
AN1229
Class B Safety Software Library for

PIC® MCUs and dsPIC® DSCs
INTRODUCTION

This application note describes the Class B Safety
Software Library routines that detect the occurrence of
Faults in a single channel CPU. These routines have
been developed in accordance with the IEC 60730
standard to support the Class B certification process.
These routines can be directly integrated with the end
user’s application to test and verify the critical
functionalities of a controller without affecting the end
user’s application.

This application note also describes the Application
Programming Interface (API) functions that are
available in the Class B Safety Software Library. 

The Class B safety software routines can be called
periodically at start-up or run time to test the following
components:

• CPU Registers

• CPU Program Counter

• Invariable Memory

• Variable Memory

• Clock

• Interrupt Handling and Execution

This application note also outlines various techniques,
which are not part of the Class B Safety Software
Library, to test components such as external communi-
cation, timing, I/O periphery, analog I/O and analog
multiplexer.

OVERVIEW OF THE IEC 60730 
STANDARD

The IEC 60730 standard defines the test and diagnostic
methods that ensure the safe operation of the controlled
equipment used in household appliances. Annex H of
the IEC 60730 standard classifies the software into the
following categories (see Appendix B: “IEC 60730-1
Table H.11.12.7”):

• Class A

• Class B

• Class C

The Class B Safety Software Library implements the
important test and diagnostic methods that fall into the
Class B category. These methods use various
measures to detect and respond to the software-
related Faults and errors.

According to the IEC 60730 standard, the controls with
functions that fall into the Class B category should have
one of the following structures:

• Single Channel with Functional Test 

In this structure, the Functional test is executed
prior to the application firmware execution.

• Single Channel with Periodic Self-Test 

In this structure, the Periodic tests are embedded
within the firmware, and the self-test occurs 
periodically while the firmware is in Execution
mode.

• Dual Channel without Comparison

In this structure, two independent methods execute
the specified operations.

Note: The term ‘IEC 60730 standard’ used in
this document refers to the “IEC 60730-1
ed.3.2” Copyright © 2007 IEC, Geneva,
Switzerland. www.iec.ch.

Authors: Veena Kudva & Adrian Aur
Microchip Technology Inc.

Note: “The author thanks the International Elec-
trotechnical Commission (IEC) for permis-
sion to reproduce information from its
International Standard IEC 60730-1ed.3.2
(2007). All such extracts are copyright of
IEC, Geneva, Switzerland. All rights
reserved. Further information on the IEC is
available from www.iec.ch. IEC has no
responsibility for the placement and con-
text in which the extracts and contents are
reproduced by the author, nor is IEC in any
way responsible for the other content or
accuracy therein.”
 2008-2012 Microchip Technology Inc. DS01229C-page 1

http://www.iec.ch
http://www.iec.ch


AN1229
SYSTEM REQUIREMENTS

The following system requirements are recommended
to run the Class B Safety Software Library:

• For the tests that require the independent time 
slot monitoring, the system hardware must be 
provided with at least two independent clock 
sources (e.g., crystal oscillator and line 
frequency).

• The user application determines whether the 
interrupts need to be enabled or disabled during 
the execution of the Class B Safety Software 
Library. 

If an interrupt occurs during the execution of the
Class B Safety Software Library routine, an
unexpected change may occur in any of the regis-
ters. Therefore, when the Interrupt Service Routine
(ISR) executes, the contents of the register will not
match the expected content, and the ISR will return
an incorrect result.

CLASS B SAFETY SOFTWARE 
LIBRARY

The Class B Safety Software Library, which applies to 8-
bit, 16-bit, and 32-bit devices, includes several APIs,
which are intended to maximize application reliability
through Fault detection. These APIs help meet the IEC
60730 standard compliance. The following tests can be
implemented using this library:

• CPU Register Test

• Program Counter Test

• Variable Memory Test

• Invariable Memory (Flash/EEPROM) Test

• Interrupt Test 

• Clock Test 

In the following sections, the test description and the
implementation details are discussed for each test. In
addition, each section also lists the APIs that are
required to execute the corresponding test for
supported architectures.

CPU Register Test

The CPU Register test implements the
functional test H.2.16.5 defined by the IEC 60730
standard. It detects stuck-at Faults in the CPU registers.
This ensures that the bits in the registers are not stuck at
a value ‘0’ or ‘1’; this is a non-destructive test.

This test performs the following major tasks:

1. The contents of the CPU registers to be tested
are saved on the stack before executing the
routine. 

2. The registers are tested by first successively
writing the binary sequences (length is depen-
dant upon architecture), 010101... followed by
101010... into the registers, and then reading
the values from these registers for verification.

3. The test returns an error code if the returned
values do not match.

API FUNCTIONS

The following API functions implement the CPU
Register test:

• SSL_8bit_CPU_RegisterTest (PIC10/12/16)

• SSL_8bitsFamily_CPU_RegisterTest (PIC18)

• SSL_16bitsFamily_CPU_RegisterTest

• SSL_32bitsFamily_CPU_RegisterTest

Note: The interrupts should be disabled during
the execution of the CPU Register test so
that the register integrity is preserved at all
times.
DS01229C-page 2  2008-2012 Microchip Technology Inc.



AN1229
Program Counter Test

The Program Counter (PC) test implements the func-
tional test H.2.16.5 defined by the IEC 60730 standard.
The PC holds the address of the next instruction to be
executed.

The test performs the following major tasks:

1. The PC test invokes the functions that are
located in the Flash memory at different
addresses. 

2. These functions return a unique value.

3. The returned value is verified using the PC test
function.

4. If the values match, the PC branches to the
correct location.

The customized linker script defines the addresses
where these functions reside in the Flash memory. The
functions placed at these addresses return a unique
value, which is the starting address of the called func-
tion. Example 1 shows how to modify the linker script to
place a function in the Flash memory. The actual Flash
address space is processor dependent. Please refer to
the processor-specific linker script example provided.

API FUNCTIONS

The following API functions implement the PC test:

• SSL_8bit_PCtest (PIC10/12/16)

• SSL_8bitsFamily_PCtest (PIC18)

• SSL_16bitsFamily_PCtest

• SSL_32bitsFamily_PCtest

EXAMPLE 1: LINKER SCRIPT MODIFICATION 

Note 1: The user application defines the address
where the PC branches.

2: The size of the program memory varies
by device. Refer to the specific device
data sheet for more details.

/* The modified linker script */
SslTestSection1 0x900:
{

*(.SslTestSection1);
} program
/* The SSL_TestFunction1 function*/
long __attribute__((__section__(“.SslTestSection1”))) SSL_TestFunction1() 
{

return((long)&SSL_TestFunction1);
}

 2008-2012 Microchip Technology Inc. DS01229C-page 3



AN1229
Invariable Memory (Flash/EEPROM) Test

The Invariable Memory (Flash/EEPROM) test
implements the periodic modified checksum H.2.19.3.1
defined by the IEC 60730 standard. It detects the single
bit Faults in the invariable memory. The invariable mem-
ory in a system, such as Flash and EEPROM memory,
contains data that is not intended to vary during the pro-
gram execution. The Flash/EEPROM Invariable Mem-
ory test computes the periodic checksum using the
Cyclic Redundancy Check (CRC). Several standards
are used today for the CRC calculation. The character-
istics of the CRC divisor vary from 8 to 32 bits depending
on the polynomial that is used. The width of a divisor
determines its ability to detect the errors. Some
commonly used CRC divisors are as follows:

• CRC-16 = 1 1000 0000 0000 0101 = 8005 
(hex)

• CRC-CCITT = 1 0001 0000 0010 0001 = 1021 
(hex)

• CRC-32 = 1 0000 0100 1100 0001 0001 
1101 1011 0111 = 04C11DB7 (hex)

Figure 1 illustrates the flowchart for the Invariable
Memory test.

The CRC16 calculation function returns the final CRC
value that can be used to perform the following:

1. At the system start-up, the computed CRC
checksum can be used as a reference
checksum if the CRC_Flag is set to 0x00.

2. The reference checksum is stored in the Flash
or EEPROM memory and the CRC flag is set to
0xFF.

3. The CRC16 calculation function can be called
periodically if the CRC flag is set to 0xFF.

4. The checksum calculated from step 3 is compared
with the reference checksum.

5. If both values match, a status bit can be set by
the user application to indicate that the
invariable memory has passed the test and no
errors were found. 

API FUNCTIONS

The following API functions implement the Invariable
Memory test:

• SSL_8bit_EEPROMtest_CRC16 (PIC10/12/16)

• SSL_8bitsFamily_EEPROMtest_CRC16 (PIC18)

• SSL_8bitsFamily_Flashtest_CRC16 (PIC18)

• SSL_16bitsFamily_Flashtest_CRC16

• SSL_16bitsFamily_EEPROMtest_CRC16

• SSL_32bitsFamily_Flashtest_CRC16

FIGURE 1: FLOWCHART FOR THE INVARIABLE MEMORY TEST

Note: The 16-bit EEPROM test applies only to
dsPIC30F devices.

