
AN1264
Integrating Microchip Libraries with a Real-Time Operating System
INTRODUCTION
As customer applications evolve into ever more compli-
cated and feature rich designs, there is a requirement
to rationalize the development process and streamline
the device’s software. Microchip provides a number of
middleware stacks and libraries that are designed to
aid customers in the creation of these advanced
designs. A Real-Time Operating System (RTOS) offers
an application developer a number of aids that allow a
complex design to be completed in a timely fashion,
permit easy integration of existing components and
allow for simpler code re-use in the future.

With the demand for increased functionality and ever
decreasing development times, an RTOS provides a
good method of organizing and scheduling the interac-
tion of the various libraries now being used in these
advanced applications. However, the question that
frequently arises is, how best can one’s software be
organized to take advantage of the RTOS services.
Equally important is what modifications might be
required to existing libraries or stacks in order that they
will operate in the context of an RTOS along with other
libraries.

This application note examines the reasons for migrat-
ing to a RTOS-based platform. It then discusses the
various changes that may be required to one’s software
in order to use an RTOS. When discussing this topic, it
is easier to do this in the context of a real world appli-
cation, such as a home utility metering, as an example.
The demonstration shows how a complex application
can be built using Commercial Off-The-Shelf (COTS)
hardware and software components. By using an
RTOS, the workload involved in integrating multiple
libraries has been significantly reduced.

BACKGROUND
Microchip provides several robust and free libraries
that include:

• TCP/IP Ethernet Stack
• Zigbee® Protocol Stack
• MiWi™ (and MiWi Peer-to-Peer (P2P))

Networking Protocol Stack
• USB Host and Client Stacks
• IrDA® Stack
• Microchip Graphics Library
• Microchip mTouch™ Sensing Solution Library
• Memory Disk Drive (MDD)
• Audio Library

It can be observed that with such a large variety of
libraries, there are innumerable ways in which an
application might combine them. Therefore, it is not
surprising that a general method for interconnecting
them does not exist. Furthermore, since the authors of
the various libraries cannot be sure that the libraries will
be compiled to execute in a particular run-time environ-
ment, they have generally been written to assume that
no underlying operating system exists; instead, the
libraries will execute in a cooperative multitasking
environment. To explain how this architecture is used,
consider the basic code loop of the TCP/IP Stack V4.51
found in the file, TCPIP DemoApp/MainDemo.c.

Author: Darren Wenn
Microchip Technology Inc.

Note: Before continuing with this discussion, it is
worthwhile to be clear on terminology.
While the term, ‘software library’, can
apply to any combination of code modules
placed together, stack is more generally
used in the context of a communications
application library. Since not all of the
Microchip libraries are stacks, but the
integration issues are common to stacks
and libraries, we will use the terms
interchangeably within this document.
© 2009 Microchip Technology Inc. DS01264A-page 1

AN1264

EXAMPLE 1: MAIN LOOP FROM TCP/IP

STACK

The sample code in Example 1 shows the ‘C’ function,
main, which begins by initializing the hardware on the
board and then continuing to initialize the various
elements of the TCP/IP Stack. Finally, it enters a
while(1) loop, which performs a round-robin
sequence of operations. During each pass around the
main loop, the StackTask and StackApplications
functions are called to ensure that the TCP/IP Stack
keeps operating and services any network requests,
such as a PING or web page GET.

Following the mandatory function calls to the TCP/IP
Stack, users provide application-specific function calls,
such as ProcessIO and ApplicationTask1. Since
it is necessary to keep the stack working by periodically
calling the stack functions, any user code must be
written so as not to block while waiting to complete any
operation. For existing code, this will often mean that it
will have to be rewritten in a non-blocking fashion
perhaps introducing unwanted time dependencies and
extra code in the form of switch statements.

Most of the Microchip software libraries are provided
with comprehensive demo applications written specifi-
cally to demonstrate a full range of features, and are
thus, inherently quite large. For example, in the Graphics
Object Layer Demo application, the MainDemo.c file
contains over 4000 lines of code. This application is
complete and showcases a full range of the graphics
library capabilities, but it may not be readily apparent
how users should integrate their code. Note that while
simple examples make code transition and integration
easier, it is inevitable that any TCP/IP or QVGA-based
application will always be complex, and hence, the
examples will be lengthy.

When users want to integrate their application with a
COTS component, such as a Microchip library, it may
be possible to redesign their code to work alongside
the program structure provided by the library. Equally,
for relatively simpler libraries, it may be possible to
modify the library itself to fit with either the existing or
planned program architecture. However, the situation
becomes significantly more complicated when the
application uses more than one COTS component, or
the program architecture does not conveniently fit into
the super-loop programming paradigm.

In these cases, a RTOS can assist with the program-
ming effort by allowing a designer to break down the
application into convenient isolated functional modules
or tasks that perform parts of the application. Later, we
will demonstrate how it is possible to move the software
libraries into their own tasks and modify them so that
they can continue to execute as if they were the only
piece of software on the microcontroller. The users’
new or existing code base can then be placed into its
task, and RTOS services, such as “Semaphores” and
“Queues”, can be used to communicate between the
various tasks.

Embedded RTOS
For applications based upon larger non-embedded
platforms, it is possible to assume the existence of a
suitable run-time environment. For instance, for
devices based upon an embedded PC, it is not uncom-
mon for the various software libraries to be written
assuming that they will have access to a well under-
stood kernel, such as Linux or Windows® CE. Such a
kernel provides a rich set of features that can simplify
the task of integrating multiple libraries.

However, the overhead associated with running such
resource intensive kernels is not always appropriate
when a cost-effective application is being designed to
run on an embedded 16 or 32-bit processor core, such
as the PIC24, dsPIC® DSC or PIC32 families. For the
more deeply embedded applications that are com-
monly designed to run on Microchip microcontrollers, a
more compact RTOS is required.

// Main application entry point.
int main(void)
{

…
 //Initialize application

//specific hardware
InitializeBoard();

…
//Initialize Stack and
//application related NV
//variables into AppConfig.
InitAppConfig();

//Initialize core stack layers
StackInit();

//Begin the co-operative
//multitasking loop.
while(1)
{
…
//perform basic stack functions
StackTask();

//perform higher level tasks
StackApplications();

//Process application
//specific tasks here.
ProcessIO();
ApplicationTask1();

}
}

DS01264A-page 2 © 2009 Microchip Technology Inc.

AN1264

There are several good third party products currently
available (see Table 1). For the purpose of this applica-
tion note, it was decided to design the demo application
using FreeRTOS. This is a popular product with a large
existing user base readily able to provide support and
advice to any author. Particularly for this application, it
can be used and distributed without any fees or royalties
associated with it so long as the standard General Public
License (GNU) is complied with. Rather conveniently,
this exists in a modified form in this distribution so that
general publication of the product-specific code is not
required (something that often deters designers from
using GPL code in their own applications).

Note that while FreeRTOS has been employed, no
unique functions have been used; hence, the demo
application is easy to port to another host operating
system.

This application note is not intended to be an authorita-
tive article on how an RTOS works and how code
should best be written to work with it. While the basic
concepts of an RTOS are simple, the details can be
complicated and lengthy.

Refer to the “References” section for more details on
how an RTOS works and the vendor web sites for the
specifics of each RTOS.

TABLE 1: THIRD PARTY PRODUCTS

Note: Users should be familiar with basic RTOS
concepts, such as Tasks, and the
difference between cooperative and
pre-emptive multitasking. We have
provided some additional topics that have
relevance to our application.

