
AN1255
Microchip ZigBee® PRO Feature Set Protocol Stack
INTRODUCTION
The ZigBee® protocol is a wireless network protocol
developed specifically for low data rate sensor and
control networks. Wireless applications that may bene-
fit from ZigBee include, but are not limited to, industrial
controls, home and building automation, PC peripher-
als, medical sensor applications and security networks.

The latest protocol specifications ratified by the ZigBee
Alliance is collectively referred to as ZigBee-2007.
ZigBee-2007 defines two distinct levels of functionality
or feature sets. The standard set is called ZigBee, and
the more advanced feature set is named ZigBee PRO.
When compared against ZigBee, the ZigBee PRO fea-
ture set offers many enhanced networking capabilities,
and, under certain conditions, is backwards compatible
with ZigBee.

The purpose of this application note is to provide a
description of the ZigBee PRO Features Set as imple-
mented by the Microchip ZigBee PRO Stack. These
features are described in the “ZigBee Pro Feature Set
Overview” section of this document.

ASSUMPTION
This application note is not self contained, and does not
provide an introduction to the ZigBee protocol. Rather,
it builds upon the information provided in a previous
application note AN1232, “Microchip ZigBee-2006
Residential Stack Protocol”. For readers who are not
familiar with Zigbee or previous releases of Microchip’s
ZigBee Stack, it is highly advised that application note
AN1232 be carefully reviewed prior to reading this doc-
ument or attempting to use the ZigBee PRO Feature
Set Stack. Many introductory concepts related to the
ZigBee protocol and how the Microchip ZigBee Stacks
are structured are covered in that application note and
are therefore not repeated here.

Furthermore, this document assumes that the reader is
familiar with the ZigBee protocol and its terminology.
The reader is also expected to be familiar with the C
programming language, as well as the IEEE 802.15.4-
2003 specifications in detail. For additional technical
information on the IEEE 802.15.4™ specifications,
please refer to http://standards.ieee.org/catalog/. For
additional technical information on the ZigBee
specifications, please refer to www.zigbee.org.

DISTRIBUTION NOTICE
Companies wishing to distribute a product that uses the
Microchip ZigBee PRO Stack for the wireless network
protocol portion of their product must be members of the
ZigBee Alliance. Additionally, companies may only use
the Microchip ZigBee PRO Stack in their products when
it is used in conjunction with a Microchip transceiver and
microcontroller. Please refer the software license that
accompanies the stack. For additional information
regarding Zigbee licenses and product certification, refer
to www.zigbee.org and specifically to document
“053594r03_ZQG_ZigBee_Certification”.

ZigBee COMPLIANT PLATFORM
The Microchip ZigBee PRO Protocol Stack has been
certified as a ZigBee Compliant Platform (ZCP)
consisting of the following modules:

• Processor: PIC24F and dsPIC33 families of
microcontrollers

• Transceiver: MRF24J40
• Firmware: Version 2.0.PRO.2.0 of the Microchip

ZigBee PRO Stack

FEATURES
The Microchip ZigBee PRO Stack is designed to evolve
with the ZigBee wireless protocol specifications. At the
time of this publication, the current applicable ZigBee
specification document is 05347 r17. This document
applies to Microchip’s ZigBee PRO Stack releases
v2.0.PRO.2.0 and greater. The Microchip ZigBee-2006
Stack is described in application note AN1232.

The Microchip ZigBee PRO Stack offers the following
features:

• A certified ZigBee PRO Compliant Platform (ZCP)
• Support for the 2.4 GHz frequency band using the

MRF24J40 transceiver
• Support for all ZigBee protocol device types

(Coordinator, Routers and Reduced Function End
Devices)

• Stochastic Address and Address Conflict
Resolution mechanisms are supported

Author: Derrick P. Lattibeaudiere
Microchip Technology Inc.

Note: The Microchip ZigBee PRO Stack is avail-
able for purchase from the www.micro-
chipdirect.com website. Due to
governmental security regulations regard-
ing 128-bit encryption software, the
ZigBee PRO stack is not available for
download from the Microchip website.
© 2009 Microchip Technology Inc. DS01255A-page 1

AN1255

• Support for Data Fragmentation and Reassembly
• Support for Frequency Agility and Dynamic

Channel Selection
• Support for Source Routing
• Support for Many-to-One Routing
• PANID Conflict Detection and Resolution

Mechanism is supported
• Support for High Security Key Exchange
• Support for Centralized Data Collection (ZigBee

Concentrator Device)
• Support for Commissioning via the Startup

Attribute Set (SAS)
• RTOS and application independent
• Portable across the PIC24 MCU and dsPIC33

DSC families
• Out-of-box support for Microchip MPLAB® C

Compiler for PIC24 MCUs and dsPIC DSCs
• Implements nonvolatile storage for critical network

parameters such as Neighbor and Routing Tables

CONSIDERATIONS
Version 2.0.PRO.2.0 of the Microchip Stack for the Zig-
Bee Protocol is the third version to be granted the sta-
tus of ZigBee Compliant Platform (ZCP).

For information on the ZCP status of version v2.0-2.6,
please refer to AN1232, “Microchip ZigBee-2006
Residential Stack Protocol”.

The first version, v1.0-3.8, of the Microchip’s ZigBee
Stack has been deprecated and is no longer supported.
Users are encouraged to migrate to either version v2.0-
2.6 or to the ZigBee PRO version 2.0-PRO.2.0 that is
described in this document.

LIMITATIONS
The ZigBee protocol specifications leave many higher
level decisions up to the developer and product
designer. As such, the Microchip ZigBee PRO Stack
provides no explicit support for the following functions
in the current release:

• Beacon networks are not supported in this version
of the ZigBee PRO protocol stack.

• The Smart Energy Profile is not implemented
• The Home Automation Profile is not implemented
• The SKKE security mechanism is not

implemented
• The ZigBee Cluster Library (ZCL) is not

implemented
• Alternate PAN coordinator capability is not sup-

ported in ZigBee protocol networks. Only a single
ZigBee protocol coordinator is permitted.

• The Zena™ Packet Sniffer does not currently sup-
port this released version of the ZigBee PRO
Feature Set Stack. Microchip recommends using
Daintree Sensor Network Analyzer (SNA) for
customers’ ZigBee PRO developments.

DEVELOPMENT TOOLS
REQUIREMENTS
In order to use the Microchip ZigBee PRO Stack to cre-
ate a ZigBee protocol network consisting of ZigBee
devices, the following development tools are required.

The hardware platform consists the following (one each
per network node):

• Explorer 16 (DM240001) board
• PIC24FJ128GA010 Plug-In-Module (PIM)

(MA240011)
• MRF24J40 2.4 GHz Daughter Card (AC163027-

4) or MRF24J40MA PICtail™ Plus 2.4G Hz RF
Card (AC164134)

Miscellaneous Hardware

• At least one RS-232 Serial Cable in order to
configure and communicate with the hardware

• Personal Computer with RS-232 COM port or
USB to RS-232 adapter

• A programmer such as MPLAB REAL ICE™
in-circuit emulator or MPLAB ICD 3

Software Tools

• MPLAB C Compiler for PIC24 MCUs and dsPIC
DSCs

• MPLAB IDE v8.10 or later
• The source code for Microchip ZigBee PRO Stack

version v2.0.PRO.2.0 or higher
• Daintree Sensor Network Analyzer (SNA) or simi-

lar ZigBee Packet Sniffer for those intending to do
moderate to complex application development
with this stack (optional)

Together these development tools will allow the user to
create a ZigBee network using the Microchip ZigBee
PRO Stack. The exact procedure of how to do this is
covered in the ZigBeePROQuickStartGuide.chm
document that accompanies the stack software.
DS01255A-page 2 © 2009 Microchip Technology Inc.

AN1255
ZigBee PRO FEATURE SET
OVERVIEW
The following sections provide an in-depth discussion
of the important features that make up the ZigBee PRO
Feature Set. Where appropriate, specifics of how each
feature is implemented and its impact on the future
development of other ZigBee profiles is also covered.

Stochastic Addressing
The Stochastic Addressing feature of the ZigBee PRO
Stack allows each device that joins the network to be
randomly assigned a unique 16-bit network address.
The only exception is the ZigBee Coordinator, which
still retains a network address of 0x0000.

This random network address assignment stands in
contrast to the CSKIP mechanism employed in the Zig-
Bee-2006 Stack, where network addresses were pre-
determined and distributed based on device type and
the network topology.

Under the stochastic addressing scheme, once a
device has been assigned its network address, it may
choose not to relinquish it, unless that address comes
in conflict with another device on the network. This is
true even during the rejoin process, when a device may
be switching parents.

The Stochastic addressing mechanism in ZigBee PRO
simplifies the network address calculation (the CSKIP
algorithm vs. generating a random number), and
removes the linkage between the network address of
an individual device and its position within the network
topology. One benefit of this feature is that the entire
addressing space is now made available to each
potential parent device on the network.

Figure 1 shows a sample ZigBee PRO network consist-
ing of four devices, and their associated randomly gen-
erated network addresses. Note the difference in the
network address assignment when compared against
the ZigBee-2006 Stack.

Version 2.0-2.6 of the Microchip ZigBee-2006 Stack
does not support the stochastic addressing feature.

FIGURE 1: STOCHASTIC NETWORK ADDRESSES OF ZigBee® PRO DEVICES

Microchip

Microchip
© 2009 Microchip Technology Inc. DS01255A-page 3

AN1255

Address Conflict Detection and
Resolution
An address conflict occurs when two devices on the
same network have identical network addresses. More
precisely, an address conflict arises when the same
network address gets associated with two different
MAC addresses. This conflict situation can arise, for
example, when two parent devices generate the same
random network address for each of their respective
child devices, where both child devices have different
MAC addresses.

The detection of an address conflict usually occurs
when a device that has just joined the network broad-
casts an announcement to notify the other devices that
it is now a member of the network. This announcement
is called a ZigBee EndDeviceAnnce message and
carried within its payload are both the MAC and net-
work address of the newly joined device, as well as a
byte that identifies the capabilities of the device. An
example of the information contained in the Capability
byte would be that the device is an RFD, its transmitter
is turned off when the device is idle, and it does not
support security.

Figure 2 shows a packet sniffer capture of the
EndDeviceAnnce message that is broadcasted to all
devices in the network.

FIGURE 2: PACKET SNIFFER CAPTURE OF AN EndDeviceAnnce MESSAGE

After every device announcement is received, routers
and the Coordinator will compare the new device’s net-
work address against all the known addresses in their
address map and neighbor tables. If another device
with the same network address as the newly joined
device is found, or the new network address is the
same as the router’s own, then a status command is
broadcasted throughout the network indicating an
address conflict situation has been detected.

If the device with the address conflict is a Reduced
Function End Device, the parent of that device will
choose a new random network address for the child. It
will then send an unsolicited rejoin command to the
child, forcing it to accept the new network address, thus
alleviating the address conflict. This new network
address is embedded in the payload of the unsolicited
rejoin command.

If a router is the device that is the source of the address
conflict, it will assign a new address to itself and
announce its new address via a new EndDeviceAnnce
message.

Figure 3 shows an example of the sniffer capture of the
address conflict detection and resolution mechanism at
work.
DS01255A-page 4 © 2009 Microchip Technology Inc.

AN1255

FIGURE 3: PACKET SNIFFER ILLUSTRATION OF ADDRESS CONFLICT DETECTION

• Seq No. 57: Shows the Coordinator detecting an
address conflict, with NWK Address 0xf3a2 being
the source of the conflict.

• Seq. No. 65: Since the Coordinator is the parent
of that device, it sends an unsolicited Rejoin
Response command to device 0xf3a2. The
response carries the new randomly chosen NWK
address of 0xae71 in its payload.

• Seq. No. 67: The device, upon receiving this
unsolicited rejoin, accepts its new NWK address
and rejoins the network. The device sends out a
new EndDeviceAnnce message to all the FFDs in
the network alerting every device of its new
address.

This feature is only supported in the Microchip ZigBee
PRO Stack and not in any of the earlier versions.

The ZigBee PRO Network Channel
Manager
The ZigBee PRO device that implements a particular
subset of the network management functions, including
PANID Conflict Resolution and Frequency Agility mea-
sures when interference is encountered, is called the
Network Channel Manager (NCM). For the sample
application that accompanies Microchip's ZigBee PRO
Stack, the Coordinator is the overall Network Channel
Manager Device. However, the Coordinator may
designate another FFD to perform the role of Network
Channel Manager.

Within Microchip's ZigBee PRO Stack, the Network
Channel Manager device performs two key duties:

• First, it is the central device that receives channel
interference reports and facilitates the changing of
the current operating channel in order to mitigate
the interference. In order to effect a channel
change, the Network Channel Manager maintains
a list of channels to be used during the channel
scanning process (i.e., determines the value of
the channelMask).

• Second, the Network Channel Manager handles
the PANID conflict resolution process. Whenever
it gets a report of a PANID conflict (the process is
discussed in section “PANID Conflict Detection
and Resolution”), it selects the new PANID on
which the network will operate, and broadcasts it
to all the devices.