 Calculate the CRC 

Reference CRC == Calculated CRC

 Yes 

 Yes  No 

 No 

Pass/No Errors Found Fail/Errors Found

Calculate the Reference 

CRCFlag == 0

Store the Reference CRC Checksum
in the Flash/EEPROM Memory

 Start 

Set CRCFlag = 0xFF

End 

CRC Checksum
DS01229C-page 4  2008-2012 Microchip Technology Inc.



AN1229
Variable Memory Test

The Variable Memory test implements the Periodic
Static Memory test H.2.19.6 defined by the IEC 60730
standard. It detects single bit Faults in variable memory.
The variable memory contains data, which is intended to
vary during program execution. The RAM Memory test is
used to determine if any bit of the RAM memory is stuck
at ‘1’ or ‘0’. The March Memory test and Checkerboard
test are some of the widely used static memory
algorithms for checking the DC Faults.

The following tests can be implemented using the
Class B Safety Software Library:

• March Test

- March C Test

- March C Minus Test

- March B Test

MARCH TEST

A March test performs a finite set of operations on
every memory cell in a memory array. Each operation
performs the following tasks:

1. Writes ‘0’ to a memory cell (w0).

2. Writes ‘1’ to a memory cell (w1).

3. Reads the expected value ‘0’ from a memory
cell (r0).

4. Reads the expected value ‘1’ from a memory
cell (r1).

March Test Notations

Figure 2 illustrates the notations that are used in the
March test.

FIGURE 2: MARCH TEST NOTATIONS

Note: The March memory functions do not test
the Stack area of the RAM. The following
special functions are provided for the Stack
area test:

SSL_8bitsFamily_RAM_STACKtest_MarchC (PIC18)
SSL_16bitsFamily_RAM_STACKtest_MarchC
SSL_32bitsFamily_RAM_STACKtest_MarchC

Arranges the address sequence in ascending
order.

Arranges the address sequence in descending
order.

Arranges the address sequence in either
ascending or descending order.

Indicates a read operation (reads ‘0’ from a
memory cell).

Indicates a read operation (reads ‘1’ from a
memory cell).

Indicates a write operation (writes ‘0’ to a
memory cell).

Indicates a write operation (writes ‘1’ to a
memory cell).

:

1

:

0

:

1

:

0

:

:

w

w

r

r

:

 2008-2012 Microchip Technology Inc. DS01229C-page 5



AN1229
MARCH C TEST

The March C test is used to detect the following types
of Fault in the variable memory:

• Stuck-at Fault

• Addressing Fault

• Transition Fault 

• Coupling Fault

The complexity of this test is 11n, where n indicates the
number of bits in the memory. This test is a destructive
test (i.e., memory contents are not preserved). There-
fore, it is designed to run at the system start-up before
initializing the memory and the run-time libraries.

Example 2 shows the pseudocode that demonstrates
the implementation of the March C test.

API FUNCTIONS

The following API functions implement the March C
test:

• SSL_8bit_RAMtest_MarchC (PIC10/12/16)

• SSL_8bitsFamily_RAMtest_MarchC (PIC18)

• SSL_8bitsFamily_RAM_STACKtest_MarchC (PIC18)

• SSL_16bitsFamily_RAMtest_MarchC

• SSL_16bitsFamily_RAM_STACKtest_MarchC

• SSL_32bitsFamily_RAMtest_MarchC

• SSL_32bitsFamily_RAM_STACKtest_MarchC

Figure 3 illustrates a March C algorithm.

FIGURE 3: MARCH C ALGORITHM

EXAMPLE 2: PSEUDOCODE FOR MARCH C TEST 

}

)0();0,1();1,0();0(

);0,1();1,0();0(

{

rwrwrr

wrwrw

CMarch 

for(i=0;i<=(n-1);i++)
x(i)=0; /*write background to zero*/

for(i=0;i<=(n-1);i++)
{

if (x(i)==0)
x(i) =1;

else
return fail;

}
for(i=0;i<=(n-1);i++)
{

if(x(i)==1)
x(i)=0;

else
return fail;

}
for(i=(n-1);i>=0;i--)
{

if(x(i)==0)
x(i)=1;

else
return fail;

}
for(i=(n-1);i>=0;i--)
{

if(x(i)==1)
x(i)=0;

else
return fail;

for(i=(n-1);i>=0;i--)
{

if(x(i)==0) {}
else

return fail
}
return pass;
DS01229C-page 6  2008-2012 Microchip Technology Inc.



AN1229
MARCH C MINUS TEST

The March C Minus test is used to detect the following
types of Fault in the variable memory:

• Stuck-at Fault

• Addressing Fault

• Transition Fault

• Coupling Fault

The complexity of this test is 10n, where n indicates the
number of bits in the memory.

This test is a destructive test. Therefore, it is designed
to run at the system start-up before initializing the
memory and the run-time libraries.

API FUNCTIONS

The following API functions implement the
March C Minus test:

• SSL_8bit_RAMtest_MarchC_Minus (PIC10/12/16)

• SSL_8bitsFamily_RAMtest_MarchC_Minus (PIC18)

• SSL_16bitsFamily_RAMtest_MarchC_Minus

• SSL_32bitsFamily_RAMtest_MarchC_Minus

Figure 4 illustrates a March C Minus algorithm.

FIGURE 4: MARCH C MINUS 
ALGORITHM

}

);0,1();1,0( );0(

);0,1();1,0();0(

{

wrwr r

wrwrw

CMinusMarch 
 2008-2012 Microchip Technology Inc. DS01229C-page 7



AN1229
MARCH B TEST

The March B is a non-redundant test that can detect
the following types of Fault:

• Stuck-at

• Linked Idempotent Coupling

• Inversion Coupling

This test is of complexity 17n, where n indicates the
number of bits in the memory. 

Figure 5 illustrates a March B algorithm.

FIGURE 5: MARCH B ALGORITHM

Example 3 shows the pseudocode that demonstrates
the implementation of the March B test.

API FUNCTIONS

The following API functions implement the March B
test:

• SSL_8bit_RAMtest_MarchB (PIC10/12/16)
• SSL_8bitsFamily_RAMtest_MarchB (PIC18)
• SSL_16bitsFamily_RAMtest_MarchB
• SSL_32bitsFamily_RAMtest_MarchB

}

);1,,0();01,(

);0, ,1();1,  ,0();0(

{

wrwr

wrwrw

BMarch 

1,r 0,  w 0,r 1w 1 w

0, w w1, w0 

Note 1: The user application should allocate
appropriate space for the stack before
executing any of the March tests (see the
details in the specific API function
description). The stack must be allocated
at an appropriate address so that it does
not get overwritten during the test
execution.

2: Depending on the architecture, it is rec-
ommended that the stack be placed at the
beginning or at the end of the data mem-
ory. The user application should specify
an address such that it does not overlap
other statically allocated resources (e.g.,
the MPLAB® ICD 2 RAM space or other
debugger used RAM space).
DS01229C-page 8  2008-2012 Microchip Technology Inc.



AN1229
EXAMPLE 3: PSEUDOCODE FOR MARCH B TEST 
for(i=0;i<=(n-1);i++)

x(i)=0;                /*write background to zero*/
for(i=0;i<=(n-1);i++)
{

if(x(i)=0)
x(i)=1;

    else
        return fail;

if(x(i)==1)
x(i)=0;

else
    return fail;

if(x(i)==0)
x(i)=1;

else
    return fail;
}
for(i=0;i<=(n-1);i++)
{

if(x(i)==1)
{

x(i)=0;
x(i)=1;

}
else

      return fail;
}
for(i=(n-1);i>=0;i--)
 {

if(x(i)=1)
{

x(i)=0;
x(i)=1;
x(i)=0;

}
    else
       return fail;
}
for(i=(n-1);i>=0;i--)
 {

if(x(i)==0)
{

x(i)=1;
x(i)=0;

}
    else
        return fail;
}
return pass;
 2008-2012 Microchip Technology Inc. DS01229C-page 9



AN1229
CHECKERBOARD RAM TEST

The Checkerboard RAM test writes the checkerboard
patterns to a sequence of adjacent memory locations.
This test is performed in units (memory chunks) of archi-
tecture-specific sizes (2 bytes for 8-bit architecture, 4
bytes for 16-bit architecture, 64 bytes for 32-bit architec-
ture). This is a non-destructive memory test. 

This test performs the following major tasks:

1. Saves the contents of the memory locations to
be tested in the CPU registers.

2. Writes the binary value (length is dependant
upon architecture) 101010... to the memory
location, ‘N’, and the inverted binary value,
010101..., to the memory location, ‘N+1’, and
so on, until the whole memory chunk is filled.

3. Reads the contents of all the memory locations
in the current chunk and verifies its contents. If
the values match, the function continues;
otherwise it stops and returns an error.

4. Step 2 and 3 are repeated by writing the inverted
pattern to the same locations.

5. Once a memory chunk is completed the test of
the next chunk is started until all of the
requested memory area is tested.