Vendor/RTOS Product MPLAB® IDE Plug-in Microchip 16/32
Ports Modules/Support

AVIX AVIX-RT 2.2.1 Yes 16/32 —
CMX Systems CMX 5.30 Yes 8/16/32 TCP/IP
Express Logic ThreadX G5.1.5.0 Yes 16/32 —

FreeRTOS FreeRTOS v5.1.1 Yes 16/32 —
Micrium μC/OS-II v2.84 Yes 8/16/32 TCP/IP
Pumpkin Salvo 4 Pro and

Salvo 4 LE
No 8/16/32 —

RoweBots DSPNanoUnison No 1632 DSP, TCP/IP, POSIX
Segger embOS V3.52 Yes 16/32 GUI, TCP/IP
© 2009 Microchip Technology Inc. DS01264A-page 3

AN1264
Blocking Functions
The majority of Microchip libraries and stacks are writ-
ten to use non-blocking function calls for a TCP/IP
Stack-based application. For example, assume that the
user application is waiting for an incoming packet of
data, which may arrive at any time because of the
structure of the Internet. Programmers must allow for
repeated function calls to the lower levels of the TCP/IP
Stack to process the received packets, so users cannot
simply wait, or block, for the packet to be received.

To simplify the coding problem, the libraries are typically
written using state machines that can be called many
times and only advance the state when the event has
occurred. Any user application should be written in a
similar manner. Blocking function calls must not be used
as they will prevent program execution from continuing
until the time elapse or an event occurs.

On the contrary, for an RTOS-based application, block-
ing function calls are desirable. Since any RTOS func-
tion call may cause a change of task, the code that
needs to wait for a fixed period can simply use the
provided delay routines and other unrelated tasks will
automatically be scheduled to run. Furthermore, when
the RTOS is operated in a pre-emptive mode, blocking
code or time-consuming sequences will automatically be
interrupted and the other tasks will be given the opportu-
nity to run if they have the required priority. Blocking
function calls can be viewed as opportunities when other
tasks can be allowed to run and their introduction into an
application is desirable.

Priority Inversion, Mutexes and
Semaphores
A problem that often occurs when writing an application
and breaking it up into appropriate tasks is priority
inversion.

Consider the example of a serial-based output channel.
Serial output devices are inherently slow, and since
they will spend most of the time waiting for the UART to
complete a transaction, it makes sense to run the serial
task at a low priority. If we were to send something to
be printed via the serial routine from a very high-priority
task, but the routine was not yet ready, then the
high-priority task would be made to wait. Depending on
our system, we may need to make the low-priority
serial task active in order to complete so that the
high-priority task can then complete its printing function
call. In this case, we have made the high-priority task
wait on a low-priority one and the low-priority task has
been raised to the same level as the high-priority one.
This is the so-called priority inversion problem and it is
best avoided by careful program design. In the demo
application, a message queue was used to send the
printed strings so that the high-priority task no longer
has to wait for the lower priority one.

Another problem that can occur is when multiple tasks
wish to access the same or related hardware
peripheral.

Consider several LEDs all connected to the same
peripheral port, for example, PORTA. If we were to start
modifying the bits of PORTA, and in the middle of the
sequence, a pre-emption occurs and another task runs
that also switches an LED, then a conflict may occur
and PORTA may be incorrectly set; this is the
well-known read-modify-write problem.

The typical method to solve this problem is to create an
atomic sequence or critical section. In other words, we
somehow form a sequence of code that cannot be
interrupted, such that only one task can change
PORTA at a time.

The common way around the priority inversion and the
non-atomic access is to create some form of mutual
exclusion or mutex. An RTOS will provide constructs
for the creation of mutexes so that the code sequence
is protected until it has completed. Depending upon the
RTOS, the mutex object may explicitly exist, or it may
be created via the use of a semaphore, and in the case
of FreeRTOS, there is a great deal of similarity between
the two. At program start-up, a semaphore or binary
flag is created, and when a task wishes to access the
peripheral or function, it must be obtained by the calling
task. Once it has been obtained, the peripheral can be
modified or the slow functions can be called, but any
other task that wants access must wait or block until the
semaphore has been released.

Since the demo application uses FreeRTOS, all of the
function calls are related to that kernel. Though, as we
have stated, to allow the application to be easily ported,
no functions that are unique to that operating system
have been used. Appendix A: “Function Calls” lists
the functions that have been used along with their
parameters.

Note: To overcome the above mentioned
problem, a serial output task has been
considered later in this application note.
DS01264A-page 4 © 2009 Microchip Technology Inc.

AN1264

LIBRARY AND APPLICATION
MIGRATION
In the previous sections we have discussed a number
of RTOS features that will aid us when porting the
libraries into our new application. However, these are
only tools and one of the more fundamental questions
is how to modify the software.

There are several possible techniques for performing the
integration; these are broken down into three options:

• First, the entire library can be rewritten to take
advantage of the intrinsic multitasking provided by
the RTOS. This would entail the identification of
all parallel and sequential operations, and the
creation of multiple tasks to handle independent
sections of the code. A good example would be
the TCP/IP Stack, where the main modules could
be broken down with separate tasks for TCP/IP,
HTTP Server and ICMP. This could also simplify
some of the complex state machines present in
the code with a separate task being dynamically
created for each socket created.

This technique would ultimately allow for the high-
est performance but with a number of drawbacks.
A deep understanding of the library must be
obtained in order to perform the rewrite. This is, in
turn, likely to introduce errors and the resulting
package will need extensive testing and possible
recertification. In the likely event of new versions of
the library becoming available, much of the porting
work would have to be performed again.

• Second, time-critical parts of the code can be
identified and replaced with calls to the RTOS
kernel. This might require the modification of
small parts of the code separating short,
high-priority code from the majority of the slow
blocking code. Time delays can be replaced with
API calls performing the same actions, but it may
also be possible to remove the delays completely
by the introduction of a blocking event, such as a
‘wait for semaphore’ or ‘queue’. Data to be sent in
and out of the library can then be sent via queues.

• Third, the unmodified code can be placed inside a
task wrapper. This will require the minimum
amount of modifications to the library. However, an
issue arises with the resulting task and how fre-
quently it performs its processing. If the task is
given a low priority by the RTOS, then it may never
complete its functions or may take too long.
Equally, if given a high priority, the library may con-
sume all of the processor time, stopping other
tasks from executing. To prevent this situation, a
blocking call or RTOS delay function must be intro-
duced into the task loop so that the lower priority
tasks are given the chance to execute. The delay
will impair the cycle time of the affected library and
so must be kept to a minimum while not degrading
the performance of other software modules.

When migrating libraries into a combined application, it
is desirable to keep changes in the COTS components
to a minimum. If we can keep the changes to a minimum,
it is then a relatively simple matter to take advantage of
new library versions when they are released by just
copying them over existing, unmodified versions. We
have adopted the following technique for structuring the
project and workspace:

• Place the COTS libraries within the main project
directory with a path, such as
C:\MainProject\Microchip\TCPIP Stack.

• Source files specific to the project are kept within
the C:\MainProject\src directory and any
files from the libraries that need to be modified are
also copied into this directory.

• Include within the MPLAB IDE project, the
required files from the original library along with
the modified local copies and our program source
files.

This handles the project source, but many of the libraries
also have associated header files, which are included
using relative paths.

To overcome this, the directories that are searched by
the MPLAB IDE, when including a file, have been set up
so that the local include path is searched first, followed
by the library default paths. This, then, provides the mod-
ified local header files, and allows the local source files
to correctly locate and include library-specific header
files without any errors.

