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INTRODUCTION
With the introduction of Microchip’s microcontroller with
USB OTG (Universal Serial Bus On-The-Go) periph-
eral, implementing an embedded host has become
easier. USB is used in several types of communication
devices. The USB specification defines an architecture
that is capable of supporting most communication
devices which use the USB Communications Device
Class (CDC).

This application note describes how to develop a USB
CDC application using a Microchip USB OTG
microcontroller as the embedded host.

COMMUNICATIONS DEVICE 
OVERVIEW
Several types of communication can benefit from USB.
The CDC specification provides a set of rules for all
communication devices. Three classes define
communication devices:

• Communications Device Class (CDC) – The CDC 
is a device-level definition, and is used by the host 
to identify a communications device that may 
present several different types of interfaces.

• Communications Interface Class (CIC) – The CIC 
defines a general purpose mechanism that can be 
used to enable all types of communication 
services on the USB. This interface consists of 
two elements:
- A management element

The management element configures and
controls the device; it consists of Endpoint 0.

- A notification element

The notification element is optional and is used
to handle transport events. The notification
element can be used to transfer information
from device to host, which may then prompt the
host to initiate a transfer over the management
element. For example, it can be used for flow
control signals for RS-232 emulation devices.

• Data Interface Class (DIC) – The DIC defines a 
general purpose mechanism to enable bulk or iso-
chronous transfer on the USB when the data does 
not meet the requirements for any other class. 
This interface is used to transmit/receive data 
to/from the device. Endpoints belonging to a DIC 
are either isochronous or bulk, and normally exist 
in pairs of the same type (one IN and one OUT). 
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Class-Specific Codes
This section provides CDC, CIC and DIC codes,
including the subclasses and protocols supported in
the current version of the stack. The current version
of Microchip CDC host stack supports RS-232 emula-
tion over USB. The succeeding sections provide
codes to support this functionality.

Table 1 provides the CDC code:

TABLE 1: COMMUNICATIONS DEVICE 
CLASS CODE

Table 2 provides the CIC code:

TABLE 2: COMMUNICATIONS 
INTERFACE CLASS CODE

The CDC specification provides various subclasses.
The current version of the Microchip CDC host stack
supports below mentioned subclasses.

Table 3 provides the currently supported subclass
codes for the CIC:

TABLE 3: COMMUNICATIONS 
SUBCLASS CODE

Table 4 provides the currently supported
communications class protocol codes:

TABLE 4: COMMUNICATIONS CLASS 
PROTOCOL CODE

Table 5 provides the DIC code:

TABLE 5: DATA INTERFACE CLASS 
CODE

No specific subclass and protocol codes are required to
achieve RS-232 functionality over USB.

Code Class

02h Communications Device Class 

Code Class

02h Communications Interface Class 

Code Class

02h Abstract Control Model 

Code Class

01h AT Commands: V.250, etc. 

Code Class

0Ah Data Interface Class 
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Communication and Data Transfer 
Handling
Communication Management: The CDC client driver
takes care of enumerating the device connected on the
bus. The application must define the line coding param-
eters in the usb_config.h file; the USBConfig utility
can be used to set these parameters. If the connected
device complies with the settings, then the device will
be successfully attached to the bus; otherwise, it will
not be attached. If the application needs to change the
settings dynamically after the device has been
successfully enumerated, it can be done using the

USBHostCDC_Api_ACM_Request() interface func-
tion. The following standard class-specific requests are
currently implemented:

• Class-Specific Requests – An Abstract Control 
Model (ACM) communications device uses a 
CDC interface for device management with a 
communications subclass code of abstract 
control. 

Table 6 provides the only class-specific request codes
that are valid, and are supported for a CDC interface
with a communications subclass code of ACM.

SendEncapsulatedCommand

This request is used to issue a command in the format
of the supported control protocol of the communica-
tions class interface. The specification requires this
request support.