API FUNCTIONS

The following API functions implement the
Checkerboard RAM test:

• SSL_8bit_RAMtest_CB (PIC10/12/16)

• SSL_8bitsFamily_RAM_CB_test (PIC18)

• SSL_16bitsFamily_RAMtest_CheckerBoard

• SSL_32bitsFamily_RAMtest_CheckerBoard

Interrupt Test 

The Interrupt test implements the independent time slot
monitoring H.2.18.10.4 defined by the IEC 60730
standard. It checks whether the number of interrupts
that occurred is within the predefined range.

The goal of the Interrupt test is to verify that interrupts
occur regularly. The Interrupt test function can be
invoked at specified time intervals. It is triggered by a
timer or line frequency interrupt to monitor and verify
the interrupt operation.

To keep track of the interrupts that occur frequently, a
dedicated counter in each ISR can be decremented
when an interrupt occurs. For example, if the Serial
Peripheral Interface (SPI) is configured to generate an
interrupt every 2 ms, the SPI will generate at least five
interrupts in 10 ms. When a SPI interrupt occurs, the
counter dedicated to keep track of the SPI interrupt is
decremented. Thus, if the counter is initialized to five,
the counter is decremented to zero in 10 ms. This is
verified by the Interrupt test function that is triggered
after every 10 ms. 

To keep track of interrupts that occur rarely, a dedicated
counter within the Interrupt test function is decre-
mented if the specific interrupt did not occur during the
last time interval. Refer to the example code, which is
available for download from the Microchip web site
(see Appendix A: “Source Code” for details.).

Clock Test 

According to the IEC 60730 standard, only harmonics
and subharmonics of the clock need to be tested. The
Clock test implements the independent time slot moni-
toring H.2.18.10.4 defined by the IEC 60730 standard. It
verifies the reliability of the system clock (i.e., the system
clock should be neither too fast nor too slow):

Depending on the choice of the reference clock, one of
the following Clock tests can be used:

• Clock Test Using the Secondary Oscillator (SOSC)

• Clock Test Using the Line Frequency 
(50 Hz, 60 Hz) 

CLOCK TEST USING THE SOSC

The Clock Test function is used to verify the proper
operation of the CPU clock when the SOSC is used as
a reference clock.

This test performs the following major tasks:

1. The LP secondary oscillator is used as an
independent clock source or a reference clock
source. This 32 kHz oscillator is used to clock
the hardware Timer1.

2. Usually, the Primary Oscillator (POSC) with
Phase-Locked Loop (PLL) is the clock source to
the CPU. The test uses a hardware timer that
runs at the CPU clock frequency (Timer0 for 8-
bit architecture, Timer2 for 16-bit architecture
and the CPU Core timer for 32-bit architecture).

3. Timer1 is configured to overflow and generate
an interrupt at specified time intervals (e.g.,
1 ms).

4. The value of the hardware timer used to count
the CPU clock counts is saved when Timer1
overflows. This value represents the number of
CPU clock cycles elapsed in the 1 ms time
period of the SOSC. If the number of clock cycles
is outside a specified range, the function returns
an error code. 

API FUNCTIONS

The following API functions implement the Clock test:

• SSL_8bitsFamily_CLOCKtest (PIC18)

• SSL_16bitsFamily_CLOCKtest

• SSL_32bitsFamily_CLOCKtest
DS01229C-page 10  2008-2012 Microchip Technology Inc.



AN1229
CLOCK TEST USING THE LINE FREQUENCY 
(50 Hz, 60 Hz) 

The Clock Test function is used to verify the proper
operation of the CPU clock. The 50 Hz/60 Hz line
frequency is used as an independent clock source or a
reference clock source. The input capture module is
used for the period measurement. The 50 Hz/60 Hz line
frequency is fed to the Input Capture pin (IC1) of the
respective device.

This test performs the following major tasks:

1. The IC1CON register is configured as follows:

a) Hardware Timer2 is selected as the IC1
time base (Timer1 for PIC18).

b) The capture operation is programmed to
occur on every rising edge of the line
frequency.

c) A capture done event (interrupt) is pro-
grammed to occur on every second capture
event

2. The Timer2 prescaler is configured so that the
timer count does not time-out within 20 ms/
16.66 ms (Timer1 for PIC18).

3. The capture is performed on every rising edge of
line frequency. For period measurement, the
capture done event (interrupt) is generated after
taking two time-stamps (see Figure 6).

4. The difference between the two time-stamps
(V1  and V2) provides the timer period value.
The number of CPU cycles in 20 ms/16.66 ms of
the line frequency is computed as follows:

Number of Clock Cycles = ((V1 – V2) * Timer2
Prescaler)

API FUNCTIONS

The following API functions implement the Clock test:

• API Functions for 8-bit PIC MCUs (PIC18)

• SSL_16bitsFamily_CLOCKtest_LineFreq

• SSL_32bitsFamily_CLOCKtest_LineFreq

FIGURE 6: TIMER VALUE CAPTURE

V1

V1
xxxx
xxxx
xxxx

1st Capture

Capture FIFO
V1
V2

xxxx
xxxx

V3
V2

xxxx
xxxx

V3
V4

xxxx
xxxx

V2

V3

V4

TMR2 or
TMR3

ICx

Capture
Event

Capture
Interrupt

(ICI<1:0> = 01)

Read Captured 
Value in ISR

Read Captured
Value in ISR

 

2nd Capture 3rd Capture 4th Capture

Note: In this illustration, the timer ramp is not to scale.
 2008-2012 Microchip Technology Inc. DS01229C-page 11



AN1229
Addressing of Variable and Invariable 
Memory and Internal Data Path

For single chip microcontrollers or digital signal
controllers, such as PIC MCUs and dsPIC DSCs, the
Periodic Static Memory test is used to test the variable
memory, and the periodic checksum is used to test the
invariable memory. These tests detect any stuck-at
Fault in the internal address bus and internal data path.

Addressing Wrong Address

This test is required only for microcontrollers with an
external memory device.

External Communication 

The IEC 60730 Class B specifications suggest the
following measures to ensure reliable communication
between components:

TRANSFER REDUNDANCY

The transfer redundancy is a Fault/error control
technique that protects against coincidental and/or
systematic errors in the input and output information. It
is achieved by transferring the data between the trans-
mitter and receiver. The data is transferred at least
twice in succession and then compared.

PROTOCOL TEST 

The Protocol test is a Fault/error control technique in
which the data is transferred to and from the computer
components to detect errors in the internal
communication protocol.

CRC SINGLE WORD 

A CRC polynomial is used to calculate the CRC check-
sum of the transmitted message. At the transmitting
end, this CRC checksum is appended to the message
before transmitting it. At the receiving end, the receiver
uses the same CRC polynomial to compute the CRC
checksum, and compares the computed value with the
received value.

Timing

The PIC MCUs and dsPIC DSCs have several
dedicated communication interfaces, such as UART,
I2C™ and SPI modules. The IEC 60730 Class B
specifications suggest that these modules should use
time slot monitoring to ensure that the communication
occurs at the correct point in time.

Plausibility Check

The plausibility checks on the I/O periphery, analog
multiplexer and A/D convertor can be performed as
follows:

I/O PERIPHERY 

The plausibility check on an I/O pin can be performed
by toggling the I/O and checking the state of the pin.

ANALOG MULTIPLEXER

To verify the operation of the analog multiplexer, known
voltage values are applied to all channels. These
values are read and compared with the applied voltage
for verification.

A/D CONVERTER

To test the analog functions of the A/D converter, a
known external voltage is applied to the analog inputs.
The conversion results are then compared with the
applied voltage.

API FUNCTIONS FOR 8-BIT PIC MCUs 
(PIC10/12/16)

This section lists and describes the API functions that
are available in the Class B Safety Software Library for
8-bit architecture (PIC10/12/16). The API functions are
listed below followed by their individual detailed
descriptions:

• SSL_8bit_CPU_RegisterTest

• SSL_8bit_PCtest

• SSL_8bit_EEPROMtest_CRC16

• SSL_8bit_RAMtest_MarchC

• SSL_8bit_RAMtest_MarchC_Minus

• SSL_8bit_RAMtest_MarchB
DS01229C-page 12  2008-2012 Microchip Technology Inc.



AN1229
SSL_8bit_CPU_RegisterTest

Description

This function implements the CPU Register test. The test successively writes the values 0x55 and 0xAA into the regis-
ters and then reads the values from these registers for verification. The function returns an error code if the values do
not match. The contents of the register (W0) that returns the error code are not preserved. The contents of the CPU
register to be tested is saved on a temporary register before executing the routine and is restored upon the completion
of the test.

Include

None.

Prototype

int SSL_8bit_CPU_RegisterTest(void);

Arguments

None.

Return Value

REGISTER_TEST_FAIL Return value = 0 
REGISTER_TEST_PASS Return value = 1 

Remarks

None.

Source File

None.

TABLE 1: RESOURCE REQUIREMENTS

Parameter Requirements

Program Memory 77 words

Stack NONE

Execution Time 81 cycles
 2008-2012 Microchip Technology Inc. DS01229C-page 13



AN1229
SSL_8bit_PCtest

Description

This function implements the PC test, which is a functional test of the PC. The test invokes the functions that are located
in the Flash memory at different addresses. The SSL_ProgCounterTest.h header file defines the addresses, where
these functions reside in the Flash memory. The functions placed at these addresses return a unique value, which is
the starting address of the called function. This returned value is verified using the SSL_8bit_PCtest function.