The reader should examine the project path dialog in
the MPLAB IDE to see the path priority settings.
© 2009 Microchip Technology Inc. DS01264A-page 5

AN1264
DEMO APPLICATION
As mentioned in previous sections, it is difficult to
develop an application that demonstrates certain capa-
bilities without it becoming overly complex and large;
as in the case of the Graphics Library demonstration
application. For the purposes of this demonstration, it
was desirable to target an application that would need
the use of several existing Microchip libraries and
would benefit from the use of an RTOS.

One area of technology that is currently attracting a lot
of attention is energy metering. This is being driven by
user demand and also by government legislation that is
mandating the introduction of smart energy meters into
people's homes. It is hoped that with the addition of
meters that provide accurate and up to date informa-
tion, customers will more actively regulate the amount
of energy that they use.

The demand for energy meters is being driven by
users’ demand and also by government legislation
mandating the introduction of smart energy meters into
home utility sectors. With the introduction of meters
that provide accurate and up-to-date information, the
amount of energy used can be actively regulated.

For our example, a smart meter was designed that
demonstrated some of the capabilities that would be
found in one of the new generation of meters. The
actual requirements may vary, but for this design, the
following capabilities were chosen:

• Information to be presented on a QVGA display
with touch screen.

• Separate itemized accounts for electricity and
gas, detailing the number of ‘units’ used along
with the total cost.

• Remote connection to the smart meter, via the
Internet, allowing current readings to be viewed
and permit forced disconnection of the energy
supply. This would simulate users disconnecting
the gas supply because it had accidentally been
left ON in their absence.

• Remote setting of the energy per unit costs,
simulating an energy provider charging the rates.

• Actual readings from the electricity and gas
meters provided by an RF link from a remote
sensor device.

The last requirement is often needed in residential
installations where the energy supply enters the build-
ing at some remote location and must be measured at
that point. However, for the convenience of the users,
the display must be located within the living space of
the property, for example, the kitchen.

Demonstrator Hardware
The following components are used to develop this
demonstration application:

• All of the components should be available
off-the-shelf.

• Explorer 16 (DM240001) Development Board and
PIC24F Plug-in Module (PIM) that is supplied with
the board installed in the processor socket.

To demonstrate the capability of easily scaling the
application, the software was designed to also run
on the PIC32 processor using the separately
available PIC32 PIM (MA320001).

• The Graphics PICtail™ Plus Daughter Board
(AC164127) to provide the QVGA graphics
display.

• The hardware connection to the Internet was
made with the Ethernet PICtail™ Plus Daughter
Board (AC164123).

• For the wireless connection to the remote board,
the MRF24J40MA PICtail Plus 2.4 GHz RF Card
(AC164134) provides the radio link.

• The remote end is built using the standard
demonstration application on a PICDEM™ Z
MRF24J40MA 2.4 GHz Demo Kit (DM163027-5).

The source code for this PIC18F-based device is
provided in the \PIC18 MiWi Meter directory.

For hardware-specific reasons, the MRF24J40 is
located in the upper part of the PICtail Plus slot on
the Explorer 16, and the Ethernet PICtail Plus is
placed into the lower part of the second slot. If the
second connector is not populated, then it is
possible to separately obtain the connector and
solder it onto the board (part number CON0197).

The baseline project compiles and executes on the
PIC24FJ128GA010 supplied with the Explorer 16; con-
sequently, some small concessions to the user interface
are made because of the 128k Flash limit on that part.
On the contrary, the PIC32MX360F512L has more
memory and increased processor capacity; as a result,
the PIC32 project features enhanced QVGA buttons
with bit-mapped images. This kind of trade-off is typical
of the decisions that are made when designing such a
product. The PIC32 PIM (MA320001) is available sepa-
rately and can be simply installed in the Explorer 16. The
final hardware configuration can be seen in Figure 1.

The demo application makes extensive use of the Micro-
chip Graphics Library for user interaction. In this case,
the physical connection between the processor and the
display is via the Parallel Master Port (PMP) peripheral.
The MPLAB IDE projects and workspace have been
provided for the PIC24F and PIC32F processors; how-
ever, the software could also easily be run on a PIC24H
or dsPIC device with a suitable PMP peripheral.
DS01264A-page 6 © 2009 Microchip Technology Inc.

AN1264

FIGURE 1: DEMONSTRATOR HARDWARE

Note that, with a few exceptions, the program source
files are common to all of the projects regardless of the
processor family, thus making demonstration an easy
migration between 16 and 32-bit processors. Because
of the use of an RTOS, the different software tasks are
effectively isolated. As a result, even if the MRF24J40
PICtail Plus is missing, the demonstration can still be
built and tested. This is useful if the user wants to test
the application but does not want to purchase all of the
hardware.

IMPLEMENTATION
This section discusses the specific changes made to
each of the stacks and how they have been modified to
create the demo application. Note that the modifica-
tions have been done in such a way that the changes
can be readily recreated when new libraries are
released. It would be possible to use the modified code
in another application by taking the individual task files
and libraries that they use. The mechanisms for
inter-task communication can then be modified or
recreated to suit the particular target application.
Table B-1 lists all of the RTOS related objects used in
the demonstration application.

For each major task in the code, its operation, along with
how any change to the associated COTS components
were made, is described. For some components, there
could be interactions between the various elements and
other unrelated tasks due to their use of common library
calls or functions within the Microchip stacks. An exam-
ple of this is with the TCP/IP and MiWi Networking
Protocol Stacks, which require a TICK timer routine to
manage the delays associated with sending data and
also to provide time stamps to messages. These
common functions and the changes to those functions
are explained where most appropriate.

One of the primary objectives in this application is to
minimize the amount of modifications to the COTS
components used in the project. To this end, few
changes have been made to the core functionality of
each library and only the highest levels have been
modified to allow their use in a RTOS environment.
Because of this, the basic documentation on the oper-
ation of each library is still applicable and the reader is
directed to the relevant library application note to obtain
an understanding of how they work.
© 2009 Microchip Technology Inc. DS01264A-page 7

AN1264

FreeRTOS Modifications
The original FreeRTOS installation allocates Timer1 as
the default RTOS timer. This is set to periodically inter-
rupt the processor and allow the RTOS to perform a
pre-emptive context switch to another task if required.
Timer1 is also used by default by many of the Microchip
libraries and because of this, it is easier to initially
re-assign the RTOS TICK timer to Timer5. Another
reason for this change is that the MiWi P2P networking
protocol makes extensive use of Timer1, and often
manipulates the interrupt flag and enable bits directly,
so it is simpler to modify the RTOS source.

This section lists the five timers and the way they are
used by the various software elements.

• TMR1 – Used exclusively by the MiWi P2P
Networking Protocol Stack.

• TMR2 and TMR3 – Form a 32-bit timer used
primarily for the TICK functions. TMR2 is also
used by the MiWi Networking Protocol Stack to
generate packet sequence numbers.

• TMR4 – Used to sequence the ADC sampling by
the touch screen routines.

• TMR5 – FreeRTOS periodic TICK timer.

The licensing conditions of the FreeRTOS are that any
changes made to the real-time kernel, along with the
kernel source, must be made available to everyone.
However, the modified GPL means that any project
code that merely calls RTOS functions does not need
to be released. This is convenient if we want to produce
a commercial product and do not want to reveal the
source code of our product.

The following components included in the demo
application are discussed in the following sections.