In the sample application that accompanies the Micro-
chip ZigBee PRO Stack, after the Coordinator has
formed a network, it may designate another device to
become the Network Channel Manager. The Coordina-
tor does so by broadcasting (0xfffd), a ZigBee
Mgmt_NWK_Update_request command message.
Inside the payload of this message is the network
address of the designated Network Channel Manager
device as well as the list of channels to be scanned dur-
ing the energy detection phase. After receiving the
Mgmt_NWK_Update_request command, the desig-
nated NCM device will begin to perform its duties, and
the other devices will register the designated NCM as
such. Subsequently, they will send their channel
management notification messages to the NCM
device.
© 2009 Microchip Technology Inc. DS01255A-page 5

AN1255

PANID Conflict Detection and Resolution

A PANID conflict occurs when any device operating on
a ZigBee PRO network receives a beacon frame via a
MLME-BEACON-NOTIFY, indication primitive, in which
the PANID of the beacon frame matches that of its own
PAN Identifier, but the Extended PANID contained
within the beacon frame's payload does not match its
own Extended PANID, at which point the device has
detected a PANID conflict.

Any device that detects a PANID conflict will report it to
the current device that is designated as the Network
Channel Manager via a ZigBee defined Network
Report Pan Identifier Report Conflict command frame.

Upon receipt of the Network Report Pan Identifier
Report Conflict command frame, the Network Manager
creates a new random 16-bit PANID, and transmits it to
the other devices via a Network Update PAN Identifier
Update command broadcast (destination address
0xffff).

All the devices on the network, upon receipt of the PAN
Identifier Update command, will extract the new PAN
Identifier from the command payload, and update their
beacon payloads accordingly.

From an implementation perspective, this new PANID
is also written in the transceiver hardware, effectively
switching the network to a new PAN for the purpose of
PAN filtering incoming packets.

Figure 4 and Figure 5 show packet sniffer traces of the
of network commands that are transmitted during the
process of detecting and resolving a PAN Identifier
conflict on Microchip's ZigBee PRO network.

FIGURE 4: PACKET SNIFFER CAPTURE OF PANID 0x1aaa CONFLICT DETECTION

Note: A ZigBee PRO network has two Personal
Area Network Identifiers (PANID). The first
is a 64-bit globally unique PAN identifier
named the Extended PANID, that should
be unique within any overlapping network
area. The second is 16-bit PAN Identifier
called the Short PANID. When used
together, this pair, the Extended and Short
PANIDs, shall uniquely identify the net-
work.
DS01255A-page 6 © 2009 Microchip Technology Inc.

AN1255

FIGURE 5: PACKET SNIFFER CAPTURE OF PANID 0x1aaa CONFLICT RESOLUTION

Fragmentation and Reassembly
The maximum size of a ZigBee frame, including all the
information that is carried in the headers, is 127 bytes.
Fragmentation allows applications that have the need
to transmit large payloads, which would exceed the
127-byte frame limit, to segment the data into smaller
transmittable chunks.

On the receiver side, a Reassembly mechanism allows
for the reconstruction of those payload chunks into a
single network layer frame, which is then passed into
the application layer as a single whole unit.

In order to setup and control the transmittal and recep-
tion of a fragmented frame, several parameters man-
dated by the Zigbee specifications are used within the
Microchip ZigBee PRO Stack to implement this feature.
The definition of these parameters will be explained by
using an example.

Consider an application that has a 325 byte payload to
be transmitted. Clearly this exceeds the 127-byte frame
limit and must be split up into transmittable blocks or
fragments:

• The fragmentTotalDataLength parameter
represents the total number of payload bytes to be
transmitted. This parameter is 325 in our exam-
ple.

• The network application developer has the free-
dom to choose, at the application level, the size of
each payload chunk when transmitting a frag-
mented packet. The parameter that governs this
is called the fragmentDataSize. For this exam-
ple, if 50 bytes is chosen, then each block size or

fragmentDataSize is 50 bytes long.
• In order to transmit the entire 325 bytes of the

payload, 325-bytes divided by 50 bytes per block
= 7 blocks total. Six blocks, each carrying 50
bytes, plus a final seventh block with only 25
bytes are needed to complete the transmittal.

• The parameter fragmentWindowSize repre-
sents the number of blocks that can be sent to a
receiving device before the receiver is required to
send back to the transmitting device an explicit
acknowledgement packet, indicating that all frag-
mentWindowSize number of blocks have been
received. This helps keep the two devices in sync,
and not have the sending device transmit too
many blocks without receiving explicit acknowl-
edgement from the receiver, stating that the trans-
mission process is proceeding well.

For our example, if fragmentWindowSize is set to 3,
then after every group of 3 blocks are successfully
transmitted, the receiver would respond with an
acknowledge packet. At that time, the sender would
then proceed to send the second set of 3 blocks, and
then wait for the second acknowledgement. Finally, the
last frame, containing the last block, the 7th one, would
be transmitted. The receiver, recognizing that the trans-
action is over, would send back the final acknowledge-
ment packet, reassemble the entire 325-byte packet,
and send it up to the application layer as a whole entity.
© 2009 Microchip Technology Inc. DS01255A-page 7

AN1255

• The fragmentInterframeDelay parameter repre-

sents the time delay in milliseconds between
transmissions of each block of a fragmented
frame. This delay provides the receiving device
with adequate time to process the packet and do
the internal bookkeeping necessary to keep track
of all the packets.

Internal to the ZigBee PRO Stack, the total number of
blocks to be transmitted, in addition to which block has
currently been transmitted, is kept via an internal
bookkeeping mechanism. If a block is dropped or fails
to be successfully transmitted for whatever reason, the
internal bookkeeping mechanism will facilitate an auto-
matic retransmission without any application code
involvement.

Figure 6 shows a pictorial representation of the frag-
mentation and reassembly process in relationship to
the parameters described.

FIGURE 6: ILLUSTRATION OF THE ZigBee® PRO FRAGMENTATION PARAMETERS

Window 1 Window 2 Window 3

Receiver
Acknowledge

Receiver
Acknowledge

Receiver
Acknowledge

1 2 3 4 5 6 7

/***

 Function:

 void ZIGAPLUpdateFragmentParams (BYTE WindowSize, BYTE InterframeDelay, BYTE
 DataLengthPerBlock, BYTE TotalFragmentDataLength)

 Summary:

 Initializes the parameters that controls how a fragmented packet will be transmitted.

 Description:

 This function is used to set the parameters which are used by fragmentation feature to control
 how the actual fragmentation hand shaking between the transmitting and receiving device
 is carried out.

 Precondition:

 The ZigBee devices must support fragmentation in order to use this function

 Parameters:

 WindowSize - BYTE specifies the number of blocks that can be Txd/Rxd in one window

 InterframeDelay - BYTE specifies the time delay between the block transmission

 DataLengthPerBlock - BYTE specifies the data length that can be fit in one block transmission

 TotalFragmentDataLength - BYTE specifies the total number bytes that needs to be transmitted
 using fragmentation

 Returns:

 None

 Remarks:

 None

 **/

 void ZIGAPLUpdateFragmentParams(BYTE WindowSize, BYTE InterframeDelay, BYTE
 DataLengthPerBlock, BYTE TotalFragmentDataLength);
DS01255A-page 8 © 2009 Microchip Technology Inc.

AN1255

It is up to the application developer to set the default
values for all the fragmentation/reassemble parame-
ters that were discussed above, prior to calling the
ZIGAPLSendFragmentedPacket() function. For an
example of this, see the Sample demo application code
that is shipped with the Microchip ZigBee PRO Stack
sample application.

Frequency Agility
The Frequency Agility feature gives a ZigBee PRO
application the ability to dynamically switch the current
channel on which the network operates, primarily in
response to detected “interference”.

In order to support this feature, a Network Channel
Manager device is required. A ZigBee PRO Network
Channel Manager is the device that is designated as
such in either the profile’s Node Descriptor, or dynami-
cally by the Coordinator after the network has started.
It has the responsibility of the managing the channels
on which the ZigBee network operates.

Internally, the Microchip ZigBee PRO Stack keeps track
of the number of packets that are transmitted by each
transceiver. By the standards set forth by the 802.15.4
specifications, for each transmitted packet, there must
be an associated MAC level acknowledgement. If no
acknowledgement is received, then the packet is
judged to be lost and is counted as failure internally by
the stack. For a given channel, whenever the ratio of
the total transmitted packets vs. the number of transmit
failures exceeds a 50% threshold, then the stack
assumes there is some “interference” on that channel
and this will automatically trigger the start of a correc-
tive action.

The device that experiences a high level of transmit
failures will notify the Network Channel Manager by
sending it a MGMT_NWK_UPDATE_NOTIFY com-
mand. This command will indicate the total number of
attempted transmissions, the total failures, a list of
channel scanned and their energy values. The
scanned channels and energy values provide useful
information that the Network Channel Manager makes
use of as it takes corrective action in order to avoid fur-
ther interference.

The designer of the network application must decide
what precise action to take in response to an interfer-
ence MGMT_NWK_UPDATE_NOTIFY command.
Here are a few possibilities:

• The Network Channel Manager, upon receipt of
the MGMT_NWK_UPDATE_NOTIFY, may ask all
devices to scan their channels, and use that infor-
mation to decide which is the best channel for all
the devices. Subsequently, it would tell all the
devices to move to that new channel.

• The Network Channel Manager, upon receipts of
the MGMT_NWK_UPDATE_NOTIFY, may use
the information that is received from the single
notifying device to decide which is the best chan-
nel for all the devices. Subsequently it would tell
all the devices to move to that new channel.

• The Network Channel Manager may decide to do
nothing and continue to operate the network on
the degraded channel.

The Network Channel Manager uses the
MGMT_NWK_UPDATE_req command to broadcast
the channel change to all the devices in the network.
After receiving this request, all the devices will switch to
the new channel and resume operation. The Network
Channel Manager will also do the same.

It should be noted that the Microchip ZigBee PRO
Stack provides the entire infrastructure to manage Fre-
quency Agility, but it is up to the application designer to
make the final policy decision on how this feature actu-
ally functions in their network. The sample application
that is provided with the Microchip ZigBee PRO Stack
demonstrates this feature.

Link Status Commands
The coordinator and all routers operating on a ZigBee
PRO network are required to periodically broadcast a
Link Status Command. The Link Status Command car-
ries a list of the device’s neighbors that are within a
one-hop radio range.

Additionally, the link costs, both out-going and incom-
ing, for each neighbor device are also included in the
Link Status Command. The purpose of the Link Status
Command is tri-fold:

First, the link status command is used to keep the num-
ber of entries in the neighbor table as small as possible.
Since each router must periodically broadcast a Link
Status Command, each of its neighbors uses the
reception of this command as an indication that the
device that originated the command is alive and
operational.

If a router does not receive this command from a previ-
ously neighboring device after a certain interval of time,
then it removes that device from its neighbor table.
Thus, if a device has moved outside the radio range, or
has become inactive, it will be no longer occupy a valu-
able entry slot inside a neighboring device’s neighbor
table.

Second, the Link Status Command is used to exchange
the link cost information with a devices' one-hop neigh-
bors. The Link Status command carries within its pay-
load the incoming and outgoing link cost of all its known
neighbors.
© 2009 Microchip Technology Inc. DS01255A-page 9

AN1255

Each neighbor device, upon receiving this command,
will search for its own address within the list carried by
the link command payload. The incoming and outgoing
cost will be updated in its neighbor table to reflect the
information that it received from its neighbor.

Third, the link status command makes it easier to cal-
culate the route to any given device within the network.
This is because, instead of having to send out route
discovery requests to get the path cost, this information
can often be calculated from the incoming and outgoing
link cost information already stored in the neighbor
table.

Figure 7 shows a packet capture example of a Link
Status Command.

FIGURE 7: ZigBee® PRO LINK STATUS COMMAND PACKET CAPTURE

The Startup Attribute Set and Nonvolatile
Storage Feature
In order to support the future development of ZigBee
profiles such as Smart Energy, provide interoperability
with other manufacturers’ devices, and to supply the
infrastructure necessary to support device commis-
sioning, the Microchip ZigBee PRO Stack implements
the Startup Attribute Set (SAS) mechanism.

SAS provides the means by which each device stores,
in Nonvolatile Memory (NVM), a set of parameters that
is necessary for it to either join or rejoin a specific
network.

Table 1 depicts the parameters that are stored in a
single instance of the Startup Attribute Set.
DS01255A-page 10 © 2009 Microchip Technology Inc.

AN1255

The SAS consists of a total of 94 bytes. In the Microchip
ZigBee PRO Stack, three distinct instances of the SAS
are stored in nonvolatile memory. They are known as
the Default_SAS, SAS_1 and SAS_2.

Table 2 shows the three SAS blocks. Internal to the Zig-
Bee PRO Stack, it uses an 8-bit index to reference each
distinct SAS. For example, the Default_SAS is refer-
enced by using an index value of 0xFF, while the other
two use Index 0x00 and 0x01, respectively.