Include

SSL_ProgCounterTest.h

Prototype

unsigned int SSL_8bit_PCtest(void);

Arguments

None.

Return Value

PC_TEST_FAIL Return value = 0

PC_TEST_PASS Return value = 1

Remarks

None.

TABLE 2: RESOURCE REQUIREMENTS

Parameter Requirements

Program Memory 107 words

Stack 1 byte

Execution Time 92 cycles
DS01229C-page 14  2008-2012 Microchip Technology Inc.



AN1229
SSL_8bit_EEPROMtest_CRC16

Description

This function implements the Invariable Memory test. It computes the CRC of the data located between the address,
EEPROM_STARTADDRESS, and the address, EEPROM_ENDADDRESS. This function returns the final CRC value.

Include

SSL_EEPROM_CRC.h

Prototype

unsigned int SSL_8bits_EEPROMtest_CRC16(unsigned char startAddress,unsigned char endAddress)

Arguments

startAddress Indicates the starting address of the data to be tested

endAddress Indicates the ending address of the data to be tested

Return Value

crc_Result Holds the CRC result

Remarks

None.

Source File

None.

TABLE 3: RESOURCE REQUIREMENTS 
Parameter Requirements

Program Memory 149 words

Stack 1 byte

Execution Time 1091 cycles(1) 

Note 1: The execution time specified here is for three EEPROM locations.
 2008-2012 Microchip Technology Inc. DS01229C-page 15



AN1229
SSL_8bit_RAMtest_MarchC

Description

This function implements the March C test. This test accesses an 8-bit word from the RAM memory. The address must
be aligned to the data type and the length must be an integral multiple of the data width. This is a destructive test;
therefore, this test can be executed at the system start-up before initializing the memory and the run-time libraries. The
memory will be cleared when the control returns from the SSL_8bit_RAMtest_MarchC function.

Include

SSL_MarchCRamTest.h

Prototype

unsigned char SSL_8bit_RAMtest_MarchC(void);

Arguments

None.

Return Value

MARCHC_RAM_TEST_FAIL Return value = 0

MARCHC_RAM_TEST_PASS Return value = 1

Remarks

None.

Source File

SSL_MarchCRamTest.c

TABLE 4: RESOURCE REQUIREMENTS

Parameter Requirements

Program Memory 388 bytes 

Stack 15 bytes     

Execution Time 3834 cycles(1)

Note 1: The execution time specified here is for a single RAM location.
DS01229C-page 16  2008-2012 Microchip Technology Inc.



AN1229
SSL_8bit_RAMtest_MarchC_Minus

Description

This function implements the March C Minus test. This test accesses an 8-bit word from the RAM memory. The address
must be aligned to the data type and the length must be an integral multiple of the data width. This is a destructive test;
therefore, this test can be executed at the system start-up before initializing the memory and the run-time libraries. The
memory will be cleared when the control returns from the SSL_8bit_RAMtest_MarchCMinus function.

Include

SSL_MarchCMInusRamTest.h

Prototype

unsigned char SSL_8bit_RAMtest_MarchCMinus(void);

Arguments

None.

Return Value

MARCHC_RAM_TEST_FAIL Return value = 0

MARCHC_RAM_TEST_PASS Return value = 1

Remarks

None.

Source File

SSL_MarchCMinusRamTest.c

TABLE 5: RESOURCE REQUIREMENTS

Parameter Requirements

Program Memory 269 bytes 

Stack 10 bytes     

Execution Time 3834 cycles(1)

Note 1: The execution time specified here is for a single RAM location.
 2008-2012 Microchip Technology Inc. DS01229C-page 17



AN1229
SSL_8bit_RAMtest_MarchB

Description

This function implements the March B test. This test accesses a byte word from the RAM memory. The address must
be properly aligned to the data type and the length must be an integral multiple of the data width. This is a destructive
test; therefore, this test can be executed at system start-up before initializing the memory and the run-time library. The
memory will be cleared when the control returns from the SSL_8bit_RAMtest_MarchB function.

Include

SSL_MarchBRamTest.h

Prototype

unsigned char SSL_8bit_RAMtest_MarchB(void);

Arguments

None.

Return Value

MARCHB_RAM_TEST_FAIL    Return value = 0

MARCHB_RAM_TEST_PASS    Return value = 1

Source File

SSL_MarchBRamTest.c

TABLE 6: RESOURCE REQUIREMENTS

Parameter Requirements

Program Memory 453 bytes 

Stack

Execution Time 2761 cycles(1) 

Note 1: The execution time specified here is for a single RAM location.
DS01229C-page 18  2008-2012 Microchip Technology Inc.



AN1229
API FUNCTIONS FOR 8-BIT PIC MCUs 
(PIC18)

This section lists and describes the API functions that
are available in the Class B Safety Software Library for
the 8-bit architecture. The functions are listed below
followed by their individual detailed descriptions:

• SSL_8bitsFamily_CPU_RegisterTest

• SSL_8bitsFamily_PCtest

• SSL_8bitsFamily_Flashtest_CRC16

• SSL_8bitsFamily_EEPROMtest_CRC16

• SSL_8bitsFamily_RAM_STACKtest_MarchC

• SSL_8bitsFamily_RAMtest_MarchC_Minus

• SSL_8bitsFamily_RAMtest_MarchB

• SSL_8bitsFamily_RAMtest_CheckerBoard

• SSL_8bitsFamily_CLOCKtest

• SSL_8bitsFamily_CLOCKtest_LineFreq
 2008-2012 Microchip Technology Inc. DS01229C-page 19



AN1229
SSL_8bitsFamily_CPU_RegisterTest

Description

This function implements the CPU Register test. The test successively writes the values 0x55 and 0xAA into the regis-
ters and then reads the values from these registers for verification. The function returns an error code if the values do
not match. The contents of the register (W0) that returns the error code are not preserved. The contents of the CPU
register to be tested is saved on a temporary register before executing the routine and is restored upon the completion
of the test.

Include

None.

Prototype

void SSL_8bitsFamily_CPU_RegisterTest(void);

Arguments

None.

Return Value

REGISTER_TEST_FAIL Return value = 0x86 
REGISTER_TEST_PASS Return value = 0x00 

Remarks

None.

Source File

None.

TABLE 7: RESOURCE REQUIREMENTS

Parameter Requirements

Program Memory 77 words

Stack NONE

Execution Time 81 cycles
DS01229C-page 20  2008-2012 Microchip Technology Inc.



AN1229
SSL_8bitsFamily_PCtest

Description

This function implements the PC test, which is a functional test of the PC. The test invokes the functions that are located
in the Flash memory at different addresses. The SSL_PcTest.h header file defines the addresses, where these functions
reside in the Flash memory. The functions placed at these addresses return a unique value, which is the starting address
of the called function. This returned value is verified using the SSL_8bitsFamily_PCtest function.

Include

SSL_PcTest.h

Prototype

int SSL_8bitsFamily_PCtest(void);

Arguments

None.

Return Value

PC_TEST_FAIL Return value = 0

PC_TEST_PASS Return value = 1

Remarks

None.

TABLE 8: RESOURCE REQUIREMENTS

Parameter Requirements

Program Memory 107 words

Stack 1 byte

Execution Time 92 cycles
 2008-2012 Microchip Technology Inc. DS01229C-page 21



AN1229
SSL_8bitsFamily_Flashtest_CRC16

Description

This function implements the Invariable Memory test. It computes the CRC of the data located between the address
FLASH_STARTADDRESS and the address FLASH_ENDADDRESS. This function returns the final CRC value. 

Include

SSL_Flash_CRC.h

Prototype

unsigned int SSL_8bitsFamily_Flashtest_CRC16                                       
(word32 startAddress,word32 endAddress, unsigned int crc_Result);

ARGUMENTS

startAddress Indicates the starting address of the data to be tested 

endAddress Indicates the ending address of the data to be tested 

crc_Result Indicates the initial value of the CRC

Return Value

crc_Result Holds the CRC result

Remarks

None.

TABLE 9: RESOURCE REQUIREMENTS

Parameter Requirements

Program Memory 489 bytes 

Stack 70 bytes     

Execution Time 446 cycles(1) 

Note 1: The execution time specified here is for a single Flash memory location.
DS01229C-page 22  2008-2012 Microchip Technology Inc.



AN1229
SSL_8bitsFamily_EEPROMtest_CRC16

Description

This function implements the Invariable Memory test. It computes the CRC of the data located between the address,
EEPROM_STARTADDRESS, and the address, EEPROM_ENDADDRESS. This function returns the final CRC value.

Include

SSL_EEPROM_CRC.h

Prototype

unsigned int SSL_8bitsFamily_EEPROMtest_CRC16(uReg32 startAddress, uReg32 endAddress, 
unsigned int crc_Result);

Arguments

startAddress Indicates the starting address of the data to be tested

endAddress Indicates the ending address of the data to be tested

crc_Result Indicates the initial value of the CRC

Return Value

crc_Result Holds the CRC result

Remarks

None.

Source File

None.