UART
Many of the Microchip libraries assume that a UART is
available for the output of diagnostic information or for
configuration. It is possible to configure the TCP/IP
Stack parameters using the serial port and a terminal
window. Equally, when designing any system, it is use-
ful to have some form of simple diagnostic output so
that the operation can be confirmed, and this is partic-
ularly true for systems that use an RTOS. To support
this, a simple UART handling task is created, which
could accept messages for output via a queue, and
then print each character in the output string to the
UART peripheral.

The serial output functions can be found in the
taskUART.c file. The UART code performs the
following:

1. An initialization function is used, which creates
both the queues and the UART task itself.

2. The task blocks waiting on data to be received
on the transmit queue.

3. Once a message is received, it is placed one
character at a time into the UART peripheral
transmit buffer.

The task has been given a low priority as it is
only outputting diagnostic information to a serial
peripheral, which is inherently slow.

4. Incoming data is handled by an Interrupt Service
Routine (ISR).

5. Each received character is placed onto a receive
queue and tasks that require the incoming data
can retrieve it.

This mechanism could be improved upon; how-
ever, it is sufficient at present as no tasks in the
current application use incoming serial data.

6. A generic UARTprint function is provided,
which takes a character array as an argument.

7. It then constructs a message of the correct type
and places the data on the transmit queue.

A problem might arise with the UARTprint function
being called by multiple tasks simultaneously. Consider
a sample scenario where several low-priority tasks call
the function and place a number of messages on the
transmit queue. Since the UART, itself, is slow (running
at only 19200 Baud) this may take some time to print a
string. If another high-priority task then attempts to print
some data, it may find the transmit queue full. We could
block until space is available on the queue; however,
the result is that a high-priority task (the sender) is
waiting for a low-priority task (the UART) to complete.

This forms a priority inversion, which is undesirable in
any application.

In the case of the metering application, only diagnostic
information is output, so we have adopted the simpler,
if less rigorous, technique of allowing a zero wait time
when attempting to write to the queue. So, if the queue
is full when the high-priority task attempts to write data,
it will fail and simply not print the message. It is gener-
ally not advisable to have high-priority tasks waiting on
lower priority ones, and even though RTOS constructs,
such as mutexes can help ease the problem, it is still a
design issue. As a result, it is often difficult to output
diagnostic information from tasks of different priorities
within an application. In the case of operating systems
like Linux, specialized routines, such as printk (print
from kernel), are provided to help log data during kernel
operations. Their use can slow down the system and so
should be minimized.
DS01264A-page 8 © 2009 Microchip Technology Inc.

AN1264

Meter
A meterTask is written to control the data related to
the main task of metering.

At initialization, the meter readings are zeroed and the
starting values for the unit costs are set up. There are
two types of event that can affect or access the meter
related data:

• Updates can be received from the MiWi Networking
Protocol Stack that cause the total number of units
used to be incremented.

• Changes to the meter billing rates and control
actions can be received from both the Graphical
User Interface (GUI) and the TCP/IP connection,
and these other tasks may also require updating
with the changing meter values.

For both types of updates, the meter task defines that
update messages are only received via the
hMETERQueue. While values may be read from the
gMeter object, at any time, the incoming queue is the
only method by which changes to the data are
allowed. This allows the task to block waiting for
updates, and hence, consumes no processor cycles
when nothing is changing.

The second type of update requires that the totals be
modified, taking into account the current unit cost. How-
ever, to complicate matters, there are various tasks that
access this data using different methods. We use the
term, asynchronous tasks, as those tasks that access
the data from the meter task when they require it.

For example, the HTTP Server, which in response to a
web page update request (HTTP GET), reads the
current values from the gMeter global data structure,
formats it into hypertext and returns it to the user via a
web browser. These asynchronous tasks require no
further action to be taken by the meter task since they
will obtain the new values when they are required.
Conversely, there are tasks that need to be informed
when the gMeter data structure has been updated,
and these are termed synchronous tasks. In any
generic application, this style of interaction is desirable
because it allows tasks that are dependent upon the
data to block until a change occurs, and hence, not
consume any processor cycles directly polling for
changes.

Because of the need for these updates, changes to the
energy values are sent via queues to the synchronous
tasks; in our application, this is limited to the QVGA
display task.

Since the meter data is stored in a global data structure,
called gMeter, which can be accessed from multiple
tasks, we must also ensure the consistency of data con-
tained within it. The access is regulated by a semaphore
(called METERSemaphore), and only when a task owns
the semaphore, should it read or modify the meter data.

An advantage with synchronous events is that since
the meter task is responsible for sending the update
message, it can also propagate the new value along
with the message, which simplifies some of the mutual
exclusion problems inherent when using a semaphore.
Note that while the meter task is the only part of the pro-
gram that updates the metering data, it also obtains the
semaphore before modifying the values. This is done to
ensure that any change occurs as a single atomic
sequence and the coherency of the data in gMeter is
ensured.

MiWi P2P Networking Protocol
The Microchip MiWi P2P Networking Protocol Stack is
designed for the interconnection of small, embedded
devices in a simple network structure. This application
note uses the first public release, V 0.1, of the stack.
Since this is a simple stack, all of the main functions are
contained within one file called, p2p.c. Further examina-
tions of this file revealed that there were numerous calls
to printf for diagnostic output purposes. Unfortunately,
this makes a large amount of the stack incompatible with
our multitasking application design.

For ease of development, a local copy of the p2p.c
file is created in the project source tree, which can then
be modified without affecting the original file.

As previously noted, the console output functions
could cause hardware access issues. It would have
been possible to redirect this output to the new UART
output task. However, for simplicity, the existing func-
tions are removed. A conventional P2P application
keeps the stack operating by periodically calling the
P2PTasks function (which is indirectly called by the
ReceivedPacket function). This returns TRUE if the
data has been received, and also ensures that
packets are correctly sent and Acknowledgements
processed.
© 2009 Microchip Technology Inc. DS01264A-page 9

AN1264

To keep the modifications to the MiWi Networking
Protocol Stack to a minimum, the majority of the code
is left unaltered and blocking functions are directly
introduced into the stack itself. The MiWi networking
protocol task, itself, is responsible for initializing the
stack, and connecting to the PIC18F transmitting node,
after which it enters a while loop, which performs the
main processing. The task is given a low-priority level
(just above that of the Idle task) but to prevent it from
starving out other low-priority tasks and the Idle task
itself, it is made to execute only periodically using the
vTaskDelay function, which halts its execution for
20 ms. This kind of approach is justified in the case of
this stack, since the data is sent at a very low rate, and
so a 16 or 32-bit processor can easily keep up with the
message updates when executed every 20 ms.

The received messages are of two types:

• Electricity Unit Updates
• Gas Unit Updates

The start of each message contains either an E or G
character to distinguish the type and the remaining
data contains the ASCII meter reading values. In a real
application, other data would also be sent, such as
temperature, and any practical application would
probably use some form of security or encryption. The
received data is then passed to the meter task using
the hMETERQueue.

One area, which can cause conflict between the vari-
ous stacks, is in their use of common functions. While,
in an ideal situation, there would be no interaction
between the various modules, programmers often write
code that replicates functions found in other programs
but with slightly different behavior. Structured program-
ming techniques and code re-use can mitigate these
overlaps but they still occur. In the case of the MiWi
Networking Protocol Stack, the SymbolTime.c file
provides support for obtaining a high-resolution, 24-bit
timer value. Within the code, this data is expressed
using the custom TICK data type.