GetEncapsulatedResponse

This request is used to request a response in the
format of the supported control protocol of the commu-
nications class interface. The specification requires this
request support.

SetLineCoding

This request allows the host to specify character format
properties, which might be required by some applica-
tions. This is especially required in RS-232 emulation.
For this application, the host and device must be aware
of data rate, parity, number of Stop bits, etc. This
applies to data transfers from the host to the device,
and from the device to the host. The line coding data
structure is defined in Table 7.

TABLE 6: CLASS SPECIFIC REQUESTS
Command Name bmRequestType bRequest wValue wIndex wLength Data

SendEncapsulatedCommand 0x21 0 0 Interface Amount of data in 
bytes associated 
with this recipient

Control 
Protocol-Based 
Command

GetEncapsulatedResponse 0xA1 1 0 Interface Amount of data in 
bytes associated 
with this recipient

Protocol 
Dependent Data

SetLineCoding 0x21 0x20 0 Interface 7 Line Coding Data 
Structure

GetLineCoding 0xA1 0x21 0 Interface 7 Line Coding Data 
Structure

SetControlLineState 0x21 0x22 2 Interface 0 None
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GetLineCoding

This request allows the host to find currently configured
line coding parameters. The line coding data structure
is defined in Table 7.

SetControlLineState

This request generates flow control signals for RS-232
communications. Table 8 provides the bitmap details
for the Control Line Signal (CLS).

TABLE 8: BITMAP DETAILS FOR 
CONTROL LINE SIGNAL

TABLE 7: LINE CODING DATA DETAILS

Offset Field Size
(Bytes) Description

0 dWDTERate 4 Data terminal rate 
in bits per sec.

4 bCharFormat 1 Stop Bits
0-1 Stop Bit
1-1.5 Stop Bits
2-2 Stop Bits

5 bParityType 1 Parity
0 = None
1 = Odd
2 = Even
3 = Mark
4 = Space

6 bDataBits 1 Data bits (5, 6, 7, 
8 or 16)

Bit Position Description

15...2 Reserved 
1 Carrier control signal, corresponds 

to RTS signal in RS-232.
0 = Deactivate Carrier
1 = Activate Carrier

0 Indicates to DCE if DTE is present 
or not; corresponds to DTR signal in 
RS-232.
0 = Not Present
1 = Present

Note: For a detailed specification on Com-
munications Device Class (CDC) and
Abstract Control Mode (ACM), refer to
“Universal Serial Bus Class Definitions for
Communication Devices” at: 
http://www.usb.org.

http://www.usb.org
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THE CDC CLIENT DRIVER

Architecture of CDC Client Driver
The host functionality is a multilayer stack (see
Figure 1) with different components of Microchip’s USB
embedded host support package contributing to differ-
ent layers. The user application interacts with the CDC
client driver by using the interface function provided in
the usb_host_cdc_interface.h file.

FIGURE 1: USB CDC HOST 
ARCHITECTURE

USB EMBEDDED HOST LAYER
The USB embedded host layer provides basic USB
embedded host support. The interface to this layer is
provided automatically in the CDC client driver. For
more information about this layer, refer to Microchip's
AN1140, “USB Embedded Host Stack” and AN1141,
“USB Embedded Host Stack Programmer’s Guide”. It
is not necessary to be familiar with this layer’s
operation or configuration to use it with the CDC
application.

CDC – ACM CLASS CLIENT AND INTERFACE 
LAYER
The next layer provides the client driver for the CDC
class. The current version of the stack supports the
ACM subclass only. The client driver enumerates the
connected device, and manages all the CDC related
transfers. This layer also provides interface functions to
the application layer. Each of these interface functions
is explained individually in subsequent sections.

     Application Layer (RS-232 Emulation...) 