TABLE 10: RESOURCE REQUIREMENTS 
Parameter Requirements

Program Memory 149 words

Stack 1 byte

Execution Time 1091 cycles(1) 

Note 1: The execution time specified here is for three EEPROM locations.
 2008-2012 Microchip Technology Inc. DS01229C-page 23



AN1229
SSL_8bitsFamily_RAMtest_MarchC

Description

This function implements the March C test. This test accesses an 8-bit word from the RAM memory. The address must
be aligned to the data type and the length must be an integral multiple of the data width. This is a destructive test;
therefore, this test can be executed at the system start-up before initializing the memory and the run-time libraries. The
memory will be cleared when the control returns from the SSL_8bitsFamily_RAMtest_MarchC function.

Include

SSL_MarchC.h

Prototype

int SSL_8bitsFamily_RAMtest_MarchC(char * ramStartAddress,int ramSize);

Arguments

ramStartAddress Indicates the starting address from where the March C algorithm starts reading the data

ramSize Indicates the number of bytes that are tested; the size must be an even number

Return Value

MARCHC_RAM_TEST_FAIL Return value = 0

MARCHC_RAM_TEST_PASS Return value = 1

Remarks

None.

Source File

SSL_MarchCRamTest.c

TABLE 11: RESOURCE REQUIREMENTS

Parameter Requirements

Program Memory 388 bytes 

Stack 15 bytes     

Execution Time 3834 cycles(1)

Note 1: The execution time specified here is for a single RAM location.
DS01229C-page 24  2008-2012 Microchip Technology Inc.



AN1229
SSL_8bitsFamily_RAM_STACKtest_MarchC

Description

This function implements the March C test on the RAM memory and stack. This test accesses an 8-bit word from the
RAM memory. The address must be aligned to the data type and the length must be an integral multiple of the data
width. It first tests the RAM memory and then the stack area by transferring the stack contents into the tested RAM area.
After the stack is tested, it restores the contents of the stack. This is a destructive test; therefore, this test can be
executed at system start-up before initializing the memory and the run-time libraries. The memory will be cleared when
the control returns from the SSL_8bitsFamily_RAM_STACKtest_MarchC function.

Include

SSL_MarchC_RamAndStackTest.h

Prototype

int SSL_8bitsFamily_RAM_STACKtest_MarchC(char * ramStartAddress, unsigned int ramSize);

Arguments

ramStartAddress Indicates the starting address from where the March C algorithm starts reading the data

ramSize Indicates the number of bytes that are tested; the size must be an even number

Return Value

MARCHC_RAM_STACK_TEST_FAIL Return value = 0

MARCHC_RAM_STACK_TEST_PASS Return value = 1

Remarks

None.

Source File

SSL_MarchCRamAndStackTest.c

TABLE 12: RESOURCE REQUIREMENTS

Parameter Requirements

Program Memory 890 bytes 

Stack 88 bytes     

Execution Time 1576 cycles(1)

Note 1: The execution time specified here is for a single RAM location.
 2008-2012 Microchip Technology Inc. DS01229C-page 25



AN1229
SSL_8bitsFamily_RAMtest_MarchC_Minus

Description

This function implements the March C test on the RAM memory and stack. This test accesses an 8-bit word from the

RAM memory. The address must be aligned to the data type and the length must be an integral multiple of the data

width. It first tests the RAM memory and then the stack area by transferring the stack contents into the tested RAM area.

After the stack is tested, it restores the contents of the stack. This is a destructive test; therefore, this test can be

executed at system start-up before initializing the memory and the run-time libraries. The memory will be cleared when

the control returns from the SSL_8bitsFamily_RAM_STACKtest_MarchCMinus function.

Include

SSL_MarchC_Minus.h

Prototype

int SSL_8bitsFamily_RAMtest_MarchC_Minus(char * ramStartAddress, int ramSize);

Arguments

ramStartAddress Indicates the starting address from where the March C algorithm starts reading the data

ramSize Indicates the number of bytes that are tested; the size must be an even number

Return Value

MARCHC_RAM_TEST_FAIL Return value = 0

MARCHC_RAM_TEST_PASS Return value = 1

Remarks

None.

Source File

SSL_RamTest_MarchCMinus.c 

TABLE 13: RESOURCE REQUIREMENTS

Parameter Requirements

Program Memory 124 bytes

Stack 15 bytes

Execution Time 1402 cycles
DS01229C-page 26  2008-2012 Microchip Technology Inc.



AN1229
SSL_8bitsFamily_RAMtest_MarchB

Description

This function implements the March B test. This test accesses a byte word from the RAM memory. The address must
be properly aligned to the data type and the length must be an integral multiple of the data width. This is a destructive
test; therefore, this test can be executed at system start-up before initializing the memory and the run-time library. The
memory will be cleared when the control returns from the SSL_8bitsFamily_RAMtest_MarchB function.

Include

SSL_MarchB.h

Prototype

int SSL_8bitsFamily_RAMtest_MarchB(char * ramStartAddress, int ramSize);

Arguments

Return Value

MARCHB_TEST_FAIL Return value = 0

MARCHB_TEST_PASS Return value = 1

Source File

SSL_MarchBRamTest.c

TABLE 14: RESOURCE REQUIREMENTS

ramStartAddress Indicates the starting address from where the March B algorithm starts 
reading the data

ramSize Indicates the number of bytes that are tested; the size must be an even 
number

Parameter Requirements

Program Memory 453 bytes 

Stack

Execution Time 2761 cycles(1) 

Note 1: The execution time specified here is for a single RAM location.
 2008-2012 Microchip Technology Inc. DS01229C-page 27



AN1229
SSL_8bitsFamily_RAMtest_CheckerBoard

Description

This function implements the Checkerboard test on the RAM memory. The test is performed on the memory space
specified by the variable, SIZE. The execution begins from the address defined by the variable, START_RAM. The number
of specified locations must be even.

Include

SSL_CheckerBoardTest.INC

Prototype

unsigned char SSL_8bitsFamily_Ram_CB_test(void);

Arguments

None.

Return Value

RAM_Test_Fail Return value = 0x86

RAM_Test_Pass Return value = 0x00

Remarks

None.

Source File

SSL_CheckerBoard.asm

TABLE 15: RESOURCE REQUIREMENTS

Parameter Requirements

Program Memory 321 bytes 

Stack 68 bytes     

Execution Time 43 cycles(1)

Note 1: The execution time specified here is for a single RAM location.
DS01229C-page 28  2008-2012 Microchip Technology Inc.



AN1229
SSL_8bitsFamily_CLOCKtest

Description

This function implements the Clock test. It is used to verify the proper operation of the CPU clock. The TMR0 value of
Timer0 is saved within the Timer1 interrupt handler. This value represents the number of CPU clock cycles elapsed in
1 ms time period of the SOSC. If the number of clock cycles is beyond the defined boundary, the function sets an error
flag.

This test performs the following major tasks:

1. The LP secondary oscillator is used as an independent clock source or a reference clock source. This 32 kHz
oscillator is used to clock Timer1.

2. The POSC with Phase-Locked Loop (PLL) is the clock source to the CPU. Timer0 runs at the CPU clock
frequency.

3. Timer1 is configured to generate an interrupt at specified time intervals (e.g., 1 ms).

4. The TMR0 value of Timer0 is saved within the Timer1 interrupt handler. This value represents the number of CPU
clock cycles elapsed in the 1 ms time period of the SOSC. If the number of clock cycles is beyond the defined
boundary, the function sets an error flag.

For example, the following parameters are used to calculate the CLK_MIN_TIME and CLK_MAX_TIME values for a
PIC18F device:

• Primary Oscillator: INTOSC

• FOSC: 8 MHz

• FCY: FOSC/4: (8 * 10^6) / 4

• FCY: 2000000

• Secondary oscillator: 32 kHz

• Timer1 period: 31

Therefore, with 4% tolerance, the number of CPU clock cycles in 1ms (2000 cycles) are:

• CLK_MIN_TIME: 1920

• CLK_MAX_TIME: 2080

Include

SSL_ClockTest.h

Prototype

unsigned int SSL_8bitsFamily_CLOCKtest(void);

Arguments

None.

Return Value 

CLOCK_NO_ERROR Return value = 1

CLOCK_ERROR Return value = 0

Remarks

None.
 2008-2012 Microchip Technology Inc. DS01229C-page 29



AN1229
SSL_8bitsFamily_CLOCKtest(Continued)

Source File

SSL_ClockTest.c

TABLE 16: RESOURCE REQUIREMENTS

Parameter Requirements

Program Memory 

Stack

Execution Time
DS01229C-page 30  2008-2012 Microchip Technology Inc.



AN1229
SSL_8bitsFamily_CLOCKtest_LineFreq

Description

This function implements the line frequency Clock test. It is used to verify the proper operation of the CPU clock. It uses
the following procedure to configure the IC1CON register:

1. The Timer1 module is selected as the IC1 time base.

2. An interrupt is generated on every second capture event.

3. The capture event is generated on every rising edge of the line frequency.

The IC1 pin generates an interrupt after every 20 ms if the line frequency is 50 Hz and after every 16.66 ms if the line
frequency is 60 Hz. Timer1 is configured in such a way so that the timer count does not time-out within 20 ms/16.66 ms.
The capture event is generated on every rising edge of the line frequency. For period measurement, the capture inter-
rupt is generated twice and Timer1 count is stored in the 2nd interrupt routine. 