However, this same data type name is used within the
TCP/IP Stack and many of the functions for accessing
its elements have the same names in the MiWi Net-
working Protocol and TCP/IP Stacks. This would not
normally pose a problem; however, in the TCP/IP
Stack, the TICK data type is 32 bits in length and so
poses a conflict. This is overcome by creating a
Tick.c file that replicates the functionality of the
TCP/IP version and provides a MiWi networking proto-
col compatible access function to the enlarged timer
(MiWiTickGet). Since the functions within the file are
identically named to the TCP/IP ones, no changes are
required in that stack and only minor changes are
required to the MiWi P2P Networking Protocol Stack to
use the newly provided function, and these alterations
are all isolated within the single P2P.c file.

QVGA and Touch Screen Interface
The Microchip Graphical Software Library allows
software engineers and designers to rapidly develop
customized user interfaces on small embedded micro-
controllers. The library consists of a hierarchical
software structure that allows programmers to pick the
most suitable functionality for their design. At the most
basic level, it provides a driver interface to many com-
mercially available LCD controllers, or LCD panels,
with integrated controllers (so called intelligent glass).
Above this driver layer, a drawing primitives API allows
simple shapes, such as points, lines and circles, to be
drawn, which displays fonts and bitmaps. Finally, above
this layer comes the Graphics Object Layer (GOL),
which contains functions for drawing and managing
entities, such as buttons, sliders, text boxes, dials and
so on. For user input, the library provides routines and
drivers for handling both keyboards (or buttons) and
resistive touch screens.

When a program uses the higher level items, such as
buttons, they are created dynamically using the stan-
dard malloc/free calls and adding them to an active
display list. The GOL is then responsible for calling
drawing primitives for each of the widgets that are cur-
rently in the display list, forcing them to update and
reflect their current state. When a button press is
received, or as in our case, a press of the touch screen
occurs, the graphics library passes the message
around all of the objects in the active display list, allow-
ing each of them to respond if the press occurred in
their screen area. Example 2 provides the Graphics
Object Layer loop.

EXAMPLE 2: GRAPHICS OBJECT LAYER
MAIN LOOP

…
…
while(1)
{

// Draw GOL objects
If (GOLDraw())

{
 // Get message from touch screen

TouchGetMsg(&msg);
// Process message

GOLMsg(&msg);
…

}
}

DS01264A-page 10 © 2009 Microchip Technology Inc.

AN1264

In the demonstration project provided with the Graphics
Library (called Graphics Object Layer Demo), the
MainDemo.c file contains a while(1) loop; this is
depicted in Figure 1. When GOLDraw is called, the
library iterates through all of the objects in the active
display list giving them the opportunity to update and
redraw themselves if required. The touch screen is
then checked for any activity and this information is
passed on to the message handling functions for the
objects in the display list. It can be seen that there are
no delays in this processing algorithm, and the screen
redraw, touch screen and message processing func-
tions, will be called as rapidly as the processor will
allow.

When any form of user interaction is required, it is
desirable to offer fast cycle times so that the user
interface feels responsive. This polling mechanism is
suitable for a dedicated demonstration where this is the
only application that is executing. However, for a multi-
tasking system, it has the disadvantage of consuming
excessive processor cycles repeatedly drawing and
analyzing the touch screen, when in fact, in most
typical applications, the display will actually be dormant
and no user interaction is required. Generalizing this
further, it can be seen that once the screen has been
drawn, it is unlikely that any further updates will be
required unless either the touch screen is pressed or a
meter update occurs, hence, mandating a redraw.

For this demo application, the functionality is separate
from the GOL library and the touch screen. By making
the touch screen operate in a separate task it can be
simplified and made to operate at a high priority, allowing
for good responsiveness. At the same time, the graphics
task can be made lower priority as it only updates the
displayed items when it has passed a touch screen
press or a data update. This means that updates cause
the display to redraw immediately but at all other times,
it blocks, hence consuming no processor cycles which
give the illusion of high speed.

It is worthwhile examining in some detail how our new
improved ‘broken apart’ graphics library now works.
The preceding paragraphs have explained the major
changes to this library, but it is useful to see these
changes in context with a diagram.

Some of the techniques used are often found in
RTOS-based programs and a programmer can use
them in their own applications. Figure 2 provides the
pseudocode for the graphics and touch screen tasks. It
contains two main blocks showing the basic program
flow. The related code can be found in the two files:
taskTouchScreen.c and taskGraphics.c. Here
we consider the various numbered stages:

1. The Timer4 Interrupt Service Routine (ISR) is
triggered every 1 ms. The touch screen requires
that a bias voltage be applied to the X or Y axis
while the reading is being taken. To help this
sequencing, the ISR implements a state machine
that iterates through the various analog channels
and performs the required readings. Once a
reading has been taken, it is placed into volatile
variables for access by the taskTouchScreen
function.

2. At the start of taskTouchScreen, check if the
screen needs calibrating. As the EEPROM on the
Explorer 16 board is accessed by the touch
screen during initialization and the TCP/IP Stack
when displaying web pages, a simple semaphore
is used to control access. The touch screen task
obtains the EEPROMSemaphore and reads the
calibration data. If it detects that calibration is
required, then it also obtains control of the QVGA
display by obtaining QVGASemaphore and
directly writing to the screen using drawing primi-
tives. While the TCP/IP and QVGA tasks also
access the EEPROM and QVGA display,
because the taskTouchScreen is higher prior-
ity, it will always be able to obtain the semaphores
and carry out its calibration at program start-up.

3. The main touch screen routine operates in a
while(1) loop. At the start of the loop, the task
blocks for a programmable amount of time. Ini-
tially, this block time is set to 100 ms. Once the
block time has elapsed, the current value of the
touch screen ADC conversions are compared to
the previous versions. Only when these do not
match does the task perform any processing.

4. Once a touch is detected, the task switches to a
fast scanning rate, where the main loop block
time is reduced to 10 ms. The inputs are
analyzed, and if the screen has been pressed, a
MSG_TOUCH_EVENT message will be sent to
hQVGAQueue. The type of event depends on the
current action and could be either a pressed,
released or a move event.

5. All of the data from taskTouchScreen is sent to
the display using hQVGAQueue. This queue is
used by other tasks, such as taskMeter, to send
updated meter readings asynchronously to the
display. This mechanism of sending data on
queues, but prefixing the data with a command
type message (such as MSG_TOUCH_EVENT or
MSG_UPDATE_GAS), is a very common mecha-
nism within a RTOS application and allows
efficient use of the message passing
mechanisms. Depending on the RTOS, it may be
possible to wait for data to be received simultane-
ously on multiple queues; however, if this facility
does not exist, then the command and data
method used here works efficiently.
© 2009 Microchip Technology Inc. DS01264A-page 11

AN1264
FIGURE 2: RTOS VERSION OF GRAPHICS AND TOUCH SCREEN

6. In the taskGraphics routine, the main draw-
ing is again performed in a while(1) loop.
Once the drawing is completed, the task blocks
waiting for data to arrive on its hQVGAQueue. As
a portMAX_DELAY parameter is used, the task
will effectively Sleep until new data arrives or the
screen is pressed.

7. After the arrival of the message, the type is
checked and various actions occur based upon
the command. The statement shown next to the
label is for the arrival of a
MSG_UPDATE_ELECTRIC message, which is
used to indicate that a new electricity unit reading
has arrived. The control associated with
ID_ELECTRIC_TOTAL is obtained, and provided
it exists (we may not currently be displaying a
screen with this control on it), a new value to
display is created and the button is marked as
needing an update.