The Default_SAS obtains most of its parameter values
from the zigbee.def file. Therefore, product develop-
ers that use the Microchip ZigBee PRO Stack can cus-
tomize the Default_SAS by placing the appropriate
values in the zigbee.def file prior to compiling and
building their device application. When the application
starts, it copies the values from the zigbee.def file into
the Default_SAS memory location of nonvolatile
storage.

In practice, the Default_SAS initially represents what is
traditionally referred to as the “factory default settings”.
Parameters such as the device’s MAC address, the
preconfigured security keys to be used, etc., are all
logical candidates to be included in the Default_SAS.

However, because each device is destined to be
deployed into a wireless network, whose operating
environment is unknown at manufacturing time, the
SAS mechanism must be made flexible such that the
device can be deployed into any network that the
installer specified. SAS_1 and SAS_2 provides this
flexibility.

In practice, the Default_SAS can be used to hold the
factory default settings. SAS_1 and SAS_2 can be
used by an installer to program the application and
deployment specific parameters that will be used by the
device in the field.

The following steps describe how a product’s applica-
tion code, the Microchip ZigBee PRO Stack, and the
SAS infrastructure may be used together to ensure that
the device starts up and join or rejoin any installer's
desired network.

1. Compile and build the application of the ZigBee
devices using the parameters in the
zigbee.def file. The Default_SAS block of
nonvolatile memory, will then be initialized with
many of the parameters whose values originate
from the zigbee.def file definitions.
Parameters such as the Extended PANID, and
Channel Mask in the Default_SAS should be
configured to direct the device to a specific
channel, or set of potential channels, from which
the Coordinator can establish the network and
from where other devices may join.

TABLE 1: THE PARAMETERS OF THE
STARTUP ATTRIBUTE SET
(SAS)

Parameter Size (Bytes)
STARTUP_PARAMETERS_ATTRIBUTE_SET

The Devices’ Network Address 2
The Network Extended PANID 8

The Short PAN ID 2
Channel Mask 4

Protocol Version 1
Stack Profile ID 1
Startup Control 1

UseInsecureJoin 1
The Trust Centers’ MAC Address 8

The Trust Centers’ MasterKey 16
The Devices’ Preconfigured

LinkKey
16

The Network Key Sequence
Number

1

The Network KeyType 1
The Channel Managers’ Network

Address
2

JOIN_PARAMETERS_ATTRIBUTE_SET
Scan Attempts 1

Time Between Scans 2
RejoinInterval 2

MaxRejoinInterval 2
END_DEVICE_PARAMETERS_ATTRIBUTE_SET

IndirectPollRate 2
ParentRetryThreshold 1

CONCENTRATOR_PARAMETERS_ATTRIBUTE_SET
Concentrator Indicator Flag 1

Concentrator Radius 1
Concentrator Discovery Time 1

Miscellaneous 2

TABLE 2: REPRESENTATION OF THE
THREE SAS BLOCKS IN THE
ZigBee® PRO STACK

SAS Blocks Index Value

Default_SAS 0xFF
SAS_1 0
SAS_2 1
© 2009 Microchip Technology Inc. DS01255A-page 11

AN1255

2. After the Coordinator has established the net-

work, the application code for each device can
use the appropriate API functions that are
described in this section to update the appropri-
ate SAS_1 and SAS_2 block(s), to the parame-
ters that will be used when the device is
deployed in their “permanent” network.

3. The devices, now with the deployable SAS_1
and SAS_2 in nonvolatile memory, can be
restarted using SAS_1 or SAS_2. This uses the
Default_SAS to get the devices configured, after
which the devices are restarted using either
SAS_1 or SAS_2, while retaining the factory
settings in Default_SAS.

Interface functions to create instances of any of the
SAS (Default, SAS_1 or SAS_2) are provided.

The Microchip ZigBee PRO Stack provides the follow-
ing Application Programming Interface (API) functions
to program the SAS.

/***

 * Function: void Initdefault_SAS ()

 *

 * PreCondition: None

 *

 * Input: None

 *

 * Output: default_SAS initialized in Nonvolatile Memory

 *

 * Side Effects: Old Default_SAS is overwritten with new one

 *

 * Overview: This function initializes the default_SAS with factory default settings

 **/

void Initdefault_SAS (void)

Function SaveSAS() is used to save data into a particular SAS block

/***

 * Function: void SaveSAS (STARTUP_ATTRIBUTE_SET* ptr_current_SAS, unsigned char index)

 *

 * PreCondition: None

 *

 * Input: *current_SAS - pointer to the data structure that holds the SAS parameters

 index - which SAS entry to write (Default_SAS (0xff), SAS_1(0x00), SAS_2 (0x01)

 *

 * Output: None

 *

 * Side Effects: Old SAS will be overwritten with new values into NVM

 *

 * Overview: This API is used by application to store a new set of SAS at a particular index

 *

 *

 * Note: This function does not free the pointer ptr_current_SAS

 **/

void SaveSAS (STARTUP_ATTRIBUTE_SET* ptr_current_SAS, BYTE options, BYTE index)
DS01255A-page 12 © 2009 Microchip Technology Inc.

AN1255
Collectively, these APIs provide the user with the inter-
faces needed to create, select and use the SAS
mechanism within an application.

The benefit of having the three SAS is that the device
may be started using one of the SAS, and the others
can then be loaded with new parameters, after which
the operation of the device may be switched to a
different SAS.

The function that is used to select between Default_SAS, SAS_1 and SAS_2 to be used as the active
and in use SAS block.

/***

 * Function: BYTE SetActiveIndex (BYTE index)

 *

 * PreCondition: None

 *

 * Input: index - 0xff, 0x01 or 0x02

 *

 * Output: None

 *

 * Side Effects: None

 *

 * Overview: This API will be used to set "index" parameter to

 * "activeSASIndex" which determines the application's currently

 * active SAS to use

 *

 * Note: None

 **/

void SetActiveIndex (BYTE index)

Function that is used by the application to determine which one of the three SAS block is currently
the active and in use SAS.

/***

 * Function: void GetActiveSASIndex (BYTE &index)

 *

 * PreCondition: None

 *

 * Input: index - address of the variable to hold the active index

 *

 * Output: None

 *

 * Side Effects: The 'index' variable is update to the either 0xff, 0x01 or 0x02

 *

 * Overview: This API will be used to get the index of the currently active SAS

 *

 * Note: None

 **/

GetActiveSASIndex(&index)
© 2009 Microchip Technology Inc. DS01255A-page 13

AN1255

Many-to-One Routing
A ZigBee PRO Concentrator device is one that is able
to store the routes to other devices in network. It stores
these routes in its Route Record Table. Refer to
Figure 8 for an example.

FIGURE 8: SOURCE ROUTING ILLUSTRATION

Assuming the Coordinator with network address
0x0000 is the Concentrator device, the route from itself
(0x0000) to device 0x24b4 would be the list of network
addresses 0xf302 and 0xe63c. This list is stored in the
Concentrator’s Route Record Table. The structure of
the Route Record Table for this specific example is
shown in Table 3.

Figure 9 shows an actual packet Sniffer capture of the
route record command that was transmitted to the
Concentrator from the illustrative example been
discussed.

TABLE 3: ROUTE RECORD TABLE ENTRY FORMAT
Field Name Range/Value Comment

Target Network Address 0x24b4 The destination address for this route record.
Relay Count 2 The relay count of the number of nodes from destination address to

Concentrator.
Path List 0xe63c

0xf302
Set of network address that represents, in order, the route from
Concentrator to the Destination.
DS01255A-page 14 © 2009 Microchip Technology Inc.

AN1255

FIGURE 9: ROUTE RECORD COMMAND FRAME CAPTURE

A ZigBee PRO Concentrator device triggers the pro-
cess of gathering the routes from the other network
devices to itself by using a special route discovery com-
mand. That special command is referred to as a many-
to-one route discovery. The devices will eventually
send back their routes to the Concentrator as a result
of receiving a many-to-one route discovery request, but
they will not do so immediately to prevent flooding the
network with route replies.

In summary, a ZigBee PRO Concentrator device has
the capability to perform two operations:

• The first is the ability to establish routes to itself
from all the routers and coordinator within a given
radius in its network.

• Secondly, a Concentrator is capable of storing
and managing those routes in a Route Record
Table.

There can be several Concentrator devices in one net-
work. When a device receives a many-to-one route dis-
covery request from a concentrator, it performs three
operations:

• First, it creates a routing table entry in its routing
table and records the next hop route back to the
Concentrator.

• Second, it stores a set of flags in its routing table
that indicates it received a many-to-one route
request from a Concentrator device in the
network.

• Third, when it subsequently needs to send any
data to the Concentrator, it will first send a Route
Record Command. The purpose of the Route
Record Command is to document the route (list of
nodes) from itself back to the concentrator. The
concentrator will store this list in its Route Record
Table.

Therefore, by sending out a single many-to-one route
request, Concentrator devices are able to build efficient
routes to the devices in the network and can later use
these routes to transmit data without first having to first
issue route requests.
© 2009 Microchip Technology Inc. DS01255A-page 15

AN1255

Source Routing
Whenever a Concentrator device needs to send a data
packet to another device, is must determine the most
effective path by which to send the packet. One of
those choices is to use source routing. The source rout-
ing process works as follows:

If the destination device address is present in its Route
Record Table, it will extract the list of nodes that com-
prises the path to that device. A packet will then be cre-
ated that includes the list of nodes in the network
header. The source_routed_packet indicator flag will
be set in the network header as well. This flag is used
to alert other devices along the path from the Concen-

trator to the destination device, to extract the next_hop
device address from the network header, and to use
that address to relay to packet until it reaches its final
destination.

In addition to the list of nodes that comprise the path
from Concentrator to destination device, there is also
an index pointer that tells each successive node that
receives a source routed packet, which is the next
address in the list to use as the next_hop address. This
index is decremented by one at each hop, and reaches
zero on the final hop. See Figure 10 for a packet sniffer
capture of the source routed packet from the example
being described.

FIGURE 10: NETWORK HEADER OF A SOURCE ROUTED PACKET
DS01255A-page 16 © 2009 Microchip Technology Inc.

AN1255

High Security Application Master Key
Exchange
The Microchip ZigBee PRO Feature Set Stack supports
the high security mode of operation. To accomplish
this, the stack supports three types of keys:

• The Network Key – used to secure packets at the
ZigBee NWK level, and is used by all the devices
in the network.

• The Application Link Key – used to secure pack-
ets at the ZigBee APS level, and is used by all the
devices in the network.

• The End-to-End Application Master Key – used to
secure the communication between a pair of
devices. This key is unique to each pair of
devices, and is not known by any of the other
devices in the network, except the device pair that
established the key and the Trust Center that
created it.

The Microchip ZigBee PRO Feature Set Stack is con-
figurable to use either preconfigured or non-preconfig-
ured network and application link keys. In the
preconfigured mode, the keys are defined as part of the
stack's zigbee.def files are then compiled and linked
into the stack’s data section when each ZigBee device
type is built. These keys are then copied into
nonvolatile storage at device initialization time.

In the non preconfigured key mode, the keys are trans-
mitted from the Trust Center to the devices as they join
the network.

The high security end-to-end application master key
mode operation works as follows:

Any pair (2) of devices wishing to use high security to
communicate exclusively with each other must first get
an application master key from the Trust Center. They
acquire the application master key by sending a ZigBee
defined APSME_REQUEST_KEY_Request primitive
to the Trust Center. This request must be secured. Both
devices must send their individual request to the Trust
Center at approximately the same time, with each
device stating the other device as its partner in the
transaction.

Upon receiving the simultaneous requests, the Trust
Center will then calculate a unique end-to-end applica-
tion master key, and securely transport it to the two
partnering devices.

After receiving their Master key, subsequent communi-
cations between the two partnering devices will use
their unique Master Key, which is known only by them-
selves and the Trust Center. No other device on the
network can eavesdrop on their communication.

In the current version of the Microchip ZigBee PRO
Feature Set Stack, eight such end-to-end application
master keys can be supported by the Trust Center, but
this a configurable parameter.
© 2009 Microchip Technology Inc. DS01255A-page 17

AN1255
STACK ARCHITECTURE
The Microchip Stack is written in the C programming
language, and is designed to run on Microchip’s PIC®

microcontrollers. The Microchip Stack can use either
internal Flash program memory, or external Nonvolatile
Memory (NVM) to store a number of persistent stack
parameters across resets of a device. The Designer
has a choice of which type of NVM to use. The current
default stack operation is an external EEPROM used
on the Explorer 16 platform.

The Microchip Stack is designed to follow the ZigBee
protocol and IEEE 802.15.4-2003 specifications, with
each layer in its own source file. Refer to Figure 11 for
a diagram of the ZigBee stack. Terminology is copied
as closely as possible from the specifications. The
primitives defined in the two specifications are used to
interface with the stack through a single function call,
using the parameter list defined for the primitives in
the specifications. Refer to “Interfacing with the
Microchip Stack for the ZigBee Protocol” for
detailed descriptions of typical primitive flow. Refer to
the ZigBee protocol and IEEE 802.15.4 specifications
for detailed descriptions of the primitives and their
parameter lists.