If the number of clock cycles is beyond the defined boundary, the function sets an error flag.

For example, the following parameters are used to calculate CLK_MIN_TIME and CLK_MAX_TIME for a PIC18F device:

• Primary Oscillator: INTOSC

• FOSC: 8 MHz

• FCY: FOSC/4: (8 * 10^6) / 4

• FCY: 2000000

The number of counts that will be counted in the 20ms is = 0.02 * 2000000 = 40000. With a tolerance of 4%

• CLK_MIN_TIME: 38400

• CLK_MAX_TIME: 41600

Include

SSL_ClockTest_LineFreq.h

Prototype

int SSL_8bitsFamily_CLOCKtest_LineFreq(void);

Arguments

None.

Return Value

CLOCK_NO_ERROR Return value = 1

CLOCK_ERROR Return value = 0

Remarks

None.

Source File

SSL_ClockTest_LineFreq.c

TABLE 17: RESOURCE REQUIREMENTS 

Parameter Requirements

Program Memory 

Stack

Execution Time 
 2008-2012 Microchip Technology Inc. DS01229C-page 31



AN1229
API FUNCTIONS FOR 16-BIT PIC 
MCUs AND dsPIC DSCs

This section lists and describes the API functions that
are available in the Class B Safety Software Library for
16-bit architecture. The API functions are listed below
followed by their individual detailed descriptions:

• SSL_16bitsFamily_CPU_RegisterTest

• SSL_16bitsFamily_PCtest

• SSL_16bitsFamily_Flashtest_CRC16

• SSL_16bitsFamily_EEPROMtest_CRC16

• SSL_16bitsFamily_RAMtest_MarchC

• SSL_16bitsFamily_RAMtest_MarchC_Minus

• SSL_16bitsFamily_RAMtest_MarchB

• SSL_16bitsFamily_RAMtest_CheckerBoard

• SSL_16bitsFamily_CLOCKtest

• SSL_16bitsFamily_CLOCKtest_LineFreq
DS01229C-page 32  2008-2012 Microchip Technology Inc.



AN1229
SSL_16bitsFamily_CPU_RegisterTest

Description

This function implements the CPU Register test. The test successively writes the values 0x5555 and 0xAAAA into the
CPU registers and then reads the values from these registers for verification. The function returns an error code if the
values do not match. The contents of the register (W0) that returns the error code are not preserved. The contents of
the CPU registers to be tested are saved on the stack before executing the routine and are restored upon the completion
of the test.

Include

None.

Prototype

int SSL_16bitsFamily_CPU_RegisterTest();

Arguments

None.

Return Value

CPU_REGISTER_TEST_FAIL Return value = 0 
CPU_REGISTER_TEST_PASS Return value = 1 

Remarks

None.

Source File

None.

TABLE 18: RESOURCE REQUIREMENTS

Parameter Requirements

Program Memory 1364 bytes (dsPIC30F/dsPIC33F)
684 bytes (PIC24H/PIC24F)
1404 bytes (dsPIC33E)
724 bytes (PIC24E)

Stack 58 bytes (dsPIC30F/dsPIC33F/dsPIC33E)
24 bytes (PIC24H/PIC24F/PIC24E)

Execution Time 351 cycles (dsPIC30F/dsPIC33F)
181 cycles (PIC24H/PIC24F)
363 cycles (dsPIC33E)
193 cycles (PIC24E)
 2008-2012 Microchip Technology Inc. DS01229C-page 33



AN1229
SSL_16bitsFamily_PCtest

Description

This function implements the PC test, which is a functional test of the PC. The test invokes the functions that are located
in the Flash memory at different addresses. The customized linker script defines the addresses, where these functions
reside in the Flash memory. The functions placed at these addresses return a unique value, which is the starting address
of the called function. This returned value is verified using the SSL_16bitsFamily_PCtest function.

Include

SSL_PcTest.h

Prototype

SSL_16bitsFamily_PCtest();

Arguments

None.

Return Value

PC_TEST_FAIL Return value = 0

PC_TEST_PASS Return value = 1

Remarks

None.

TABLE 19: RESOURCE REQUIREMENTS

Parameter Requirements

Program Memory 258 bytes 

Stack 28 bytes     

Execution Time 32 cycles 
DS01229C-page 34  2008-2012 Microchip Technology Inc.



AN1229
SSL_16bitsFamily_Flashtest_CRC16

Description

This function implements the Invariable Memory test. It computes the CRC of the data located between the address
FLASH_STARTADDRESS and the address FLASH_ENDADDRESS. This function returns the final CRC value. 

Include

SSL_Flash_CRC.h

Prototype

unsigned int SSL_16bitsFamily_Flashtest_CRC16                                       
(uReg32 startAddress,uReg32 endAddress, unsigned int init_CrcValue);

ARGUMENTS

startAddress Indicates the starting address of the data to be tested 

endAddress Indicates the ending address of the data to be tested 

init_CrcValue Indicates the initial value of the CRC

Return Value

crc_Result Holds the CRC result

Remarks

None.

TABLE 20: RESOURCE REQUIREMENTS

Parameter Requirements

Program Memory 489 bytes 

Stack 70 bytes     

Execution Time 446 cycles(1) 

Note 1: The execution time specified here is for a single Flash memory location.
 2008-2012 Microchip Technology Inc. DS01229C-page 35



AN1229
SSL_16bitsFamily_EEPROMtest_CRC16

Description

This function implements the Invariable Memory test. It computes the CRC of the data located between the address,
EEPROM_STARTADDRESS, and the address, EEPROM_ENDADDRESS. This function returns the final CRC value.

Include

SSL_EEPROM_CRC.h

Prototype

unsigned int SSL_16bitsFamily_EEPROMtest_CRC16                                     
(uReg32 startAddress,uReg32 endAddress ,unsigned int init_CrcValue);

Arguments

startAddress Indicates the starting address of the data to be tested

endAddress Indicates the ending address of the data to be tested

init_CrcValue Indicates the initial value of the CRC

Return Value

crc_Result Holds the CRC result

Remarks

None.

Source File

None.

TABLE 21: RESOURCE REQUIREMENTS 
Parameter Requirements

Program Memory 492 bytes 

Stack 70 bytes     

Execution Time 348 cycles(1) 

Note 1: The execution time specified here is for a single EEPROM location.
DS01229C-page 36  2008-2012 Microchip Technology Inc.



AN1229
SSL_16bitsFamily_RAMtest_MarchC

Description

This function implements the March C test. This test accesses a 16-bit word from the RAM memory. The address must
be aligned to the data type and the length must be an integral multiple of the data width. This is a destructive test;
therefore, this test can be executed at the system start-up before initializing the memory and the run-time libraries. The
memory will be cleared when the control returns from the SSL_16bitsFamily_RAMtest_MarchC function.

Include

SSL_MarchC.h

Prototype

int SSL_16bitsFamily_RAMtest_MarchC(int * ramStartAddress,int ramSize);

Arguments

ramStartAddress Indicates the starting address from where the March C algorithm starts reading the data

ramSize Indicates the number of bytes that are tested; the size must be an even number

Return Value

MARCHC_RAM_TEST_FAIL Return value = 0

MARCHC_RAM_TEST_PASS Return value = 1

Remarks

None.

Source File

SSL_MarchCRamTest.c

TABLE 22: RESOURCE REQUIREMENTS

Note 1: The user application should allocate 0x50 bytes for the stack before executing any of the March tests. The
stack must be allocated at an appropriate address so that it does not get overwritten during test execution.

2: It is recommended that the stack be placed at the beginning or at the end of the data memory. The user
application should specify an address that does not overlap other statically allocated resources (e.g., the
MPLAB® ICD 2 RAM space, which starts from the address 0x800).

3: The following changes are made to the .gld file before executing the March B or March C test:

.stack 0x850: /*Stack Starting Address\*
{

__SP_init = .;
. += 0x50; /* Stack length*/
__SPLIM_init = .;
. += 8;

} >data

Parameter Requirements

Program Memory 585 bytes 

Stack 88 bytes     

Execution Time 1254 cycles(1)

Note 1: The execution time specified here is for a single RAM location.
 2008-2012 Microchip Technology Inc. DS01229C-page 37



AN1229
SSL_16bitsFamily_RAM_STACKtest_MarchC

Description

This function implements the March C test on the RAM memory and stack. This test accesses a 16-bit word from the
RAM memory. The address must be aligned to the data type and the length must be an integral multiple of the data
width. It first tests the RAM memory and then the stack area by transferring the stack contents into the tested RAM area.
After the stack is tested, it restores the contents of the stack. This is a destructive test; therefore, this test can be
executed at system start-up before initializing the memory and the run-time libraries. The memory will be cleared when
the control returns from the SSL_16bitsFamily_RAM_STACKtest_MarchC function.