8. Finally, at the end of the main loop, the general
touch screen handling is performed when
MSG_TOUCH_EVENT arrives. Here, the message
is translated by the standard GOLMsg function,
which will call the control handling functions later
in the same file.

The graphics library is used to display a range of
screens in the home metering application, as depicted
in Figure 3. The summary of the functionality is:

• Figure 3 provides a summary of the meter infor-
mation along with a dial for room temperature
set-point and a real-time temperature display. On
the left of the screen is a display of the current
electricity cost, and the button will take the user to
screen 2. On the right is the gas usage summary
and the button will reveal screen 3. Finally, the
upper title bar can be pressed to display screen 4.

• The electricity usage screen displays the total num-
ber of units consumed along with the total cost based
upon the current unit cost. On/Off buttons disable the
logging and a graph at the bottom shows a history. A
press of the title bar will return to the main screen.

• The gas screen operates in a similar way to the
electricity usage screen.

• Finally, the RTOS summary screen displays infor-
mation on the main tasks in the application. For
each task a bar graph shows the maximum stack
size allocated to that task along with the current
position of the stack high water mark; a text equiv-
alent is also provided. This information could be
used to optimize the amount of stack allocated to
each task. At the bottom of the screen the current
DNS settings for the TCP/IP Stack are shown.

Sequential Scan of
Analog Inputs

X,
Y,

Temperature,
Pot

Timer4 ISR (1 ms)

xSempahoreTake(EEPROM, 0);
TouchLoadCalibration(();
xSemaphoreGive(EEPROM);
...
while (1) {
vTaskDelay(scan_time);

if (touchXY!=oldtouchXY) {
// touch press or move
scan_time = FAST_RATE;
À
xQueueSend(hQVGAQueue, data);

} else {
// Touch release
scan_time -SLOW_RATE;
...

}

}

// graphics task main loop
while (1) {
if (GOLDraw()) {
// block until we receive
// message from queue.
if (xQueueReceive(hQVGAQueue,

&msg, portMAX_DELAY) == pdTRUE) {

switch (msg.cmd) {
case MSG_UPDATE_DISPLAY:
// periodic screen updates
...
break;

case MSG_UPDATE_TEMPERATURE:
// update temperature
...
break;

case MSG_UPDATE_ELECTRIC:
// update electric
pObj = GOLFindObject(

ID_ELECTRIC_TOTAL);
if (pObj) {
sprintf(qvgaBuff1, "%ld",

msg.data.dVal[0]);
SetState((BUTTON*) pObj,

DRAW_UPDATE);
}
break;

case MSG_UPDATE_GAS_TOTAL:
// update gas
...
break;

case MSG_UPDATE_GAS_UNITS:
// update gas
...
break;

case MSG_TOUCH_EVENT:
// process touchscreen
GOLMsg(&msg.data.golMsg);
break;

}
}

}
} taskTouchScreen

hQVGAQueue

taskMeter Updates

taskGraphics

1

2

3

4

5
6

7

8

DS01264A-page 12 © 2009 Microchip Technology Inc.

AN1264

Figure 3 depicts the Microchip Metering Demo,
Electric, Gas and RTOS summary graphics.

FIGURE 3: GRAPHIC SCREENS

TCP/IP
The demon application has been built upon version 4.51
of the Microchip TCP/IP Stack. The stack is designed to
offer a range of Internet protocols and services that com-
plement the embedded silicon solutions found in the
ENC28J60 Ethernet transceiver and newer products.
The TCP/IP Stack consists of many software modules
that can be selectively compiled into the end user appli-
cation depending upon the program requirements. The
provided protocols include, ARP, IP, ICMP, UDP, TCP,
DHCP, SNMP, SMTP, SNTP, HTTP, FTP, TFTP and
application support for a web and telnet server. With
such a range of supported protocols and application
layers, the TCP/IP Stack is naturally quite large and
complex. Just like the graphics library, modifications to
the stack are involved and it is best if it can be treated as
an integral whole.

The standard method for using the stack with one’s
own application is to modify the MainDemo.c file, and
integrate a project-specific ProcessIO handler along
with the appropriate handlers for any web-based
events. For more information, refer to the library help
files and also AN833, “The Microchip TCP/IP Stack”
and AN1120, “Ethernet Theory of Operation”. These
are the demo metering application specifications.

Considering our specification for the metering applica-
tion, we needed to implement a simple HTTP server
capable of displaying web pages from either the
on-board EEPROM on the Explorer 16 or with web
pages stored directly in program memory on the PIC32
Starter Kit. To make network operation as simple as
possible, the stack was configured to use Dynamic
Host Configuration Protocol (DHCP), and it was
assumed that the device would always be used in a
network with a suitable DHCP server.

Based upon these requirements the following configu-
ration options were selected in the TCPIPconfig.h
file:

• STACK_USE_IP_GLEANING – Obtains an IP
address by pinging for an unused address.

• STACK_USE_UART – Allows diagnostic printing
via the UART.

• STACK_USE_ICMP_SERVER – Responds to ping
requests.

• STACK_USE_ICMP_CLIENT – Sends ping
requests.

• STACK_USE_HTTP2_SERVER – New web server.
• STACK_USE_DHCP_CLIENT – Automatically

configures the IP address.
• STACK_USE_DNS – Resolves addresses via the

domain name server.
• STACK_USE_NBNS – NetBIOS names server

support.
• STACK_USE_MPFS2 – New style file system for

web pages.
• STACK_USE_EEPROM – Support for MPFS files in

EEPROM.
© 2009 Microchip Technology Inc. DS01264A-page 13

AN1264

To observe the changes to the TCP/IP Stack, the reader
should examine the original TCPIP MainDemo.c file
and compare it with the new taskTCPIP.c file shown
in Example 3. The use of an RTOS has resulted in a
main network processing task (taskTCPIP) that has
equivalent functionality to the original sample without
requiring time consuming rewriting for the RTOS-based
system. At the start of the task, a semaphore controlling
access to the EEPROM is obtained. This is not only nec-
essary, since the EEPROM is used by the HTTP server
to store web pages and network addresses, but is also
used by the graphics library to store screen calibration
information.

• Once the graphics library has completed initializa-
tion, it will release the semaphore and the TCP/IP
Stack can then continue.

• The task then performs initialization of the filing
system, application configuration structures and
the core stack layers.

EXAMPLE 3: taskTCPIP.c MAIN TASK

• Following initialization, the main task loop is
entered.

Here, we have decided to implement a simple
blocking scheme by using a vTaskDelay function
call of 50 ms. In order to enhance throughput, it
would have been more beneficial to separate the
functionality of the TCP/IP Stack into various sub-
tasks for each block pending upon new data arriving
from the various TCP/IP modules. However, this is
quite a challenging modification to make for this
library given its complex nature and the various
interactions between the protocols.

• It was decided to minimize the changes to the
library by implementing the top level task with a
simple timed blocking call, and given the nature of
the web pages and the network data rates, this
provides for adequate data rates in the meter
application.

• Following the delay are calls to the StackTask
function, which ensures operation of the lower pro-
tocol layers and the StackApplications func-
tion, which in turn, runs the high-level applications,
such as the HTTP Server.

