or Doze modes in any case where clock speed is not critical for both the CPU and the peripherals, as it can provide significantly lower power than Idle and Doze modes.
CONCLUSIONS

With the introduction of nanoWatt XLP Technology, Microchip continues to focus on power consumption as a key design goal. The result is devices with not only impressive features and performance, but power consumption below long-standing industry minimums.

When creating a low-power application, it is important to approach all aspects of the design from a low-power perspective. This application note has taken an initial look at the low-power modes on PIC microcontrollers with nanoWatt XLP Technology, which are a central source of power savings for many designs.

It is important to be very familiar with how and when these features are used in order to maintain the lowest possible power consumption. Check www.microchip.com/lowpower for future documents covering other important aspects of low-power design.

REFERENCES

“MSP430x22x2, MSP430x22x4 Mixed Signal Microcontroller Data Sheet” (SLAS504B), Texas Instruments Inc., 2007.

“MSP430x21x1 Mixed Signal Microcontroller Data Sheet” (SLAS439C), Texas Instruments Inc., 2006.

“PIC24F16KA102 Family Data Sheet” (DS39927), Microchip Technology Inc., 2008.

“PIC16F72X/PIC16LF72X Data Sheet” (DS41341), Microchip Technology Inc., 2008.

“PIC18F23K20/24K20/25K20/26K20/43K20/44K20/ 45K20/46K20 Data Sheet” (DS41303), Microchip Technology Inc., 2008.

“PIC18F13K50/14K50 Data Sheet” (DS41350), Microchip Technology Inc., 2008.

“PIC18F46J11 Family Data Sheet” (DS39932), Microchip Technology Inc., 2009.
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, rfPIC, SmartShunt and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, In-Circuit Serial Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, nanoWatt XLP, PICkit, PICDEM, PICDEM.net, PICtail, PIC32® logo, PowerCal, PowerInfo, PowerMate, PowerTool, REAL ICE, rLAB, Select Mode, Total Endurance, TSHARC, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2009, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.
WORLDWIDE SALES AND SERVICE

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com

Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Cleveland
Independence, OH
Tel: 216-447-0084
Fax: 216-447-0088

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260

Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445

Toronto
Mississauga, Ontario, Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431

Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889

China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431

China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470

China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066

China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760

China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118

China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130

China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4080

India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632

India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513

Japan - Yokohama
Tel: 81-45-471-6166
Fax: 81-45-471-6122

Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302

Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859

Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068

Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069

Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-6578-300
Fax: 886-3-6578-370

Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803

Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820

03/26/09