CDC – ACM Class Client Driver

USB Embedded Host Layer

CDC – ACM Interface Layer

Note: For detailed information about the USB
host CDC driver APIs, refer to the API doc-
umentation provided in the Help directory
in the firmware download. The firmware is
available at www.microchip.com/usb.

www.microchip.com/usb
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Using the CDC Client Driver
This section provides a brief overview of the installation
and configuration procedures. For detailed information
on installation and configuration, refer to AN1140, “USB
Embedded Host Stack” and AN1141, “USB Embedded
Host Stack Programmer’s Guide”.

Installing the CDC Client Driver
The CDC client driver is installed as part of the complete
USB embedded host support package, available on the
Microchip web site (http://www.microchip.com/usb).

Configuring the USB CDC Class
Use the configuration tool, USBConfig.exe, to
configure the CDC client driver for an application. This
tool is installed in the .\Microchip\USB
directory. Succeeding sections briefly describe the
configuration of USBConfig.exe.

MAIN TAB
For the CDC Client driver for the USB embedded host,
the ‘USB Embedded Host’ radio button in the Main tab
will be selected by default, as displayed in Figure 2.
Select the Target Device Family.

FIGURE 2: USB CONFIGURATION – MAIN TAB

http://www.microchip.com/usb
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HOST TAB
1. Click the Host tab to configure basic host oper-

ation, as displayed in Figure 3. The CDC client
driver requires support for control and bulk
endpoints.

2. Under Transfer Types, select the Support Bulk
Transfers check box and enter the allowed
number of NAKs in the text box. If the report from
the device is not available, the device NAK would
be the response received by the host. Configure
the Number of NAKs Allowed field in sync with
the implementation on the device end. 

3. Unselect the Support Interrupt Transfers and
Support Isochronous Transfers check boxes
if the application does not contain classes that
require interrupt or isochronous endpoints.

4. Some devices also require longer than the USB
specification of 100 ms to initialize after power-
up; it is recommended to increase the attach
debounce interval.

5. Enter the name of the function in the main
source file that serves as the application level
event handler.

6. Select the Generate Transfer Events check
box to use transfer events (EVENT_TRANSFER)
from the USB host layer. Refer to the “Event
Generation” section for more information on
transfer events.

FIGURE 3: USB CONFIGURATION – HOST TAB
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CDC TAB
The USB CDC client driver can either poll the USB host
driver for transfer status or respond to the USB host
driver transfer events.

1. Select the CDC tab.

2. Select the CDC Client is used in Host mode
check box to enable support for a CDC
embedded host, as displayed in Figure 4.

3. Select the settings for RS-232 emulation. Select
Baud Rate, Data Bits, Parity and Stop Bits
default settings to be supported by the device.

FIGURE 4: USB CONFIGURATION – CDC TAB
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TPL TAB
• Select the TPL tab and add support for the 

CDC/ACM devices. 

The standard ACM class supports two interfaces. 

• Add TPL entries for the communication interface 
and data interface.

FIGURE 5: USB CONFIGURATION – TPL TAB

Client Driver Callback Handlers
The CDC client driver requires two callback handlers in
the interface layer. These callback handlers have been
defined in the file, usb_host_cdc.c.

• Initialization Event Handler

This is called after the peripheral has been
enumerated and initialized by the host layer. The
initialization handler is of the type defined by the
typedef:
typedef BOOL (*USB_CLIENT_INIT) (BYTE
address, DWORD flags);

This function performs initialization specific to the
device. If initialization occurs with no error, this
routine returns TRUE; otherwise, this routine
returns FALSE.

• Event Handler

This is required to handle events that occur during
normal operation. This event handler is of the type
defined by the typedef:
typedef BOOL (*USB_CLIENT_EVENT_HANDLER)(BY
TE address, USB_EVENT event, void*data, 
DWORD size);

For example, the EVENT_DETACH event occurs
when a device has detached from the bus. In this
case, the interface layer will update its status by
doing operations, such as removal of the device
from its list of attached devices. See the API doc-
umentation provided in the Help directory for a
complete list of events.