FIGURE 11: ZigBee® PROTOCOL STACK ARCHITECTURE

SSP –

Application (APL) Layer

Device Mgmt.

Binding Mgmt.

Security Mgmt.

NWK Mgmt.

Application Framework (AFG) ZDO – ZigBee® Protocol Device Objects

Application
Object

Application
Object

ZD
O

 P
ub

lic

In
te

rfa
ce

Endpoint
240

Endpoint 1 Endpoint 0

APSDE – SAP APSME – SAP

ZDO
Mgmt.
Plane

S
S

P
 In

te
rfa

ce

Security
Service
Provider

APS Message APS Security
Management Management

Routing NWK NWK Security
Management Management Management

A
P

S
M

E
 –

 S
A

P
N

LM
E

–
S

A
P

NLME – SAP

MLME – SAP

PLME – SAP

NLDE – SAP

MCPS – SAP

PD – SAP

2.4 GHz 868/915 MHz

Endpoint Multiplexing

Application Support Sublayer (APS)

NWK – Network Layer

MAC (IEEE 802.15.4)

PHY (IEEE 802.15.4)
DS01255A-page 18 © 2009 Microchip Technology Inc.

AN1255
TYPICAL ZigBee PROTOCOL NODE
HARDWARE
To create a typical ZigBee protocol node using the
Microchip Stack, you need, at a minimum, the following
components:

• One Microchip microcontroller with an SPI
interface

• Microchip MFR24J40 RF transceiver with
required external components

• An antenna – may be a PCB trace antenna or
monopole antenna

• External serial EEPROM (optional)

As shown in Figure 12, the microcontroller connects to
the MRF24J40 transceiver via the SPI bus and a few dis-
crete control signals. The microcontroller is the SPI mas-
ter and the MRF24J40 transceiver acts as a slave. The

controller implements the IEEE 802.15.4 Medium
Access Control (MAC) layer and ZigBee protocol layers.
It also contains application-specific logic. It uses the SPI
bus to interact with the RF transceiver.

The Microchip Stack provides a fully integrated driver,
which relieves the main application from managing RF
transceiver functions. The hardware resources required
by the PIC24F microcontroller family to drive the RF
transceiver in the default implementation (provided in
the Explorer 16 platform) are listed in Table 4. If you are
using a Microchip reference schematic for a ZigBee pro-
tocol node, you may start using the Microchip Stack
without any modifications. If required, you may relocate
some of the non-SPI control signals to other port pins to
suit your application hardware. In this case, you will have
to modify the interface definitions to include the correct
pin assignments.

TABLE 4: PIC24FJ128GA010 MICROCONTROLLER RESOURCES REQUIRED BY THE ZigBee®
PRO PROTOCOL STACK

The Microchip reference design for the 802.15.4 proto-
col implements both a PCB trace antenna and a mono-
pole antenna design. Depending on your choice of
antenna, you will have to remove and solder a few
components. Refer to the “PICDEM™ Z Demonstration
Kit User’s Guide” (DS51524) for more information (see
“References”).

The Microchip RF transceiver is a 3.3V device.
Depending on the requirements, the designer may
either use mains or a battery power supply. Typically,
ZigBee protocol coordinators and routers would oper-
ate on mains power supply and end devices would
operate on a battery. When using a battery power sup-
ply, care must be taken to operate the transceiver
within the specified voltage range.

FIGURE 12: TYPICAL ZigBee® PROTOCOL NODE HARDWARE (CONTROL SIGNALS ADDED)

PIC24F Resource Description MRF24J40

INT1 Used to accept interrupts from MRF24J40 transceiver INT
TMR2 Used for symbol timer —
RB2 Chip selection CS
RG3 Wake-up pin WAKE
RG2 Transceiver Reset RESET
RF6 SPI SCK SCK
RF7 SPI SDI SDO
RF8 SPI SDO SDI

PI
C

®

ANTENNA

SPI

CONTROL

M
C

U MRF24J40
© 2009 Microchip Technology Inc. DS01255A-page 19

AN1255
INSTALLING THE MICROCHIP ZigBee
PRO STACK
The complete Microchip Stack source code is available
for download from the Microchip web site. The source
code is distributed in a single Windows® operating
system installation file. Perform the following steps to
complete the installation:

1. Execute the installation file. A Windows operating
system installation wizard will guide you through
the installation process.

2. Before the software is installed, you must accept
the software license agreement by clicking
“I Accept”.

3. After completion of the installation process, you
should see the “Microchip Software Stack for
ZigBee” protocol program group. The complete
source code will be copied in the ZigBeePRO
subdirectory in the C:\Microchip
Solutions directory of your computer.

4. Refer to the Readme file distributed with the
source code for the list of enhancements and
limitations of the installed version.

SOURCE FILE ORGANIZATION
The Microchip Stack consists of multiple source files.
For compatibility with other Microchip applications, files
that are common to multiple application notes are
stored in a single directory. ZigBee protocol stack-
specific files are stored in another directory. Each demo
application is stored in its own directory. Table 5 shows
the directory structure.

TABLE 5: SOURCE FILE DIRECTORY STRUCTURE

The stack files contain logic for all supported device
types of ZigBee protocol applications; however, only
one set of logic will be enabled based on the
preprocessor definitions in the zigbee.def. A
designer may develop multiple ZigBee protocol node
applications using the common set of stack source
files, but individual zigbee.def files. For example,
each of the demonstration applications has its own
zigbee.def file (and myZigBee.c file) in its
respective directory.

This approach allows the development of multiple
applications using common source files, and generates
unique hex files depending on application-specific
options. This approach requires that when compiling an
application project, you provide search paths to include
files from the application, Microchip\Common, and
Microchip\ZigBeeStack source directories. The
demo application projects supplied with this application
note include the necessary search path information.

Directory Name Contents

Documents Microchip Stack for the ZigBee® Protocol documentation.
Microchip Microchip Stack for the ZigBee Protocol source files. Files contained in this directory

should not be changed.
Sample Applications Source code for a demonstration ZigBee protocol Coordinator, Router and End

Device.These files can be changed to create a custom application.

Note: When working with multiple projects, take
care when switching between projects. If the
projects’ Intermediates directories have
not been altered, the object files for the
Microchip Stack for the ZigBee Protocol will
be stored in the ZigBeeStack directory.
These files may not be considered “out of
date” when performing a project “Make”, and
erroneous capabilities may be linked in.
Symptoms of this problem include unusual,
unhandled primitives being returned to the
application layer. To ensure that the stack
files have been compiled correctly for the
current project, store the object files in a
project unique directory by selecting Proj-
ect>Build Options>Project from the main
menu. Change the Intermediates direc-
tory to a unique directory for the project. The
demo application projects supplied with this
application note already specify unique
Intermediates directories.
DS01255A-page 20 © 2009 Microchip Technology Inc.

AN1255
DEMO APPLICATIONS
Versions 2.0.PRO.2.0 of the Microchip Stack include
three primary demonstration applications:

• Coordinator – Demonstrates a typical ZigBee
protocol coordinator device application.

• Router – Demonstrates a typical ZigBee protocol
router device application.

• End Device – Demonstrates a typical ZigBee
protocol RFD device application.

Demo Application Features
The demo applications implement the following features:

• Targeted for use with the Explorer 16 demo board
• RS-232 terminal output to view device operation,

as well as a menu system to send commands to
the operating devices

• Sending and receiving data
• Operates a simple multicast addressing application
• Simulates frequency agility
• Sending fragmented data packets

One Explorer 16 Demonstration Board must be
programmed as a ZigBee protocol coordinator using
the Coordinator project. A second board must be
programmed as a full function device using the Router
project. If more Explorer 16 Demonstration Boards are
available, they can be programmed either as more end
devices or as routers using the appropriate project.

Demo Applications Project and
Source Files
Table 6 through Table 10 list the source files required to
implement the Microchip Stack for the ZigBee Protocol
and the demo applications. Note that additional files may
be provided in the ZigBeeStack directory as additional
transceivers are supported.

TABLE 6: MICROCHIP STACK SOURCE FILES IN ZigBeeStack SUBDIRECTORY
File Name Description

SymbolTime.c, .h Performs timing functions for the Microchip Stack for the ZigBee® protocol.
zAPL.h Application level interface header file for the stack. This is the only file that the

application code needs to include.
zAPS.c, .h ZigBee protocol APS layer.
zTest.h ZigBee ZCP profile information. This changes depending on the profile.
zigbee.h Generic ZigBee protocol constants.
ZigBeeTasks.c, .h Directs program flow through the stack layers.
zMAC.h Generic IEEE 802.15.4™ MAC layer header file.
zMAC_MRF24J40.c, .h IEEE 802.15.4 MAC layer for the Microchip MRF24J40 transceiver.
zNVM.c, .h Performs nonvolatile memory storage functions.
zNWK.c, .h ZigBee protocol NWK layer.
zPHY.h Generic IEEE 802.15.4 PHY layer header file.
zPHY_MRF24J40.c, .h IEEE 802.15.4 PHY layer for the Microchip MRF24J40 transceiver.
zSecurity.h ZigBee protocol security layer header file.
zSecurity_MRF24J40.c, .h ZigBee protocol security layer for the Microchip MRF24J40 transceiver.
zZDO.c, .h ZigBee protocol’s ZDO (ZDP) layer.
zStack_Configuration.h ZigBee PRO Stack information.
zStack_Profile.h ZigBee PRO ZCP profile information.
© 2009 Microchip Technology Inc. DS01255A-page 21

AN1255

TABLE 7: MICROCHIP COMMON SOURCE FILES IN Common SUBDIRECTORY

TABLE 8: ZigBee® PROTOCOL COORDINATOR DEMO IN Sample Applications
DIRECTORY

TABLE 9: ZigBee® PROTOCOL ROUTER DEMO IN Sample Applications DIRECTORY

TABLE 10: ZigBee® PROTOCOL END DEVICE DEMO IN Sample Applications
DIRECTORY

File Name Description

Compiler.h Compiler-specific definitions.
Console.c, .h USART interface code (optional).
Generic.h Generic constants and type definitions.
MSPI.c, .h SPI interface code
sralloc.c, .h Dynamic memory allocation (heap) code.

File Name Description

Coordinator.c Main application source file.
Coordinator.mcp Project file.
Coordinator.mcw Work space file.
myZigBee.c Contains application-specific information.
zigbee.def Contains application-specific information.
Coordinator.h Main application header file.
zCoordInitialization.c Main application initialization code.

File Name Description

Router.c Main application source file.

Router.mcp Project file.

Router.mcw Work space file.
myZigBee.c Contains application-specific information.
zigbee.def Contains application-specific information.
Router.h Main application header file.
zRouterInitialization.c Main application initialization code.

File Name Description

EndDevice.c Main application source file.

EndDevice.mcp Project file.

EndDevice.mcw Work space file.
myZigBee.c Contains application-specific information.
zigbee.def Contains application-specific information.
EndDevice.h Main application header file.
zEndDeviceInitialization.c Main application initialization code.
DS01255A-page 22 © 2009 Microchip Technology Inc.

AN1255

Demonstrating Sample Applications
Please consult the ZigBeePROQuickStartGuide.pdf
and ZigBeePROQuickStartGuide.chm documents in
the stack install directory for a complete guide on how
to run the sample applications that came with this ver-
sion of the stack.

USING THE MICROCHIP STACK FOR
THE ZigBee PROTOCOL
To design a ZigBee protocol system, you must do the
following:

1. Obtain an Organizationally Unique Identifier
(OUI).

2. Determine the radio needed based on data rate
and geographical market needs.

3. Select a suitable Microchip MCU.
4. Develop the ZigBee protocol application using

the stack provided application note.
5. Perform all RF compliance certifications.
6. Perform ZigBee protocol interoperability

compliance certification.

Follow these basic steps to develop a ZigBee protocol
application:

1. Determine the profile that the system will use.
2. Determine the endpoint structure that each

device will use.
3. Create a new project directory. Place all

application-specific source files and project
files in this directory.

4. Make appropriate changes to the ZigBee.def
file as needed based on your specific hardware
requirements.

5. Use the sample application that came with the
stack as a guide in creating a new application.

6. Add code in the new application, including extra
initialization, any required ZDO response
handling, endpoint message reception and
transmission, and any non-protocol processing
and interrupt handling.

The ZigBee Stack Nonvolatile Storage
The ZigBee protocol requires many parameters and
tables be storage in Nonvolatile Memory (NVM) so that
information critical to the device’s deployment and
operation may be recovered across device resets or
power failures. The Microchip ZigBee PRO Stack uti-
lizes the external 25LC256 (32K x 8) serial EEPROM
that is available on the Explorer 16 platform for this pur-
pose. It interfaces with the PIC24 microcontroller via
the SPI interface. Other types of NVM devices may be
used by the application developer, provided that the
appropriate support driver utility is used.