To prevent hardware conflicts, we must ensure that the
EEPROM and Ethernet PICtail Plus are not accessed
at the same time; otherwise, their serial data out lines
could interfere. To prevent this, replacement files,
ENC28J60.c and SPIEEPROM.c, are created in the
source (src) directory. These two files replicate the
behavior of the standard files provided with the TCP/IP
Stack, except that they have been modified to include
an additional semaphore (SPI2Semaphore) to control
access to SPI Channel 2. With the use of the current
release of the TCP/IP Stack in this application, it is
unlikely that simultaneous accesses would occur. How-
ever, the use of a semaphore provides an additional
level of security and a degree of future proofing to the
program. These replacement files further demonstrate
the useful technique of keeping the main stack and
libraries intact, and just modifying a few individual files.

The standard TCP/IP demo application comes with a
set of web pages that demonstrate various methods of
interacting with an embedded HTTP server. These
pages require more application-specific modifications
for the metering application. Since all of the web pages
must fit inside the 32k x 8 EEPROM on the Explorer 16
board (or inside the program Flash of the PIC32 Starter
Kit-based version), they must be compact. At the top
level of the source tree, a Microsoft® Visual Studio®

development system-based project, WebPages.sln,
has been provided which contains all of the web related
material. Either this tool, or a simple text editor, can be
used to customize the pages if required.

These pages demonstrate a range of features permitting
remote users to view a summary of the application.
Real-time updates on the actual energy used are pro-
vided using AJAX techniques that asynchronously query
the data from the embedded device. A password pro-
tected page allows the unit costs for gas and electricity
to be set remotely in a similar manner to a real world
system.

Once the pages are created, they must be converted
into a format suitable for use in the application. This is
done with the MPFS2.exe utility supplied with the
TCP/IP Stack. The WebPages directory is selected as
a source and is converted into a file suitable for down-
load into the EEPROM. When the application is built for
the PIC32 Starter Kit running on the I/O Expansion
Board (DM320002), no EEPROM is present so the
pages must be stored in the internal program Flash.

void taskTCPIP(void* pvParameter)
{

//obtain the semaphore
//to access the SPI EEPROM
 xSemaphoreTake(EEPROMSemaphore,
 portMAX_DELAY);

//Initialize the MPFS2
 MPFSInit();
//initialize the configuration
 InitAppConfig();
//Initialize the stack
 StackInit();
while (1)
{
vTaskDelay(50 / portTICK_RATE_MS);
//perform stack tasks
 StackTask();

//call the stack
//related applications
 StackApplications();
}

}

DS01264A-page 14 © 2009 Microchip Technology Inc.

AN1264

As part of the MPFS conversion sequence, several
support files are automatically generated. In the event
that a change of platform results in any of these files
changing, then the code will need recompilation. For
reference purposes, original copies for the Explorer 16
and I/O Expansion Board systems are provided in the
src\Explorer16 and Starter Kit Web Files
directory.

Another interesting feature is a provision of a dynamic
monitoring page, customized for display on a
hand-held PDA. This has its screen layout modified in
order to correctly display on a 240 x 320 pixel PDA
using Internet Explorer® Mobile. The page can be
accessed using the \pda.htm URL.

One final area in the TCP/IP Stack that required modifi-
cation was its accesses to the ADC. While in normal
operation, it performs no access to the analog data; at
initialization, it takes control of the ADC in order to
generate a pseudo random number used for packet
sequencing. Because of the task priorities that were
assigned at design time, this initialization happens after
the touch screen task has been started and the result is
that proper ADC interrupts are disabled. It would have
been possible to rectify this with either a different ran-
dom number generator or modifications to the algorithm,
but for our purposes, a constant value has been used as
the seed.

General Utility Tasks (TickHook)
On a typical embedded system, there may be many
operations that take only a few cycles to execute and
which have some time dependency associated with
them. For example, the debouncing of a key switch.
Here a change in the state of a switch needs to be
recorded and checked again, perhaps 20 ms later to
ensure that any bounce has been removed, and the
switch has actually been pressed. This could also be
performed within the RTOS task that monitors the
switch or a separate task could be created that is solely
responsible for monitoring key presses. Unfortunately,
this consumes significant memory in creating a new
task for a simple operation.

An alternative approach is to add the required code into
the RTOS TickHook routine. This function is normally
called every time a RTOS pre-emptive TICK occurs (in
the demo application, this is at 200 Hz). In
MainDemo.c, a vApplicationTickHook function
has been added that is executed every 5 ms. The
events are counted and after 2 seconds have elapsed,
a message is sent to the hMETERQueue and also to the
hQVGAQueue, allowing the tasks to update the
displayed temperature, and perform general periodic
housekeeping functions.

It should be noted that the TickHook function is called
as part of the pre-emption ISR. Because of this, any
RTOS related calls must be suitable for use within an
ISR, and therefore, the xQueueSendToBackFromISR
functions are used.
© 2009 Microchip Technology Inc. DS01264A-page 15

AN1264
GUIDELINES
The main part of this application note is focused on the
modifications required in order to allow a number of
Microchip stacks to be used together in a RTOS appli-
cation. We have deliberately kept these changes as
simple as possible, since this allows for the shortest
development time, and will permit a simple upgrade as
new versions of the libraries are released. It is difficult
to arrive at a fixed set of rules for modifying software
that will work in all future cases, but here are a number
of items to consider when modifying any library for a
new application.

• Consider all low-level hardware resources, I/O
pins and peripherals. If they could be accessed by
more than one task at the same time, then the
resource should be protected by a mutex using a
semaphore or critical section. If they are
accessed by more than one task, but only
sequentially, then task priorities may be sufficient
to protect accesses.

• Having advised the use of critical sections, you
should, however, minimize their use as they will
typically cause interrupts to be disabled for their
duration, possibly preventing execution of other
tasks.

• Analyze the libraries and your own application
code for delay loops or calls to delay functions.
These delay functions should be replaced with
calls to the RTOS provided delay functions, as
this will allow other tasks to execute if required.

• Check for state machines with delay states, where
the code stops at a particular stage waiting for an
event to occur. If possible, replace potentially long
waits with calls that block waiting for a semaphore
or queue event. This may require the creation of
another task that can signal the event so it could
incur a memory or performance penalty.

• Any libraries that are dependent upon slow exter-
nal events can potentially have separate tasks
created to handle these asynchronous events.

• Application code, and indeed a number of the
libraries, will often have common functions. It is
fairly obvious that these functions should be
replaced with local alternatives that reduce code
size. However, when performing these changes,
be aware that they may introduce mutual
exclusion and atomic access problems if called by
multiple tasks.

• Rather than introducing a mutex to prevent
multiple tasks from accessing a shared resource,
use a ‘gatekeeper’ task to regulate access.
Multiple tasks can then send messages to the
gatekeeper requesting operations to be per-
formed without introducing a mutex. These
messages can be sent using queues, rather than
global memory blocks, which will simplify future
code changes if required.

• Allow COTS components and libraries to be
installed in their default locations. However, any
modifications that are required should be per-
formed upon local copies of the files placed in the
project source directory. This ensures the integrity
of the original library installation, and if done cor-
rectly, the project relative paths will ensure the
include files are located easily.

• When upgrading the libraries, they can be
installed to their default locations as normal,
avoiding overwriting the modified local copies. But
it is necessary to ensure that changes to the
library files are correctly reflected in the local
copies and this can be achieved via a ‘diff’ utility,
which will identify the differences.
DS01264A-page 16 © 2009 Microchip Technology Inc.

AN1264
CONCLUSION
This application note describes how to use a Real-Time
Operating System (RTOS) designed for embedded
microcontrollers to simplify the task of integrating
multiple software libraries into one application. The
demo application uses FreeRTOS; any one of the
alternatives listed in Table 1 could be used instead.