The host layer requires a list of the client driver’s
interfaces for peripheral initialization and event
handling. This list is defined automatically by the
configuration tool, USBConfig.exe, provided
with the stack.
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EVENT GENERATION
The CDC client driver can be configured to utilize trans-
fer events (EVENT_TRANSFER) from the USB host layer
and CDC client driver layer. If the USB embedded host
transfer events are used, the application would require
more program and data memory, but the application
processing will be more efficient. The USB embedded
host transfer event configuration is transparent to the
interface layer. 

The choice of whether or not to use the USB embedded
host transfer events depends on the implementation in
the application layer. The CDC client driver generates
the following events:

• EVENT_CDC_ATTACH – This event indicates 
that a valid CDC device is attached and the 
application can initiate transfers. 

• EVENT_CDC_COMM_READ_DONE – This event 
indicates that a Bulk IN transfer, initiated by the 
application on the management interface, is 
complete.

• EVENT_CDC_DATA_READ_DONE – This event 
indicates that a Bulk IN transfer, initiated by the 
application on the data interface, is complete.

• EVENT_CDC_COMM_WRITE_DONE – This event 
indicates that a Bulk OUT transfer, initiated by the 
application on the management interface, is 
complete.

• EVENT_CDC_DATA_WRITE_DONE – This event 
indicates that a Bulk OUT transfer, initiated by the 
application on the data interface, is complete.

• EVENT_CDC_NAK_TIMEOUT – This event indi-
cates that the NAK time-out has occurred. If the 
IN transfer request rate is high, or the device does 
not have any data to send, it will NAK the request. 
The device will NAK unless it has data to transfer. 
In this scenario, the CDC client will always be 
busy and cannot service any other request. To 
avoid this, it is advised to time-out the request. 
The application must handle this time-out event 
and re-initiate the IN transfer after an appropriate 
delay. This delay can be calculated from the baud 
rate defined by the application. It is recommended 
to keep 5-10 number of NAKs allowed while con-
figuring the stack. As explained in the previous sec-
tion, this NAK count should be sufficient since the 
application takes care of rescheduling the transfer. 
In the demo application ‘USB Host – CDC – Serial 
Demo’ the internal timer is used to schedule the 
transfer. This is one of the ways that the application 
periodically requests data from the device.

Note: Although the USB embedded host uses
USB interrupts, transfer event genera-
tion from the host driver layer to the
client driver is triggered by a polling
mechanism. This is to ensure that the
USB Interrupt Service Routine (ISR)
completes in a timely fashion. For more
information on the host driver, refer to
AN1140, “USB Embedded Host Stack”
and AN1141, “USB Embedded Host
Stack Programmer's Guide”.
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CLIENT DRIVER INITIALIZATION
The USB configuration tool provides a macro,
USBInitialize(), to call all of the initialization
routines required by the USB embedded host layer.

Normal Client Driver Operation
Normal background operation is performed by the void
USBHostCDCTasks(void); function.

This routine must be called on a regular basis to allow
device operation. The polling rate is not critical, since
most of the actual transfer of information is handled
through the USB interrupt. Since an application may
support multiple classes, this function does not call the
USBHostTasks() function. The USB configuration

tool will provide the USBTasks() macro to call all of
the background task routines required by the USB host
driver and the supported client drivers. This macro
must be called on a regular basis to ensure proper
functioning of host and client drivers. Once the device
is detected, the host layer enumerates the device and
calls back the CDC client layer to initialize the
interfaces. 

CDC/ACM class is used to emulate the virtual COM
port. The CDC/ACM client enumerates the attached
CDC device. The client driver validates the COM port
settings on the attached device against the settings
configured on the client using the USBConfig.exe
utility. Figure 6 illustrates the enumeration process of
the CDC/ACM device.