For Microchip's ZigBee PRO Stack, Table 11 shows the
parameters and tables that are stored in the external
EEPROM, as the default setting for the stack. This
information is used by the stack to ensure that all the
ZigBee PRO Feature Set requirements for persistent
data usage is met, and to ensure that all ZigBee
devices operate correctly on the network even across
resets and power failures.

TABLE 11: ZigBee® PRO STACK PARAMETERS AND TABLES STORED IN EEPROM

Parameter or Table Name Total Size in Bytes (Including
Support Data Structures) Size Adjustable in Stack

MAC Address 10 No
Binding Table 200 Yes
Group Table 256 Yes
Neighbor Table 925 Yes
Routing Table 80 Yes
Node Descriptor 15 No
Power Descriptor 2 No
Simple Descriptor 12 No
Persistence PIB 48 No
APS Address Map Table 202 Yes
Network Keys 37 No
Link Keys 232 Yes
Start Attribute Sets (2) 190 No

Total 2213
© 2009 Microchip Technology Inc. DS01255A-page 23

AN1255

Interfacing with the Microchip Stack for
the ZigBee Protocol
The application source code must include the header
file, zAPL.h , to access the ZigBee protocol functions.

#include “zAPL.h”

A ZigBee protocol coordinator application will need to
have one support variable to keep track of the current
primitive being executed by the stack.

ZIGBEE_PRIMITIVE currentPrimitive;

A ZigBee protocol router or end device will also need to
keep track of the current primitive; but, in addition, it will
need two other support variables to assist in network
discovery and joining.

NETWORK_DESCRIPTOR * currentNetworkDescriptor;
ZIGBEE_PRIMITIVE currentPrimitive;
NETWORK_DESCRIPTOR * NetworkDescriptor;

Next, the application must configure all pins required to
interface with the transceiver. Refer to the
ZigBee.def file for the labels created for the sup-
ported transceivers.

Before the stack can be used, it must be initialized.
Interrupts must then be enabled. The application now
interfaces with the stack through the primitives defined

in the ZigBee protocol and IEEE 802.15.4 specifica-
tions. Stack operation is triggered by calling the func-
tion, ZigBeeTasks(). Stack operation will continue
until the requested primitive path is complete or an
application-level primitive needs to be processed.

Since only one primitive can be processed at one time,
a single data structure (a union) is used to hold all the
primitive parameters. This structure can be viewed in
the file, ZigBeeTasks.h. Care needs to be taken
when accessing this structure to avoid overwriting a
parameter before using it. After processing a primitive,
it is critical that the current primitive be set to the next
primitive to execute (or NO_PRIMITIVE) to avoid an
infinite loop (see Example 1). Refer to the “Primitive
Summary” section for a list of the common primitives
used by the application layer.

Default processing for most primitives is included in the
sample application files. Two primitives will require
additional application-specific code:
APSDE_DATA_indication and NO_PRIMITIVE.

EXAMPLE 1: THE BASIC STRUCTURE OF THE APPLICATION

Note: Refer to the ZigBee protocol and
IEEE 802.15.4 specifications for the
complete list of primitives and their
parameters.

while(1)
{
 CLRWDT();

 /* Trigger the current ZigBee primitive */
 StackStatus = ZigBeeTasks(¤tPrimitive);

 /* Process the next ZigBee Primitive */
 ZIGAPLProcessZigBeePrimitives();

 /* Check if the user has any menu inputs */
 if (ConsoleIsGetReady())
 {
 ZIGAPLProcessMenu();
 }

 /* Check if the user has activated a pushbutton */
 ZIGAPLProcessPushButtons();

 /* do any non ZigBee related tasks in this function */
 ZIGAPLProcessNONZigBeeTasks();
}

DS01255A-page 24 © 2009 Microchip Technology Inc.

AN1255

Forming or Joining a Network
The process of forming or joining a network is shown in
the sample applications. The process is initiated in the
NO_PRIMITIVE primitive handling. If the device is a
ZigBee protocol coordinator, and if it has not formed
a network, then it will begin the process of trying
to form a network by issuing the
NLME_NETWORK_FORMATION_request primitive.

If the device is not a ZigBee protocol coordinator and it
is not currently on a network, it will try to join one. If the
device has determined that it was previously on a
network, then it will try to join as an orphan by issuing
the NLME_JOIN_request with the RejoinNetwork
parameter set to TRUE. If that fails, or if the device was
not previously on a network, then it will try to join
as a new node. It will first issue the
NLME_NETWORK_DISCOVERY_request primitive to
discover what networks are available. The application
code will then select one of the discovered networks
and try to join it by issuing the NLME_JOIN_request
with the RejoinNetwork parameter set to FALSE.
See “ZigBee Protocol Timing” for timing requirements
used during this process.

Receiving Messages
The stack notifies the application of received messages
through the APSDE_DATA_indication primitive.
When this primitive is returned, the
APSDE_DATA_indication primitive parameters are
populated with information about the message and the
received message resides in a buffer. Use the function,
APLGet(), to extract each byte of the message from
the buffer.

The DstEndpoint parameter indicates the destina-
tion endpoint for the message. If it is a valid endpoint,
the message can be processed (see Example 2).

Note 1: A case for the ZDO endpoint (endpoint 0)
must be included to handle responses to
all ZDO messages sent by the application.

2: After the message is processed, it must
be discarded using the APLDiscard()
function. Failure to discard the message
will result in no further messages being
processed.
© 2009 Microchip Technology Inc. DS01255A-page 25

AN1255

EXAMPLE 2: RECEIVING MESSAGES

case APSDE_DATA_indication:
{

ProcessReceivedPacket();
}
break;

void ProcessReceivedPacket(void)
{
 BYTE data;
 BYTE sequenceNumber = 0;

 currentPrimitive = NO_PRIMITIVE;

 switch (params.APSDE_DATA_indication.DstEndpoint)
 {
 /* Process anything sent to ZDO i.e EndPoint Zero here */
 case EP_ZDO:
 //Handle ZDO responses here…see sample application for example

 break;

/**/
 // Place a case here for each user defined endpoints.
 //**
 case MY_APP_USER_EP:
 {
 /* This EndPoint is to demonstrate the SendPacket
 * and GetPacket functions. Note that the EndPoint
 * and clusterID must match below for the packet to be
 * sent up. This is for demo, change it if you'd like
 */

 switch(params.APSDE_DATA_indication.ClusterId.Val)
 {
 /* Showing how to support Endpoint & Cluster pairs */
 case MY_APP_CLUSTER:
 case TRANSMIT_COUNTED_PACKETS_CLUSTER:
 {
 // See example application for example code

 break;
 }

 }
}

 /* Discard packet that is received so that buffer can be reused */
 APLDiscardRx();

}

DS01255A-page 26 © 2009 Microchip Technology Inc.

AN1255

The Stack Transmit Buffer
The Microchip Stack for the ZigBee PRO Feature Set
allows one outgoing message in the application layer at
a time. That message is placed in the Transmit Buffer,
referred to in the stack code as TxBuffer, and passed
down through the ZigBee protocols' architectural lay-

ers, to the transceiver, where it is eventually transmit-
ted over the air. The size of the TxBuffer, as per
802.15.4 specifications, is fixed at 127 bytes.
Figure 13 shows a diagram of the TxBuffer, and will be
used to illustrate how a designer’s application may use
this buffer to transmit messages over the air.

FIGURE 13: THE ZigBee® PRO STACK TRANSMIT BUFFER

The operating dimensions of TxBuffer are governed the
following C language parameter definitions:
#define TX_BUFFER_SIZE 128

#define TX_DATA_START 0

#define TX_HEADER_START (TX_BUFFER_SIZE-1)

BYTE TxBuffer[TX_BUFFER_SIZE]; /* the
transmit buffer */

BYTE TxData = TX_DATA_START; /* the
Data section */

BYTE TxHeader = TX_HEADER_START; /* the
Header section */

From an architectural perspective, the TxBuffer has
two distinct sections: a Data section and a Header sec-
tion. The Data section starts at address offset 0
(TX_DATA_START) and grows toward higher offsets,
1, 2, 3 etc., The Header section starts at address offset
127 ((TX_BUFFER_SIZE-1), and decreases toward
lower offsets: 126, 125, 124, etc.

In terms of the ZigBee protocol, a messages' payload
data is placed in the Data section, while the message’s
header information is placed in the Header section.
The TxData and TxHeader parameters are simply used
by the stack as indexes into the Data and Header sec-
tions of the TxBuffer, respectively.

The following code fragment shows how a user’s appli-
cation code sets up the transmit buffer to send out a
ZigBee defined message (i.e. a
BUFFER_TEST_REQUEST) to ask the device with a
network address of 0x7eaf for sixteen (0x10) bytes of
data.

0

127

TX_DATA_START

TX_HEADER_START

TxData++

TxHeader--

TxBuffer
© 2009 Microchip Technology Inc. DS01255A-page 27

AN1255

EXAMPLE 3: REQUESTING DATA FROM ANOTHER DEVICE
outGoingPacket[0] = 0x10;/* requesting 16-bytes from device 0x7eaf */

destinationAddress.v[1] = 0x7e;

destinationAddress.v[0] = 0xaf;

/* See the help file for complete description of this function */

ZIGAPSSendPacket(outGoingPacket,

 1, /* payload is only 1-byte long */

 BUFFER_TEST_REQUEST_CLUSTER,

 MY_PROFILE_ID,

 EP_DEFAULT,

 APS_ADDRESS_16_BIT,

 destinationAddress,

 #ifdef I_SUPPORT_SECURITY

 TRUE);

 #else

 FALSE);

 #endif
DS01255A-page 28 © 2009 Microchip Technology Inc.

AN1255

Sending Messages
The Microchip Stack for the ZigBee Protocol allows one
outgoing message in the application layer at a time.
Messages are sent by calling the
ZIGAPSSendPacket() function.

Messages are typically sent by the application in two
places:

• In APSDE_DATA_indication processing, in
response to a received message.

• In NO_PRIMITIVE processing, in response to an
application event.

The process of sending a message is identical for both
locations. Example 4 shows how to send a unicast
message to a specific device of interest. The following
should be noted:

• Each APS frame must be directed to a particular
end point and Cluster within that Profile.

• Load up the outgoing packet with the data to be
sent.

• Direct message to a specific endpoint (Applet) on
the target device.

The status of the transmitted message will be returned
via the APSDE_DATA_confirm primitive. Note that if the
message fails to transmit, the stack will automatically
handle retrying the message, apscMaxFrameRetries
times.

EXAMPLE 4: SENDING AN OUTGOING MESSAGE
/* Length of packet is first byte */
outGoingPacket[0] = packetLen;

/* Load the payload buffer with the data to send */
for(i = 0; i < packetLen; i++)
{

outGoingPacket[i+1] = i;
}

destinationAddress.v[1] = 0x7e;
destinationAddress.v[0] = 0xaf;

ZIGAPSSendPacket(outGoingPacket,

 packetLen+1, /* length in byte[0] + payload in slots 1 onwards */
 TRANSMIT_COUNTED_PACKETS_CLUSTER,
 MY_PROFILE_ID,
 MY_APP_USER_EP,
 APS_ADDRESS_16_BIT,
 destinationAddress,
 #ifdef I_SUPPORT_SECURITY

 TRUE);
 #else
 FALSE);
 #endif
© 2009 Microchip Technology Inc. DS01255A-page 29

AN1255

Secure Transmission
The Microchip Stack for the ZigBee Protocol supports
all seven security modes that are defined in the ZigBee
protocol specification to protect the output packets.

The security modes can be categorized into three
groups:

• Message Integrity Code (MIC) – Security modes
ensure the integrity of the packet. The MIC
attached to the packet (the size of which is deter-
mined by the particular mode) ensures that the
packet, including the header and payload, has not
been modified in any way during transmission.
The packet payload is not encrypted in these
modes.

• Encryption (ENC) – Security mode encrypts the
payload. The plaintext content of the payload can-
not be exposed without a valid security key. This
mode cannot verify frame integrity or the content
of the header, including the source of the original
packet and the frame counter.

• ENC-MIC – Security modes are a combination of
the two previous groups. In these modes, the pay-
load is encrypted. At the same time, the header
and payload’s integrity is protected by the MIC
attached at the end of the packet.

In addition, there is also Security mode, 0x00, which
specifies no security. Essentially, this is the stack oper-
ating with the security module turned off. The capability
of each of the security modes can be found in Table 12.

The ZigBee protocol specification also defines support
for Residential and Commercial Security modes, based
on the use of security keys. The main difference
between the two is that Commercial mode requires the
generation of an individual security key between two
nodes while communicating, while Residential mode
uses the unique network key within the network to
secure packets. Currently, the Microchip Stack for the
ZigBee Protocol supports only Residential mode.

The stack supports networks with or without a pre-
configured security key. Security is supported in either
the NWK or the APL layer, depending on the require-
ments of the application profile. MAC layer security
support can also be enabled.