Include

SSL_MarchC.h

Prototype

int SSL_16bitsFamily_RAM_STACKtest_MarchC(int * ramStartAddress,int ramSize);

Arguments

ramStartAddress Indicates the starting address from where the March C algorithm starts reading the data

ramSize Indicates the number of bytes that are tested; the size must be an even number

Return Value

MARCHC_RAM_STACK_TEST_FAIL Return value = 0

MARCHC_RAM_STACK_TEST_PASS Return value = 1

Remarks

None.

Source File

SSL_MarchCRamAndStackTest.c

TABLE 23: RESOURCE REQUIREMENTS

Note 1: The user application should allocate 0x50 bytes for the stack before executing any of the March tests. The
stack must be allocated at an appropriate address so that it does not get overwritten during test execution.

2: It is recommended that the stack be placed at the beginning or at the end of the data memory. The user
application should specify an address that does not overlap other statically allocated resources (e.g., the
MPLAB® ICD 2 RAM space which starts from the address 0x800).

3: The following changes are made to the .gld file before executing the March B or March C test:

.stack 0x850: /*Stack Starting Address\*
{

__SP_init = .;
. += 0x50; /* Stack length*/
__SPLIM_init = .;
. += 8;

} >data

Parameter Requirements

Program Memory 890 bytes 

Stack 88 bytes     

Execution Time 1576 cycles(1)

Note 1: The execution time specified here is for a single RAM location.
DS01229C-page 38  2008-2012 Microchip Technology Inc.



AN1229
SSL_16bitsFamily_RAMtest_MarchC_Minus

Description

This function implements the March C test on the RAM memory and stack. This test accesses a 16-bit word from the

RAM memory. The address must be aligned to the data type and the length must be an integral multiple of the data

width. It first tests the RAM memory and then the stack area by transferring the stack contents into the tested RAM area.

After the stack is tested, it restores the contents of the stack. This is a destructive test; therefore, this test can be

executed at system start-up before initializing the memory and the run-time libraries. The memory will be cleared when

the control returns from the SSL_16bitsFamily_RAMtest_MarchC_Minus function.

Include

SSL_MarchC_Minus.h

Prototype

int SSL_16bitsFamily_RAMtest_MarchC_Minus(int * ramStartAddress,int ramSize);

Arguments

ramStartAddress Indicates the starting address from where the March C algorithm starts reading the data

ramSize Indicates the number of bytes that are tested; the size must be an even number

Return Value

MARCHC_RAM_TEST_FAIL Return value = 0

MARCHC_RAM_TEST_PASS Return value = 1

Remarks

None.

Source File

SSL_MarchC_MinusRamTest.c 

TABLE 24: RESOURCE REQUIREMENTS

Parameter Requirements

Program Memory 381 bytes

Stack 30 bytes

Execution Time 122 cycles(1)

Note 1: The execution time specified here is for a single RAM location.
 2008-2012 Microchip Technology Inc. DS01229C-page 39



AN1229
SSL_16bitsFamily_RAMtest_MarchB

Description

This function implements the March B test. This test accesses a 16-bit word from the RAM memory. The address must
be properly aligned to the data type and the length must be an integral multiple of the data width. This is a destructive
test; therefore, this test can be executed at system start-up before initializing the memory and the run-time library. The
memory will be cleared when the control returns from the SSL_16bitsFamily_RAMtest_MarchB function.

Include

SSL_MarchB.h

Prototype

int SSL_16bitsFamily_RAMtest_MarchB(int * ramStartAddress,int ramSize);

Arguments

ramStartAddress Indicates the starting address from where the March B algorithm starts reading the data

ramSize Indicates the number of bytes that are tested; the size must be an even number

Return Value

MARCHB_TEST_FAIL Return value = 0

MARCHB_TEST_PASS Return value = 1

Remarks

None.

Source File

SSL_MarchBRamTest.c

TABLE 25: RESOURCE REQUIREMENTS

Note 1: The user application should allocate 0x50 bytes for the stack before executing any of the March tests. The
stack must be allocated at an appropriate address so that it does not get overwritten during test execution.

2: It is recommended that the stack should be placed at the beginning or at the end of the data memory. The
user application should specify an address such that it does not overlap other statically allocated resources
(e.g., the MPLAB® ICD 2 RAM space which starts from the address 0x800).

3: The following changes are made to the .gld file before executing the March B or March C test:

.stack 0x850: /*Stack Starting Address\*
{

__SP_init = .;
. += 0x50; /* Stack length*/
__SPLIM_init = .;
. += 8;

} >data

Parameter Requirements

Program Memory 630 bytes 

Stack 88 bytes     

Execution Time 1183 cycles(1) 

Note 1: The execution time specified here is for a single RAM location.
DS01229C-page 40  2008-2012 Microchip Technology Inc.



AN1229
SSL_16bitsFamily_RAMtest_CheckerBoard

Description

This function implements the Checkerboard test on the RAM memory. The test is performed on the memory space
specified by the variable, RamSize. The execution begins from the address defined by the variable, RAMSTARTADDRESS.
The number of specified locations must be even.

Include

SSL_CBram.h

Prototype

int SSL_16bitsFamily_RAMtest_CheckerBoard(int *ramStartAddress,int RamSize);

Arguments

RamStartAddress Indicates the starting address from where the Checkerboard test is to be performed 

RamSize Indicates the number of locations that are tested; the size must be an even number

Return Value

CB_TEST_FAIL Return value = 0

CB_TEST_PASS Return value = 1

Remarks

None.

Source File

SSL_CheckerBoard.s

TABLE 26: RESOURCE REQUIREMENTS

Parameter Requirements

Program Memory 321 bytes 

Stack 68 bytes     

Execution Time 43 cycles(1)

Note 1: The execution time specified here is for a single RAM location.
 2008-2012 Microchip Technology Inc. DS01229C-page 41



AN1229
SSL_16bitsFamily_CLOCKtest

Description

This function implements the Clock test. It is used to verify the proper operation of the CPU clock. The TMR2 value of
Timer2 is saved within the Timer1 interrupt handler. This value represents the number of CPU clock cycles elapsed in
1 ms time period of the SOSC. If the number of clock cycles is beyond the defined boundary, the function sets an error
flag.

This test performs the following major tasks:

1. The LP secondary oscillator is used as an independent clock source or a reference clock source. This 32 kHz
oscillator is used to clock Timer1.

2. The POSC with Phase-Locked Loop (PLL) is the clock source to the CPU. Timer2 runs at the CPU clock
frequency.

3. Timer1 is configured to generate an interrupt at specified time intervals (e.g., 1 ms).

4. The PR2 register in the Timer2 module holds the time period value. It must be initialized to a value greater than
1 ms so that Timer2 does not time out before the occurrence of a Timer1 interrupt.

5. The TMR2 value of Timer2 is saved within the Timer1 interrupt handler. This value represents the number of CPU
clock cycles elapsed in the 1 ms time period of the SOSC. If the number of clock cycles is beyond the defined
boundary, the function sets an error flag.

For example, the following parameters are used to calculate the CLK_MIN_TIME and CLK_MAX_TIME values for a
dsPIC30F device:

• POSC: XT_PLL8

• FOSC: 7.37 MHz * 8

• FCY: FOSC/4: (7.37 * 10^6 * 8)/4

• FCY: 14740000

• SOSC: 32 kHz

• Timer1 Period Register (PR1): 31

Therefore, with 4% tolerance, the number of CPU clock cycles in 1 ms (14740 cycles) are:

• CLK_MIN_TIME: 14150

• CLK_MAX_TIME: 15330

Include

SSL_ClockTest.h

SSL_ClockSwitch.h This file is required only when a PIC24F device is used

Prototype

unsigned int SSL_16bitsFamily_CLOCKtest(void);

Arguments

None.

Return Value 

CLOCK_NO_ERROR The CPU clock is operating within the specified range

CLOCK_ERROR The CPU clock is not operating within the specified range

Remarks

None.
DS01229C-page 42  2008-2012 Microchip Technology Inc.



AN1229
SSL_16bitsFamily_CLOCKtest(Continued)

Source File

SSL_ClockTest.c

TABLE 27: RESOURCE REQUIREMENTS

Parameter Requirements

Program Memory 387 bytes 

Stack 8 bytes     

Execution Time 30 cycles 
 2008-2012 Microchip Technology Inc. DS01229C-page 43



AN1229
SSL_16bitsFamily_CLOCKtest_LineFreq

Description

This function implements the line frequency Clock test. It is used to verify the proper operation of the CPU clock. It uses
the following procedure to configure the IC1CON register:

1. The Timer2 module is selected as the IC1 time base.

2. An interrupt is generated on every second capture event.

3. The capture event is generated on every rising edge of the line frequency.

The IC1 pin generates an interrupt after every 20 ms if the line frequency is 50 Hz and after every 16.66 ms if the line
frequency is 60 Hz. The Timer2 prescaler is configured to operate in 1:8 mode so that the timer count does not time-out
within 20 ms/16.66 ms. The capture event is generated on every rising edge of the line frequency. For period measure-
ment, the capture interrupt is generated after taking two time-stamps, V1 and V2 (see Figure 6). The total number of
clock cycles is calculated using the following formula:

Total Number of Clock Cycles = Timer Count * Timer Prescaler. 