FIGURE 6: USB CDC DEVICE ENUMERATION FLOW

Check if COM Port
Settings are as Expected

by the Host

STATE_RUNNING
Device is Ready for

Data Transfers

USBHostCDCInitialize

Parse Communications Interface
(This includes Function Header,

Call Management Header,
ACM Header, Union Descriptors)

Parse Data Interface
(This includes Endpoint Descriptor)

GET_LINE_CODING
(Request for COM Port Settings

on the Device)

SET_LINE_CODING
(Send COM Port Setting to the Device)

If Device can Support
the Requested Settings

Do Not Connect the Device on the Bus

NO

YES

NO
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PERFORMING A TRANSFER
Normal communication with the device can be initiated
after the device is enumerated. 

• USBHostCDC_ApiDeviceDetect()

This function is used to get the status of the device.
If the device is connected and ready for transfer,
then the function returns TRUE. If the transfer
events are enabled, then the application is notified
by the EVENT_CDC_ATTACH event. 

Once the device is attached, the application is ready to
start data transfers. Usually two endpoints, one in each
direction, are supported by the device.

• BOOL USBHostCDC_Api_Get_IN_Data(BYTE 
no_of_bytes, BYTE* data)

This function is used to receive data from the
device at a rate dependant on the baud rate set-
tings. The application can use a timer interrupt to
precisely set up the request. A maximum of
64 bytes can be received in a single transfer.

• BOOL 
USBHostCDC_Api_Send_OUT_Data(BYTE 
no_of_bytes, BYTE* data)

This function is used to transmit data to the device.
Any amount of data can be transferred to the
device. The client driver takes care of sending the
data in 64-byte packets (see Example 1 and
Example 2).

• BOOL
USBHostCDC_ApiTransferIsComplete(BYTE
* errorCodeDriver, BYTE* byteCount);

This function indicates whether the last transfer is
complete. If the function returns TRUE, the
returned byte count and error code are valid. If the
last transfer was an IN transfer, then byteCount
returns the number of bytes received. If the last
transfer was an OUT transfer, then byteCount
returns the number of bytes transferred.

• BYTE USBHostCDC_Api_ACM_Request(BYTE 
requestType, BYTE size, BYTE* data)

This function can be used by the application code
to dynamically access ACM-specific requests.
This function should be used only if the application
intends to modify, for example, the baud rate from
the previously configured rate. Data transmitted/
received to/from the device is an array of bytes.

The user must have a clear understanding of the
data format to use this function.

EXAMPLE 1: CDC DATA TRANSFER FROM THE DEVICE TO THE HOST

EXAMPLE 2: CDC DATA TRANSFER FROM THE HOST TO THE DEVICE

Note: The current version of the CDC client
driver is tested for full-speed Bulk
transfers, hence the maximum data
packet size is limited to 64 bytes.

error = USBHostCDC_Api_Get_IN_Data(no_of_bytes, &data);
if (!error)
{
   while (!USBHostCDC_ApiTransferIsComplete (&error, &count))
   {

USBTasks();
   }
}

error = USBHostCDC_Api_Send_OUT_Data(no_of_bytes, &data);
if (!error)
{
   while (!USBHostCDC_ApiTransferIsComplete (&error, &count))
   {

USBTasks();
   }
}
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DEMONSTRATION PROGRAM
The USB CDC host demonstration application is avail-
able as part of Microchip’s complete USB embedded
host support package.

Installing the USB Host Stack
To install all the required project files on a host PC:

1. Download the installation file from the Microchip
web site: http://www.microchip.com/usb.

2. Run the executable installer file. 

By default, the project and stack files will be
installed in the directory structure displayed in
Figure 7.