The stack adds an auxiliary security header before the
security payload of every secured packet. The format
of the auxiliary security header format can be found in
Table 13.

The ZigBee security protocol specifies the nonce to be
the combination of three items:

• the frame counter
• the source long address
• the key sequence number (for MAC layer) or the

security control byte (for NWK and APL layers)

As the result, if MAC layer security is turned on, the
source address mode in the MAC layer must be
Extended Address mode (0x03). If APL layer security is
turned on, the device that decrypts the packet must be
able to match the packet source short address to its
source long address. This is done using the APS
address map table.

TABLE 12: ZigBee® PROTOCOL SECURITY SERVICES

TABLE 13: ZigBee® PROTOCOL AUXILIARY SECURITY HEADER FORMAT

Security Mode Security Service MIC Length
(Bytes)Identifier Name Access Control Data Encryption Frame Integrity

0x01 MIC-32 X X 4
0x02 MIC-64 X X 8
0x03 MIC-128 X X 16
0x04 ENC X X 0
0x05 ENC-MIC-32 X X X 4
0x06 ENC-MIC-64 X X X 8
0x07 ENC-MIC-128 X X X 16

Security Location

Packet Header Feature

Security Control
(1 Byte)

Frame Counter
(4 Bytes)

Source Extended
Address
(8 Bytes)

Key Sequence
Number
(1 Byte)

MAC Layer Security X X
NWK Layer Security X X X X
APL Layer Security X X X
DS01255A-page 30 © 2009 Microchip Technology Inc.

AN1255

The stack is capable of ensuring sequential freshness
by checking the transmitted frame counter. Only the
frame counter of packets from family members (parent
or children) will be checked, since only family member
knows when a device joins the network. Packets that
are from family members but do not meet the
sequential freshness requirement will be discarded.

The maximum length of a transmitted message is
127 bytes. When the security module is turned on,
between 5 and 29 additional bytes are required for the
auxiliary security header and the MIC, depending on
the combination of security mode and secured layer.
Users will need to balance the security needs and the
impact on the data payload size (and associated perfor-
mance impact) associated with the combination of
security settings.

The security mode and secured layer settings are
defined in the application profile.

Once the security mode has been defined, sending the
secured packet is straightforward; only one modifica-
tion is required in the application code. Example 5
shows the exact same code as in Example 4, with the
additional code to enable secure transmission shown in
bold.

EXAMPLE 5: SENDING A SECURED OUTGOING MESSAGE
/* Length of packet is first byte */
outGoingPacket[0] = packetLen;

/* Load the payload buffer with the data to send */
for(i = 0; i < packetLen; i++)
{

outGoingPacket[i+1] = i;
}

destinationAddress.v[1] = 0x7e;
destinationAddress.v[0] = 0xaf;

ZIGAPSSendPacket(outGoingPacket,

 packetLen+1, /* length in byte[0] + payload in slots 1 onwards */
 TRANSMIT_COUNTED_PACKETS_CLUSTER,
 MY_PROFILE_ID,
 MY_APP_USER_EP,
 APS_ADDRESS_16_BIT,
 destinationAddress,
 #ifdef I_SUPPORT_SECURITY

 TRUE);
 #else
 FALSE);
 #endif
© 2009 Microchip Technology Inc. DS01255A-page 31

AN1255

Primitive Summary
The application layer communicates with the stack pri-
marily through the primitives defined in the ZigBee pro-
tocol and IEEE 802.15.4 specifications. Table 14
describes the primitives that are commonly issued by
the application layer and their response primitive. Not
all devices will issue all of these primitives.

Some primitives that are received by the application
layer are generated by the stack itself, not as a
response to an application primitive. The application
layer must be able to handle these primitives as well.
Table 15 shows all the primitives that can be returned
to the application layer. Default processing for most of
the primitives is included in the application templates.

TABLE 14: TYPICAL APPLICATION PRIMITIVES AND RESPONSES
Application Issued Primitive Response Primitive Description

APSDE_DATA_request APSDE_DATA_confirm Used to send messages to other devices.
APSME_BIND_request APSME_BIND_confirm Force the creating of a binding. Can be used only

on devices that support binding.
APSME_UNBIND_request APSME_UNBIND_confirm Force the removal of a binding. Can be used only

on devices that support binding.
NLME_NETWORK_DISCOVERY_
request

NLME_NETWORK_DISCOVERY_
confirm

Discover networks available for joining. Not used
by ZigBee® protocol coordinators.

NLME_NETWORK_FORMATION_
request

NLME_NETWORK_FORMATION_
confirm

Start a network on one of the specified channels.
ZigBee protocol coordinators only.

NLME_PERMIT_JOINING_
request

NLME_PERMIT_JOINING_
confirm

Allow other nodes to join the network as our
children. ZigBee protocol coordinators and routers
only.

NLME_START_ROUTER_
request

NLME_START_ROUTER_
confirm

Start routing functionality. Routers only.

NLME_JOIN_request NLME_JOIN_confirm Try to rejoin or join the specified network. Not used
by ZigBee protocol coordinators.

NLME_DIRECT_JOIN_
request

NLME_DIRECT_JOIN_
confirm

Add a device as a child device. ZigBee protocol
coordinators and routers only.

NLME_LEAVE_request NLME_LEAVE_confirm Leave the network or force a child device to leave
the network.

NLME_SYNC_request NLME_SYNC_confirm Request buffered messages from the device’s
parent. RFDs only.

APSME_ADD_GROUP_request APSME_ADD_GROUP_confirm Request membership in particular group to an end-
point. Can be used only on devices that support
multicast addressing.

APSME_REMOVE_GROUP_requ
est

APSME_REMOVE_GROUP_conf
irm

Remove membership in particular group from an
endpoint. Can be used only on devices that sup-
port multicast addressing.

APSME_REMOVE_ALL_GROUPS
_request

APSME_REMOVE_ALL_GROUPS
_confirm

Remove membership in all groups from an end-
point. Can be used only on devices that support
multicast addressing.

NETWORK_ROUTE_DISCOVERY
_request

NETWORK_ROUTE_DISCOVERY
_confirm

Initiate route discovery to another device. ZigBee
protocol Coordinator and Routers only.
DS01255A-page 32 © 2009 Microchip Technology Inc.

AN1255

TABLE 15: PRIMITIVE HANDLING REQUIREMENTS

SYSTEM RESOURCE CLEAN-UP
It is required that all unnecessary system resources are
cleaned up after invoking a primitive. The Microchip
ZigBee Protocol Stack already handles most of the clean
up in the stack. Currently, there is only one primitive,
NLME_JOIN_confirm, which is handled by the applica-
tion layer and needs to be cleaned up by the user.

ZigBee protocol devices other than the Coordinator usu-
ally invoke NLME_NETWORK_DISCOVERY_request to
find the current available networks before deciding
which network to join. The primitive,

NLME_NETWORK_DISCOVERY_confirm, returns a link
list of the available networks for the user to choose from.
Upon joining the network, the link list of available net-
works must be removed to free the system resources
when receiving primitive NLME_JOIN_confirm.
Example 6 shows how to free the available network list
in the primitive NLME_JOIN_confirm.

Keep in mind that this procedure has been
implemented in the Microchip ZigBee protocol demo
projects as well as in the application template.

EXAMPLE 6: CLEANING UP SYSTEM RESOURCES

Primitive ZigBee® Protocol
Coordinator

ZigBee Protocol
Router

FFD End
Device

RFD End
Device

APSDE_DATA_confirm X X X X
APSDE_DATA_indication X X X X
APSME_BIND_confirm X(5) X(3,5)

APSME_UNBIND_confirm X(5) X(3,5)

NLME_DIRECT_JOIN_confirm X(5) X(4)

NLME_GET_confirm (Note 2) (Note 2) (Note 2) (Note 2)
NLME_JOIN_confirm X X X
NLME_JOIN_indication X X
NLME_LEAVE_confirm X(1) X(1) X(1) X(1)

NLME_LEAVE_indication X X X X
NLME_NETWORK_DISCOVERY_confirm X X X
NLME_NETWORK_FORMATION_confirm X
NLME_PERMIT_JOINING_confirm X X
NLME_RESET_confirm X X X
NLME_SET_confirm (Note 2) (Note 2) (Note 2) (Note 2)
NLME_START_ROUTER_confirm X X
NO_PRIMITIVE X X X X
Note 1: Required if application will issue an NLME_LEAVE_request to another node.

2: These primitives are not used. Stack attribute manipulation is done directly.
3: Required if binding is supported.
4: Required if application will issue an NLME_DIRECT_JOIN_request.
5: Required if application issues the corresponding BIND/UNBIND_request.

while (NetworkDescriptor)
{

currentNetworkDescriptor = NetworkDescriptor->next;
free(NetworkDescriptor);
NetworkDescriptor = currentNetworkDescriptor;

}

© 2009 Microchip Technology Inc. DS01255A-page 33

AN1255

Microchip Stack for the ZigBee Protocol
Status Flags
The stack has several status flags that may be viewed
by the application. The application must not modify
these flags or stack operation will be corrupted. All
flags are located in the ZigBeeStatus.flags.bits
structure.

TABLE 16: STACK STATUS FLAGS

Configuration Parameters
The Microchip Stack for the ZigBee Protocol is highly
configurable. The following items are used to configure
the size and performance of the stack itself. Depending
on the selected device type, not all of these options will
be available.

MAX FRAMES FROM APL LAYER
Every message sent down from the APL layer using the
APSDE_DATA_request primitive must be buffered so
it can be retransmitted on failure. Additional information
must also be stored so the message confirmation can
be sent back to the APL layer via the
APSDE_DATA_confirm primitive. The stack requires
2 bytes of RAM for each frame. Additional heap space
will also be allocated when a message is sent down.

MAX APS ACK FRAMES GENERATED
If the application receives messages requesting APS
level Acknowledgement, the stack will automatically
generate and send the Acknowledge.

Like the APL layer frames, these must be buffered for
transmission in case of failure. Enter the number of
APS level Acknowledge frames that may be buffered
concurrently. The stack requires two bytes of RAM for
each frame. Additional heap space will also be
allocated when a frame is generated.

Flag Description

bTxFIFOInUse Indicates that the Stack is currently in the process of transmitting an outgoing
message. Use the macros, ZigBeeReady() to check, and ZigBeeBlockTx() to
set, this flag.

bRxBufferOverflow Indicates that the receive buffer has overflowed and messages have been dropped.
Must be cleared by the application.

bHasBackgroundTasks Updated by ZigBeeTasks(). Indicates if the Stack still has background tasks in
progress.

bNetworkFormed ZigBee® protocol coordinator only. Indicates that the device has successfully formed
a network.

bTryingToFormNetwork ZigBee protocol coordinator only. Indicates that the device is in the process of trying
to form a network.

bNetworkJoined ZigBee protocol routers and end devices. Indicates that the device has successfully
joined a network.

bTryingToJoinNetwork ZigBee protocol routers and end devices. Indicates that the device is in the process of
trying to join a network.

bTryOrphanJoin ZigBee protocol routers and end devices. Indicates that the device was once part of a
network and should try to join as an orphan.

bRequestingData RFD end devices only. Indicates that the device is in the process of requesting data
from its parent.

bDataRequestComplete RFD end devices only. Indicates that the current request for data is complete and the
device may be able to go to Sleep.
DS01255A-page 34 © 2009 Microchip Technology Inc.

AN1255

MAX APS ADDRESSES
Although all normal messaging between nodes is done
using 16-bit network addresses, the ZigBee protocol
specification allows the APSDE_DATA_request primi-
tive to be invoked with a 64-bit MAC address as the
message destination. If so, the APS layer searches an
APS address map for the 16-bit address of the specified
node. This table is stored in nonvolatile memory and
must be maintained by the application. Use of this table
is optional. If this value is set to ‘0’, the table is not
created; no code is created to search the table and
APSDE_DATA_request calls with 64-bit addressing will
fail. If this value is not set to ‘0’, the stack requires
10 bytes of nonvolatile memory for each entry, plus
2 bytes of RAM.

MAX BUFFERED INDIRECT MESSAGES
If a device supports bindings (ZigBee protocol coordi-
nators, and optionally, ZigBee protocol routers), then it
must buffer all received indirect transmissions so they
can be forwarded to one or more destinations. The
stack requires 2 bytes of RAM for each message
specified. Additional heap space will also be allocated
when an indirect message is received.

BINDING TABLE SIZE
If a device supports bindings, then it must possess a
binding table. The stack requires 5 bytes of nonvolatile
memory for each binding table entry. Note that the min-
imum binding table size is dictated by the stack profile.

NEIGHBOR TABLE SIZE
All devices keep track of other nodes on the network by
using a Neighbor Table. End devices require a Neigh-
bor Table to record potential parents. ZigBee protocol
coordinators require a Neighbor Table to record chil-
dren. ZigBee protocol routers require a Neighbor Table
for both functions. The stack requires 15 bytes of non-
volatile memory for each Neighbor Table entry. Note
that minimum Neighbor Table size is dictated by the
stack profile.