Microchip provides source code for its application
libraries which allows them to be more easily modified
and integrated into a multi-library RTOS-based applica-
tion. This would not be possible if they were provided in
binary form only.

The demo application demonstrates how a feature rich
product can be generated using COTS components. If
the code is examined in detail, it can be seen that the
number of program lines that implement the smart
meter functionality is small compared to the size of the
library code. This has resulted in an application that
could be written in a much shorter amount of time than
if all of the code had to be written from scratch. It also
demonstrates that complex products can be built with
small 16 and 32-bit embedded microcontrollers in a
more cost-effective manner than with complicated
microprocessor-based solutions that require many
megabytes of RAM in order to run systems, such as
Linux.

The modifications to the Microchip MiWi networking
protocol, graphics and TCP/IP libraries could be simply
copied into a new application with minimal changes.
Some guidelines have been provided that would allow
the programmer to replicate these modifications in their
own project if required.

REFERENCES
• “dsPIC30F/33F Programmer's Reference Manual”

(DS70157)
• “16-Bit Language Tools Libraries” (DS51456)
• “MPLAB® C32 C Compiler User’s Guide”

(DS51686)
• AN833, “The Microchip TCP/IP Stack” (DS00833)
• AN1120, “Ethernet Theory of Operation”

(DS01120)
• AN1136, “How to Use Widgets in Microchip

Graphics Library” (DS01136)
• AN1066, “MiWi™ Wireless Networking Protocol

Stack” (DS01066)
• AN1204, “Microchip MiWi™ P2P Wireless

Protocol” (DS01204)
• FreeRTOS – http://www.freertos.org
© 2009 Microchip Technology Inc. DS01264A-page 17

http://www.freertos.org
http://www.freertos.org

AN1264
APPENDIX A: FUNCTION CALLS

EXAMPLE A-1: FreeRTOS.org FUNCTION
xTaskCreate(tskFunc, sName, stkSize, param, priority, &handle);

tskFunc - pointer to the task function
sName - task name string
stkSize - size of the stack in words
param - a parameter to be passed to the task
priority - priority of the task
handle - pointer to the created task handle

xSemaphoreTake(semaphore, timeout);
semaphore - handle of a semaphore
timeout - delay timeout (ticks), portMAX_DELAY waits forever

xSemaphoreGive(semaphore);
semaphore - handle of a semaphore

xQueueSend(hQueue, &msg, timeout);
hQueue - handle to the queue
msg - pointer to data to place on the queue (size varies)
timeout - delay timeout (ticks), portMAX_DELAY wait forever

xQueueSendToBackFromISR(hQueue, &msg, &flag);
hQueue - handle of the queue
msg - pointer to data to be placed on queue
flag - indicates if another task was woken as a result of the send

vTaskDelay(ticks);
ticks - delay specified number of ticks

portENTER_CRITICAL();
start a critical section, forming an atomic action, disables interrupts

portEXIT_CRITICAL();
leave a critical section
DS01264A-page 18 © 2009 Microchip Technology Inc.

AN1264
APPENDIX B: RTOS RESOURCES
Table B-1 lists the available RTOS resources.

TABLE B-1: DEMONSTRATOR RTOS RESOURCES
Resource Object Name Inputs Outputs Function

Task taskMeter METERQueue Updates to QVGAQueue Control meter updates
Task taskMiWi Updates Meter via

METERQueue
Receive RF updates from
PIC18F node

Task taskUART UARTTxQueue Displays diagnostic
information via UART

Task taskGraphics QVGAQueue Accesses gMeter
Directly

All screen related output and
input; direct access to
gMeter object

Task taskTouchScreen ADC Readings Touch Events via
QVGAQueue

Handle touch screen
calibration and processing

Task taskTCPIP Accesses
gMeter Directly

Updates Meter via
METERQueue

All TCP/IP and Web-related
services

Queue METERQueue Meter updates of temperature,
units and unit costs

Queue QVGAQueue Meter updates and touch
screen actions

Queue UARTTxQueue Data to be transmitted
Queue UARTRxQueue Unused

Semaphore QVGASemaphore Regulate access to PMP and
screen

Semaphore METERSemaphore Regulate access to global
gMeter data structure

Semaphore EEPROMSemaphore Regulate access to EEPROM
Semaphore SPI2Semaphore Regulate access to SPI

channel, used by EEPROM
functions and TCP/IP functions

Critical Section LEDUtils.c Isolates Modifications to
LED Port

Accesses to port on PIC24F
are protected by critical
section

Critical Section Tick.c Isolates Timer
Calculations

Ensures 32-bit timer overflows
are atomic actions
© 2009 Microchip Technology Inc. DS01264A-page 19

AN1264

B.1 Resource Interdependency

FIGURE B-1: DIAGRAM OF RESOURCE INTERDEPENDENCY

M
et

er
D

at
a

METER

MiWi™ P2P

taskMiWi

TCP/IP
taskTCPIP

UART
taskUART

Meter
taskMeter

Graphics
taskGraphics

Touch Screen
taskTouchScreen

E
E

P
R

O
M

METERQueue

EEPROM
QVGA Display

QVGASemaphore

QVGAQueue
SPI2

U
A
R
T
T
x
Q
u
e
u
e

Key

Access Data
(Using Semaphore)

Semaphore

Message

Queue

Task

D
at

a
O

bj
ec

t
M

iW
i P

2P
 L

in
k

Networking
Protocol
DS01264A-page 20 © 2009 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:
• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.
© 2009 Microchip Technology Inc.
Trademarks

The Microchip name and logo, the Microchip logo, dsPIC,
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,
rfPIC and UNI/O are registered trademarks of Microchip
Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,
MXDEV, MXLAB, SEEVAL and The Embedded Control
Solutions Company are registered trademarks of Microchip
Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard,
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial
Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified
logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,
PICtail, PIC32 logo, REAL ICE, rfLAB, Select Mode, Total
Endurance, TSHARC, UniWinDriver, WiperLock and ZENA
are trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2009, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

 Printed on recycled paper.
DS01264A-page 21

Microchip received ISO/TS-16949:2002 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

DS01264A-page 22 © 2009 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260
Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445
Toronto
Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431
China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130
China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256
China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4080
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513
Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122
Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934
Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859
Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850
Taiwan - Hsin Chu
Tel: 886-3-6578-300
Fax: 886-3-6578-370
Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803
Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820

WORLDWIDE SALES AND SERVICE

03/26/09

	Introduction
	Background
	EXAMPLE 1: Main Loop From TCP/IP Stack
	Embedded RTOS
	TABLE 1: Third Party Products

	Blocking Functions
	Priority Inversion, Mutexes and Semaphores

	Library and Application Migration
	Demo Application
	Demonstrator Hardware
	FIGURE 1: Demonstrator Hardware

	Implementation
	FreeRTOS Modifications
	UART
	Meter
	MiWi P2P Networking Protocol
	QVGA and Touch Screen Interface
	EXAMPLE 2: Graphics Object Layer Main Loop
	FIGURE 2: RTOS Version of Graphics and Touch Screen
	FIGURE 3: Graphic Screens

	TCP/IP
	EXAMPLE 3: taskTCPIP.c Main Task

	General Utility Tasks (TickHook)

	Guidelines
	Conclusion
	References
	Appendix A: Function Calls
	EXAMPLE A-1: FreeRTOS.org Function

	Appendix B: RTOS Resources
	TABLE B-1: Demonstrator RTOS Resources
	FIGURE B-1: Diagram of Resource Interdependency

	Worldwide Sales and Service