FIGURE 7: DEFAULT DIRECTORY 
STRUCTURE FOR USB CDC 
HOST DEMO

Local Hard Drive (C:)

Microchip Solutions

Microchip

Common

Include

USB

USB

Documents

USB Host-CDC-Serial Demo

Project Files

USB Source Files

Generic Microchip
Source Files

USB 

Generic Microchip
Header Files

+

+

+

+

+

+

+

+

Help+

Help Files

Client Driver
Directories

Header Files

+

USB Tools

USBConfig Tool

+

USBConfig.exe

http://microchip.com/usb
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TABLE 9: FILES USED FOR USB CDC SERIAL DEMO
Layer File Name Description

USB Embedded Host 
Layer

usb_host.c Provides USB embedded host support for all 
devices; does not provide class support.

usb_host.h Header file with definitions required for USB 
embedded hosts. It defines the interface to the 
USB embedded host driver.

usb.h, usb_ch9.h, 
usb_common.h, usb_hal.h, 

usb_hal_pic24.h

Other USB support header files.

CDC Client/Interface 
Layer

usb_host_cdc.c Provides CDC class support to USB 
embedded host.

usb_host_cdc.h Header file with definitions for USB embedded 
hosts supporting the CDC class. It defines the 
interfaces to the CDC client driver.

usb_host_cdc_interface.c Provides interface functions for the application 
layer to access the CDC client driver.

usb_host_cdc_interface.h Header file containing interface definitions 
used to access the CDC client.

Application

uart2.c Provides an interface to UART2 to provide 
RS-232 input and output to the application. 
UART interface is used only in Debug mode.

uart2.h Header file for UART2 functions.
usb_config.c Configures the USB stack for this application; 

it is generated by the configuration tool.
usb_config.h Configures the USB stack for this application;

it is generated by the configuration tool.
system.h Contains system level constants for libraries 

to reference.
LCDBlocking.c Contains LCD related routines.
LCDBlocking.h Header file contains LCD related routines.
cdc_demo.c Contains main application code.
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This is a simple demo to show how an embedded CDC
host can be implemented. When a CDC/RS-232 device
is attached to the bus, the demo application polls for
input data and displays the data on the LCD mounted
on the Explorer 16 board. When a switch, SW6, on the
Explorer 16 board is pressed, a test string is sent to the
attached device.

This demo runs on an Explorer 16 (DM240001) with a
PIC24FJ256GB110 (USB) PIM (MA240014) and a
USB PICtail™ Plus Daughter Board (AC164131).

Off-the-shelf USB/RS-232 dongles, that are available
in the market, generally do not comply with the CDC
specification; this demo is tested with the Microchip
USB Device-CDC-Serial Emulator demo.

• Program the FSUSB board for the Microchip 
“USB Device-CDC-Serial Emulator demo”. 

The FSUSB demo board acts as a device in this
configuration. 

• Connect the serial port from the desktop to the 
FSUSB board. 

• Connect the USB cable between the FSUSB 
board and the PICtail™ Daughter Board USB 
connector (in Host mode). 

• Open a HyperTerminal application to transfer 
serial data to the FSUSB board. 

• Configure the HyperTerminal application for the 
configuration that is the same as on the 
embedded host controller. 

Default Configuration:

- Baud Rate = 19200
- Data Bits = 8
- Parity Type = None
- Stop Bits = One

• Connect the FSUSB board and Explorer 16 demo 
board. 

The LCD display on the Explorer 16 board displays:

The device is now enumerated and ready for data
transfers with the host. 

• Enter any data on the HyperTerminal window; the 
same data is displayed on the LCD mounted on 
the Explorer 16 board.

• Press switch, SW6, on the Explorer 16 board and 
a test string, ****Test Data*****, is 
displayed on the HyperTerminal window.

Host CDC Demo
Device Attached
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CONCLUSION
The USB embedded host CDC-ACM class makes it
easy to migrate from the legacy RS-232 communica-
tion to the USB communication. The Microchip USB
embedded host CDC-ACM client provides an easy
solution to interface CDC class devices with an
embedded host. Embedded applications can now take
advantage of this and provide better connectivity
solutions on their applications.
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