MAX BUFFERED BROADCAST MESSAGES
When FFDs generate or receive a broadcast message,
they must buffer the message while they check for pas-
sive Acknowledges in case they must rebroadcast the
message. The stack may be configured as to how many
broadcast messages may be buffered in the system at
one time. It is recommended that this value be at least
two, since a typical discovery sequence is a broadcast
NWK_ADDR_req, followed soon by a broadcast route
request. The system requires 2 bytes of RAM for each
buffered broadcast message specified. Additional heap
space will also be allocated when a broadcast message
is received or generated.

MAX NUMBER OF GROUPS
If the device supports Group Addressing, then it must
have a Group Table. This parameter governs the max-
imum number of records that the Group Table will sup-
port. The stack requires 22 bytes of nonvolatile
memory for each Group Table entry.

MAX END POINTS PER GROUP
If the device supports Group Addressing, then each
Group ID can be associated with up to this many
endpoints.

MAX NUMBER OF DUPLICATE PACKETS
All devices keep track of each packet they receive. Indi-
vidual packets are distinguished from each other by
their unique sequence number. If two packets are the
received that bear the same sequence number, the
second packet is tagged as a duplicate and is dis-
carded. The number of packet sequence numbers that
are maintained and checked against the latest packet
received is governed by the parameter.

DUPLICATE TABLE EXPIRATION
This parameter governs how long a packet sequence
number is maintained by the device before the
sequence number is discarded. If two packets are
received that bear the same sequence number before
the first sequence number has expired, the second
packet is tagged as a duplicate and discarded. The
expiration time interval for the duplicate packet is
governed by this parameter.

ROUTE DISCOVERY TABLE SIZE
The ZigBee protocol specification requires that FFDs
use a route discovery table during the route discovery
process. Since these entries are required for only a
short time, they are stored in heap memory. The
system requires 2 bytes of RAM for each table entry
specified. Additional heap space will also be allocated
when route discovery is underway. Note that the mini-
mum route discovery table size is dictated by the stack
profile.

ROUTING TABLE SIZE
The ZigBee protocol specification requires that FFDs
maintain a routing table to route messages to other
nodes in the network. The system requires 5 bytes of
nonvolatile memory for each entry specified. Note that
the minimum routing table size is dictated by the stack
profile.

RESERVED ROUTING TABLE ENTRIES
The ZigBee protocol specification requires that FFDs
reserve a portion of the routing table for use during
route repair. Note that the minimum reserved table
entries are dictated by the stack profile.
© 2009 Microchip Technology Inc. DS01255A-page 35

AN1255

MAX BUFFERED ROUTING MESSAGES
If an FFD receives a message that needs to be routed,
and the FFD does not have a route for the required
destination, it must buffer the received message and
perform route discovery (if possible) for the required
destination. The system requires 10 bytes of RAM for
each buffered message specified. Additional heap
space will also be allocated when a message is
received.

CHANNEL ENERGY THRESHOLD
When a ZigBee protocol coordinator selects a channel
for a new network, it first scans all of the available chan-
nels and eliminates those whose channel energy
exceeds a specified limit.

MINIMUM JOIN LQI
When a ZigBee protocol router or end device joins a
new network, it examines the link quality of the beacon
it received from each possible parent. If the link quality
is below this specified minimum, the device will
eliminate that device as a potential parent.

TRANSACTION PERSISTENCE
ZigBee protocol coordinators and routers are required
to buffer messages for their children whose transceiv-
ers are off when they are Idle. This parameter is the
amount of time in seconds that the parent device must
buffer the messages before it may discard them.

SECURITY MODE
This parameter specifies the use of either Residential
or Commercial Security mode, as defined in the ZigBee
protocol. The differences between these modes in dis-
cussed in “Secure Transmission”. Currently, the
Microchip Stack for the ZigBee Protocol supports only
Residential mode.

TRUST CENTER
The ZigBee protocol defines the concept of a Trust
Center to coordinate the operations related to security.
A trust center must be an FFD, and there can be only
one trust center in a network. The Trust Center address
must be defined in the Coordinator as well as in the
device defined as the Trust Center.

NETWORK KEY
This parameter specifies the 16 byte network security
key. This key is used to secure the outgoing packets as
well as to decrypt the incoming packets when security
is used in Residential mode. There is also a sequence
number for the key, used primarily to identify the key,
especially if multiple network keys are transferred and
used during run time. The Network Key must be pres-
ent for Coordinators and the device that acts as the
trust center.

KEY PRESENT IN ALL DEVICES ON THE
NETWORK
This parameter is used for Coordinator and Router. If
the key is present in all devices on the network, then all
devices must contain the Network Key. By defining this
parameter, it is assumed that all devices already have
the key before joining the network. As a result, the trust
center sends the joining device a dummy key, and all
packets between devices on the network may be
encrypted. If, however, this parameter is not set, the
trust center tries to send the joining device the
unprotected security key through the joining device’s
parent.

NONVOLATILE STORAGE
The ZigBee protocol requires that many tables be
stored in nonvolatile memory. PIC microcontrollers with
an allowable erase block size (smaller than 127 for
PIC18F devices) may store these in internal program
memory. This is the preferred location, since read and
write accesses are relatively fast. However, PIC MCU
devices with large erase block sizes, such as the
PIC24F devices, must store these values externally.
The stack provides support to use an external SPI
serial EEPROM to store these values. Since some
transceivers require a dedicated SPI peripheral unless
external hardware is provided, the SPI selection may
be disabled depending on transceiver configuration.

When using external nonvolatile memory, it may be
desirable to place each device’s MAC address in the
serial EEPROM during production rather than using
SQTP when programming the PIC MCU. If the MAC
address is to be programmed into the serial EEPROM
during the manufacturing process, it should be stored
in locations 0 through 7 in the serial EEPROM.

STOCHASTIC_ADDRESSING
This parameter specifies the use of the device stochas-
tic addressing method, instead of the older CSKIP
method that was employed in the ZigBee-2006 Stack.
The ZigBee PRO ZCP profile mandates the use of sto-
chastic addressing.

SAS_TABLE_SIZE
This parameter specifies how many Startup Attribute
Sets (SAS) will be stored in NVM. The default setting is
2. Therefore, in addition to a default SAS, two addi-
tional instances are maintained in NVM.

Note: If the application is to use security and
store its nonvolatile information externally,
the security keys will be stored in the serial
EEPROM. The stack will encrypt these
keys before storing them, using a random
key generated by the stack configuration
tool. Unencrypted keys will not be stored
externally.
DS01255A-page 36 © 2009 Microchip Technology Inc.

AN1255

COMMISSIONING
This parameter specifies that a Startup Attribute Set
(SAS) will be stored in NVM. By design, space is
reserved in NVM for three SAS instances and the API
functions that support the reading from and writing to
the SAS are included in the builds for each ZigBee
device type.

CONCENTRATOR
This ZigBee PRO Feature Set defines the concept of a
Concentrator device that is capable of managing many-
to-one and source routing. This parameter indicates
which device has the built-in infrastructure to support
the requirements of a Concentrator device, such as
maintaining a Route Record Table.

CONCENTRATOR RADIUS
When a ZigBee PRO Concentrator device collects the
routes to other devices in the network, it does so only
within a specified maximum range. This parameter
specifies the neighborhood range, in radius hops, for
which a given concentrator stores routes. In a large
network, this parameter can be used to establish the
“neighborhood” in which each Concentrator operates.

HIGH CONCENTRATOR
This ZigBee PRO Feature Set defines the concept of a
Concentrator device that is capable of managing many-
to-one and source routing. This parameter indicates
that the device has the built-in infrastructure to support
the requirements of a Concentrator and it maintains a
Route Record Table.

LOW CONCENTRATOR
This ZigBee PRO Feature Set defines the concept of a
Concentrator device that is capable of managing many-
to-one and source routing. This parameter indicates
that the device has the built-in infrastructure to support
the requirements of a Concentrator but does not main-
tain a Route Record Table. All data requests to this type
of Concentrator must be preceded by a Route Record
Command.

ROUTE RECORD TABLE SIZE
The ZigBee PRO Feature Set requires that all High
Concentrator devices maintain a Route Record Table in
order to route messages to target devices using source
routing. The system requires 240 bytes of RAM for the
table, and the default maximum number of entries that
can be held in this table is 60.

ROUTING_TABLE_AGING
The Link Status Command is used to update both the
neighbor and routing table entries. If it is determined
that a device has moved or is no longer on the network,
this parameter is used to decide when its entry in the
routing table would be removed.

FRAGMENTATION
The ZigBee PRO Feature Set allows for the transmis-
sion of packets that will exceed the 127-byte packet
length set forth in the 802.15.4 specifications. This
parameter is used to allow the stack to support the
chopping up of larger packets into smaller transmittable
blocks that are reassembled at the receiver. If this
parameter is not set, then fragmentation is disabled.

FREQUENCY_AGILITY
This parameter is used to specify support for the fre-
quency agility feature. If not specified, then the
dynamic channel change and notification mechanism
within the stack will be disabled.

PANID_CONFLICT
This parameter is used to specify support for the PANID
conflict detection and resolution mechanism. If not
specified, then PANID conflicts are ignored and notifi-
cations are not sent to the channel manager.

PRECONFIGURED_LINK_KEY
This parameter specifies the 16-bit application link
security key. This key is used to secure the outgoing
packets as well as to decrypt the incoming packets at
the application level when the high security mode is
used. The Link Key must be present for Coordinators
and the device that acts as the trust center.

HEAP SIZE
The Microchip Stack uses dynamic memory allocation for
many purposes, including those listed in Table 17. RFD
end devices may be able to have as little as one bank of
heap space. FFDs should have as much space as possi-
ble. FFDs with child devices whose transceivers are off
when Idle are required to be able to buffer one or more
messages for each child. Refer to the appropriate stack
profile for the exact requirement. Heap space will also be
required based on the settings above. The selected heap
size should take all of these items into consideration,
and, therefore, is very application dependent.
© 2009 Microchip Technology Inc. DS01255A-page 37

AN1255

TABLE 17: HEAP USAGE

ZigBee Protocol Timing
The data rate for 2.4 GHz operation is 250 kbps. Four
data bits are transferred during each symbol period. A
symbol period is, therefore, 16 microseconds. Internal
stack timing is based off of the symbol period.

Both beacon and non-beacon networks have timings
that are based off superframes, even though the super-
frame is not used in non-beacon networks. The super-
frame duration (aBaseSuperframeDuration) is the
number of symbols that form a superframe slot
(aBaseSlotDuration, 60) multiplied by the number of
slots contained in a superframe (aNumSuperframeSlots,
16). The scan duration required
by the NLME_NETWORK_DISCOVERY_request,
NLME_NETWORK_FORMATION_request, and
NLME_JOIN_request primitives is (aBaseSuperframe-
Duration * (2n + 1)) symbols, where n is the value of the
ScanDuration parameter. For the Microchip Stack,
ScanDuration can be between 0 and 14, making the
scan time between 0.031 seconds and 4.2 minutes.

For other frequency bands, refer to the IEEE specifica-
tions for the data rate. The other times can be calculated
from that.

CONCLUSION
The Microchip Stack for the ZigBee Protocol provides a
modular, easy-to-use library that is application and
RTOS independent. It is specifically designed to sup-
port more than one RF transceiver with minimal
changes to upper layer software. Applications can be
easily ported from one RF transceiver to another. It is
targeted for the MPLAB C Compiler for PIC24 MCUs
and dsPIC® DSCs, but it can be easily modified to sup-
port other compilers.

REFERENCES
• “ZigBee® Protocol Specification”

http://www.zigbee.org
• “IEEE 802.15.4™ Specification”

http://www.ieee.org

SOURCE CODE
The complete source code, including demo applica-
tions, is available from microchipDIRECT.

Description Layer
ZigBee®
Protocol

Coordinator

ZigBee
Protocol
Router

FFD End
Device

RFD End
Device

Checking for descriptor matching ZDO X X X X
Checking for end device bind matching ZDO X X(1)

Buffering messages received from the APL APS X X X X
Buffering received indirect messages for retransmission APS X X(1)

Buffering route requests for rebroadcast NWK X X X
Buffering other broadcast messages for rebroadcast NWK X X X
Buffering channel information on network formation NWK X
Buffering network information on network join NWK X X X
Route discovery table entries NWK X X X
Buffering messages that require routing NWK X X X
Buffering messages for RFD children in Sleep MAC X X
Buffering a received message PHY X X X X
Nonvolatile memory manipulation NVM X X X X
Temporary security data during encryption process SEC X X X X
Note 1: If binding is supported.
DS01255A-page 38 © 2009 Microchip Technology Inc.

AN1255
ANSWERS TO FREQUENTLY ASKED
QUESTIONS (FAQs)
Q: Is the Microchip Stack for the ZigBee Protocol a

ZigBee protocol compliant platform?
A: Yes.

Q: I want to use a wireless protocol, but I do not
want all of the ZigBee protocol features. May I
modify the Microchip Stack for my own use
without receiving any further permissions?

A: No. Microchip has the relevant license rights to
distribute this stack. However, you must be a
member of the Zigbee Alliance and have a
current license to the Microchip Stack for the Zig-
Bee Protocol in order to distribute products using
the Microchip Stack. Neither Zigbee Alliance nor
Microchip allows modifications to be made to the
Microchip Stack.

Q: How do I get the source code for the Microchip
Stack for the ZigBee Protocol?

A: You may purchase it from the Microchip web site
(www.microchipDIRECT.com).

Q: How do I get target hardware design files?
A: You may download it from the PICDEM™ Z

Demonstration Kit page on the Microchip web
site.

Q: What tools do I need to develop a ZigBee
protocol application using the Microchip Stack?

A: You would need:
• At least two Explorer 16 boards
• Complete source code for the Microchip Stack

for the ZigBee Protocol for dsPIC33 and
PIC24 branded products (free of charge)

• The MPLAB C Compiler for PIC24 MCUs and
dsPIC® DSCs

• MPLAB IDE software
• A device debugger and programmer, such as

MPLAB ICD 3

Q: How much program and data memory does a
typical ZigBee protocol node require?

A: The exact program and data memory require-
ments depend on the type of node selected. In
addition, the sizes may change as new features
and improvements are added. Please refer to
the help file for more detail.

Q: What is the minimum processor clock requirement
for running the different devices?

A: Normally, ZigBee protocol coordinators and
routers should run at higher speeds as they must
be prepared to handle packets from multiple
nodes. The required clock speed depends on the
number of nodes in the network, the types of
nodes and the frequency at which the end
devices request data. The demo coordinator
uses 16 MHz (4 MHz with 4x PLL) and can
support multiple child devices. We have not
performed extensive characterization, since
there are so many possible configurations. An
end device does not have to run as fast as a
coordinator or router. A simple end device may
run at just 4 MHz.

Q: Can I use the internal RC oscillator to run the
Microchip Stack?

A: Yes, you may use the internal RC oscillator to
run the Microchip Stack. If your application
requires a stable clock to perform time-sensitive
operations, you must make sure that the internal
RC oscillator meets your requirement or you may
periodically calibrate the internal RC oscillator to
keep it within your desired range.

Q: What is the typical radio range?
A: The exact radio range depends on the type of RF

transceiver and the type of antenna in use. A
2.4 GHz-based node with a well designed
antenna could reach as high as 100 meters line-
of-sight. When placed inside a building, the
typical internal range is about 30 meters, but the
actual range may be greatly reduced due to
walls and other structural barriers.
© 2009 Microchip Technology Inc. DS01255A-page 39

AN1255

Q: I have an existing application that uses a wired

protocol, such as RS-232, RS-485, etc. How do
I convert it to a ZigBee protocol-based
application?

A: First, you would need to match your application
with one of the ZigBee public profiles. If no public
profile is appropriate, you would have to create
your own private profile.
If your network is relatively small, the Microchip
MiWi™ protocol provides an alternative. (For
more information, see AN1066, “MiWi™ Wireless
Networking Protocol Stack”.)
You would need to develop one ZigBee protocol
coordinator and one more ZigBee protocol end-
device application. The coordinator is required to
create and manage a network. If your existing net-
work has one main controller and multiple end
devices or sensor devices, your main controller
would become a ZigBee protocol coordinator and
sensor devices would become ZigBee protocol
end devices. If the existing devices are already
mains powered, you may want to consider
making the end devices FFDs rather than RFDs.
FFDs do not generate as much network traffic and
can easily be converted to routers in case one or
more of your devices is out of radio range of the
coordinator. You must make sure that the radio
range offered by a specific RF transceiver is
acceptable to your application.

Q: How do I obtain the ZigBee protocol and
IEEE 802.15.4 specification documents?

A: Both specifications are freely available on the
internet. The IEEE 802.15.4 specification
is available at http://standards.ieee.org/
getieee802/download/802.15.4-2003.pdf. The
ZigBee protocol specification is available at
www.zigbee.org.

Q: I have an application that I have built with an
earlier version of the Microchip Stack. How do I
port my application to the new stack?

A: The interface to the v2.0-2.6 stack architecture is
the same as v2.0.PRO.2.0:

• Application-Specific Initialization: Insert
any initialization required by the application
before the stack is started.

• Received ZDO Responses: Insert code here
to handle responses to ZDO requests that the
application issues. If the application does not
issue any ZDO requests, this section will be
empty.

• Messages Received for User-Defined
Endpoints: The new architecture handles
endpoints differently. There is no need to
“open” or “close” an endpoint. Each endpoint
is simply a case of a switch statement. Note
that the APLDiscardRx() function is called
after the switch statement, so the individual
endpoints do not need to call it.

• Application Processing that can Generate
ZigBee Protocol Messages: A new outgoing
message can only be started if the current
primitive is NO_PRIMITIVE and another
outgoing message is not already waiting
(ZigBeeReady() returns TRUE). Place all
message generation processing from all end-
points here. Note that no code is required to
retry the message in case it fails to transmit or
receive an APS level Acknowledge. That is
now handled automatically by the stack. Also,
the stack now automatically handles all
message routing.

• Non-Related ZigBee Protocol Processing:
If the application has any other processing
that does not relate at all to the ZigBee proto-
col, place that code here. Make sure that this
processing does not lock the system for long
periods of time or the stack will miss incoming
messages.

• Hardware Initialization: The required
hardware initialization for the is included in
the template files. If your hardware require-
ments are different, modify this function
appropriately. Note that this function must
properly configure all pins required to inter-
face with the transceiver and must be called
before ZigBeeInit().

Network formation and association are provided by the
sample applications.
DS01255A-page 40 © 2009 Microchip Technology Inc.

AN1255
REVISION HISTORY
Rev A Document (04/2009)

Original version of this document.
© 2009 Microchip Technology Inc. DS01255A-page 41

AN1255

NOTES:
DS01255A-page 42 © 2009 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:
• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.
© 2009 Microchip Technology Inc.
Trademarks

The Microchip name and logo, the Microchip logo, Accuron,
dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro,
PICSTART, rfPIC, SmartShunt and UNI/O are registered
trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

FilterLab, Hampshire, Linear Active Thermistor, MXDEV,
MXLAB, SEEVAL, SmartSensor and The Embedded Control
Solutions Company are registered trademarks of Microchip
Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard,
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,
ECONOMONITOR, FanSense, In-Circuit Serial
Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB
Certified logo, MPLIB, MPLINK, mTouch, nanoWatt XLP,
PICkit, PICDEM, PICDEM.net, PICtail, PIC32 logo, PowerCal,
PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB, Select
Mode, Total Endurance, TSHARC, WiperLock and ZENA are
trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2009, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

 Printed on recycled paper.
DS01255A-page 43

Microchip received ISO/TS-16949:2002 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

DS01255A-page 44 © 2009 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260
Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445
Toronto
Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431
China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130
China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256
China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4080
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513
Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122
Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934
Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859
Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850
Taiwan - Hsin Chu
Tel: 886-3-6578-300
Fax: 886-3-6578-370
Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803
Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820

WORLDWIDE SALES AND SERVICE

03/26/09

	Introduction
	Assumption
	Distribution Notice
	ZigBee Compliant Platform
	Features
	Considerations
	Limitations
	Development Tools Requirements
	ZigBee Pro Feature Set Overview
	Stochastic Addressing
	FIGURE 1: Stochastic Network Addresses of ZigBee® Pro Devices

	Address Conflict Detection and Resolution
	FIGURE 2: Packet Sniffer Capture of an ENDDEVICEAnnce Message
	FIGURE 3: Packet Sniffer Illustration of Address Conflict Detection

	The ZigBee PRO Network Channel Manager
	PANID Conflict Detection and Resolution
	FIGURE 4: Packet Sniffer Capture of PANID 0x1aaa Conflict Detection
	FIGURE 5: Packet Sniffer Capture of PANID 0x1aaa Conflict Resolution

	Fragmentation and Reassembly
	FIGURE 6: Illustration of the ZigBee® Pro Fragmentation Parameters

	Frequency Agility
	Link Status Commands
	FIGURE 7: ZigBee® Pro Link Status Command Packet Capture

	The Startup Attribute Set and Nonvolatile Storage Feature
	TABLE 1: The Parameters of the Startup Attribute Set (SAS)
	TABLE 2: Representation of the Three SAS Blocks in the ZigBee® PRO Stack

	Many-to-One Routing
	FIGURE 8: Source Routing Illustration
	TABLE 3: Route Record Table Entry Format
	FIGURE 9: Route Record Command Frame Capture

	Source Routing
	FIGURE 10: Network Header of a Source Routed Packet

	High Security Application Master Key Exchange

	Stack Architecture
	FIGURE 11: ZigBee® Protocol Stack Architecture

	Typical ZigBee Protocol Node Hardware
	TABLE 4: PIC24FJ128GA010 Microcontroller Resources Required by the ZigBee® PRO Protocol Stack
	FIGURE 12: Typical ZigBee® Protocol Node Hardware (Control Signals Added)

	Installing The Microchip ZigBee PRO Stack
	Source File Organization
	TABLE 5: Source File Directory Structure

	Demo Applications
	Demo Application Features
	Demo Applications Project and Source Files
	TABLE 6: Microchip Stack Source Files in ZigBeeStack Subdirectory
	TABLE 7: Microchip Common Source Files in Common Subdirectory
	TABLE 8: ZigBee® Protocol Coordinator Demo in Sample Applications directory
	TABLE 9: ZigBee® Protocol Router Demo in Sample Applications directory
	TABLE 10: ZigBee® Protocol End Device Demo in Sample Applications directory

	Demonstrating Sample Applications

	Using the Microchip Stack for the ZigBee Protocol
	The ZigBee Stack Nonvolatile Storage
	TABLE 11: ZigBee® PRO Stack Parameters and Tables Stored In EEPROM

	Interfacing with the Microchip Stack for the ZigBee Protocol
	EXAMPLE 1: The Basic Structure Of The Application

	Forming or Joining a Network
	Receiving Messages
	EXAMPLE 2: Receiving Messages

	The Stack Transmit Buffer
	FIGURE 13: The ZiGBee® PRO Stack Transmit Buffer
	EXAMPLE 3: REQUESTING DATA FROM ANOTHER DEVICE

	Sending Messages
	EXAMPLE 4: Sending an Outgoing Message

	Secure Transmission
	TABLE 12: ZigBee® Protocol Security Services
	TABLE 13: ZigBee® Protocol Auxiliary Security Header Format
	EXAMPLE 5: SENDING a SECURED Outgoing MESSAGE

	Primitive Summary
	TABLE 14: Typical Application Primitives and Responses
	TABLE 15: Primitive Handling Requirements
	System Resource Clean-up
	EXAMPLE 6: Cleaning up System Resources

	Microchip Stack for the ZigBee Protocol Status Flags
	TABLE 16: Stack Status Flags

	Configuration Parameters
	MAX Frames From APL Layer
	MAX APS ACK Frames Generated
	MAX APS Addresses
	MAX Buffered Indirect Messages
	Binding Table Size
	Neighbor Table Size
	MAX Buffered Broadcast Messages
	MAX NUMBER OF GROUPS
	MAX END POINTS PER GROUP
	MAX NUMBER OF DUPLICATE PACKETS
	DUPLICATE TABLE EXPIRATION
	Route Discovery Table Size
	Routing Table Size
	Reserved Routing Table Entries
	MAX Buffered Routing Messages
	Channel Energy Threshold
	Minimum Join LQI
	Transaction Persistence
	SECURITY MODE
	TRUST CENTER
	NETWORK KEY
	KEY PRESENT IN ALL DEVICES ON THE NETWORK
	Nonvolatile Storage
	STOCHASTIC_ADDRESSING
	SAS_TABLE_SIZE
	COMMISSIONING
	CONCENTRATOR
	CONCENTRATOR RADIUS
	HIGH CONCENTRATOR
	LOW CONCENTRATOR
	ROUTE RECORD TABLE SIZE
	ROUTING_TABLE_AGING
	FRAGMENTATION
	FREQUENCY_AGILITY
	PANID_CONFLICT
	PRECONFIGURED_LINK_KEY
	Heap Size
	TABLE 17: Heap Usage

	ZigBee Protocol Timing

	Conclusion
	References
	Source Code
	Answers to Frequently Asked Questions (FAQs)
	Revision History
	Corporate Office
	Atlanta
	Boston
	Chicago
	Cleveland
	Fax: 216-447-0643
	Dallas
	Detroit
	Kokomo
	Toronto
	Fax: 852-2401-3431
	Australia - Sydney
	China - Beijing
	China - Shanghai
	India - Bangalore
	Korea - Daegu
	Korea - Seoul
	Singapore
	Taiwan - Taipei
	Fax: 43-7242-2244-393
	Denmark - Copenhagen
	France - Paris
	Germany - Munich
	Italy - Milan
	Spain - Madrid
	UK - Wokingham
	Worldwide Sales and Service