If the number of clock cycles is beyond the defined boundary, the function sets an error flag.

Include

SSL_ClockTest_LineFreq.h

SSL_ClockSwitch.h This file is required only when a PIC24F device is used

Prototype

int SSL_16bitsFamily_CLOCKtest_LineFreq();

Arguments

None.

Return Value

CLOCK_NO_ERROR The CPU clock is operating within the specified range

CLOCK_ERROR The CPU clock is not operating within the specified range

Remarks

None.

Source File

SSL_ClockTest_LineFreq.c

TABLE 28: RESOURCE REQUIREMENTS 

Parameter Requirements

Program Memory 447 bytes 

Stack 12 bytes     

Execution Time 25 cycles
DS01229C-page 44  2008-2012 Microchip Technology Inc.



AN1229
32-BIT API FUNCTIONS FOR 32-BIT 
PIC MCUs

This section lists and describes the API functions that
are available in the PIC32MX Class B Safety Software
Library for the 32-bit architecture. The functions are
listed below followed by their individual detailed
descriptions:

• SSL_32bitsFamily_CPU_RegisterTest

• SSL_32bitsFamily_PCtest

• SSL_32bitsFamily_Flashtest_CRC16

• SSL_32bitsFamily_RAMtest_MarchC

• SSL_32bitsFamily_RAM_STACKtest_MarchC

• SSL_32bitsFamily_RAMtest_MarchC_Minus

• SSL_32bitsFamily_RAMtest_MarchB

• SSL_32bitsFamily_RAMtest_CheckerBoard

• SSL_32bitsFamily_CLOCKtest

• SSL_32bitsFamily_CLOCKtest_LineFreq
 2008-2012 Microchip Technology Inc. DS01229C-page 45



AN1229
SSL_32bitsFamily_CPU_RegisterTest

Description
This function implements the CPU Register test. First it tests the register 0 to have all bits cleared. For all the other
registers (1 to 31) the test successively writes the values 0x55555555 and 0xAAAAAAAA into the corresponding CPU
register, and then reads the values from the register for verification. The function returns an error code if the values do
not match.

Include

SSL_CpuRegisterTest.h

Prototype

int SSL_32bitsFamily_CPU_RegisterTest(void);

Arguments

None.

Return Value

CPU_REGISTER_TEST_FAIL The test failed. Some CPU register(s) has been detected to have stuck bits

CPU_REGISTER_TEST_PASS The test passed. CPU registers have not been detected to have stuck bits

Remarks

This is a non-destructive test. Interrupts should be disabled when calling this test function.

The standard C language call convention applies regarding the registers usage (refer to Section 5.6 “Function Calling
Convention” in the MPLAB® C Compiler For PIC32 MCUs User’s Guide (DS51686)).

Upon the function entry, all registers that need to be preserved are saved into the stack. These registers are restored
upon completion of the test. Upon the function return, the register v0 will contain the return code.

Source File

SSL_CPURegisterTest.S

TABLE 29: RESOURCE REQUIREMENTS

Parameter Requirements

Program Memory 2156 bytes 

Stack 44 bytes

Execution Time 922 cycles (11.5 µs)(1)

Note 1: The value for the CPU cycles can vary greatly depending on the system settings and the build parameters. 
All execution time measurements are done with the following settings: 80 MHz, two Flash Wait states, 
zero RAM Wait states, Prefetch and Cache enabled, PBDIV = 1:1 interrupts and DMA disabled.

2: The co-processor 0 (CP0) registers are not tested by this function. These registers are configuration and 
status registers and modifying their values could adversely affect the system behavior at run time.
DS01229C-page 46  2008-2012 Microchip Technology Inc.



AN1229
SSL_32bitsFamily_PCtest

Description

This function implements the PC test, which is a functional test of the PC. It checks that the PC register is not stuck and
it properly holds the address of the next instruction to be executed.

The test invokes the functions that are located in Flash memory at different addresses. The functions placed at these
addresses return a unique value, which is the starting address of the called function. This returned value is verified using
the SSL_32bitsFamily_PCtest function.

The provided customized linker script, elf32pic32mx.ld, defines the addresses where these functions reside in
Flash memory.

Include

SSL_PcTest.h

Prototype

int SSL_32bitsFamily_PCtest(void);

Arguments

None.

Return Value

PC_TEST_FAIL The test failed. The PC register has been detected to hold an incorrect address.

PC_TEST_PASS The test passed. The PC register holds the correct address.

Remarks

The test uses three different functions:

• SSL_TestPCFunction1()

• SSL_TestPCFunction2()

• SSL_TestPCFunction3()

The ROM location of these functions that are used for PC test at run time can be changed by modifying the provided
elf32pic32mx.ld file.

The elf32pic32mx.ld linker script file should be added to the project.

Source File

TABLE 30: RESOURCE REQUIREMENTS

Parameter Requirements

Program Memory 332 bytes (debug build)
212 bytes (-O3 -fomit-frame-pointer)

Stack 48 bytes (debug build)

Execution Time 90 cycles (1.125 µs)(1)

Note 1: The value for the CPU cycles can vary greatly depending on the system settings and the build parameters. 
All execution time measurements are done with the following settings: 80 MHz, two Flash Wait states, 
zero RAM Wait states, Prefetch and Cache enabled, PBDIV = 1:1 interrupts and DMA disabled. Build: 
MPLAB C32 V1.10(b) Release -O3 -fomit-frame-pointer.
 2008-2012 Microchip Technology Inc. DS01229C-page 47



AN1229
SSL_32bitsFamily_Flashtest_CRC16

Description

This function calculates the 16-bit CRC of the supplied memory area using the standard Linear Feedback Shift Register
(LFSR) implementation.

It calculates the CRC over the memory area between the start address and end address and returns the CRC Value.

The 16-bit CRC is calculated using the supplied generator polynomial and initial seed. Different generator polynomials
can be selected.

Include

SSL_Flash_CRC.h

Prototype

unsigned int SSL_32bitsFamily_Flashtest_CRC16(char* startAddress, char* endAddress, 
unsigned int crcPoly, unsigned int crcSeed);

Arguments

startAddress Start address of the memory area to calculate the CRC over

endAddress Final address for which the CRC is calculated

crcPoly The generator polynomial to be used. One of the standard
supplied polynomials can be used as well as other user-defined ones.

crcSeed The initial value in the CRC LFSR. The usual recommended value is 0xFFFF.

Return Value

The value of the calculated CRC over the specified memory area.

Remarks

This test is non-destructive for the memory area to which it is applied.

The start address and end address over which the CRC value is calculated are PIC32 variant and application-
dependent.

They are run-time parameters.

Source File

SSL_FlashTest_CRC16.c

TABLE 31: RESOURCE REQUIREMENTS

Parameter Requirements

Program Memory 348 bytes (debug build)
196 bytes (-O3 -fomit-frame-pointer)

Stack 48 bytes (debug build)

Execution Time 99264 cycles (1240.8 us) for 1024 bytes Flash CRC(1)

Note 1: The value for the CPU cycles can vary greatly depending on the system settings and the build parameters. 
All execution time measurements are done with the following settings: 80 MHz, two Flash Wait states, 
zero RAM Wait states, Prefetch and Cache enabled, PBDIV = 1:1 interrupts and DMA disabled. Build: 
MPLAB C32 V1.10(b) Release -O3 -fomit-frame-pointer.
DS01229C-page 48  2008-2012 Microchip Technology Inc.



AN1229
SSL_32bitsFamily_RAMtest_MarchC

Description

This function implements the March C test. This test performs 32-bit word RAM accesses. The address of the RAM area
to be tested must be 32-bit aligned and the size of the tested RAM area must be an integral multiple of 4. 

The tested RAM memory will be cleared when the control returns from the SSL_32bitsFamily_RAMtest_MarchC
function.

Include

SSL_MarchC.h

Prototype

int SSL_32bitsFamily_RAMtest_MarchC(int* ramStartAddress, int ramSize);

Arguments

ramStartAddress Start address from which the March C test is to be performed. Must be properly 32-bit
aligned.

ramSize Number of consecutive byte locations for which the test is to be performed. The size must
be a number multiple of 4.

Return Value

MARCHC_TEST_PASS The test passed. RAM area tested has not been detected to have Faults

MARCHC_TEST_FAIL The test failed. Some RAM area location has been detected to have Faults.

Remarks

This is a destructive memory test. The test must not be performed over the RAM areas that have to be preserved;
otherwise, these RAM areas must be saved/restored before/after running the test.

Alternatively the test could be run at system start-up before the memory and the run time library is initialized; however,
the stack must be initialized.

At least 100 bytes should be available for the stack for executing the March C test. The tested RAM area must not
overlap the stack.

Other statically allocated resources such as the MPLAB ICD or REAL ICE™ allocated RAM buffers should be excluded
from this test.

The start address from which the March C test is to be performed and the size of the RAM area are PIC32 variant and
application-dependent. They are run-time parameters.

Source File

SSL_MarchCRamTest.c

TABLE 32: RESOURCE REQUIREMENTS

Parameter Requirements

Program Memory 1304 bytes (debug build)
724 bytes (-O3 -fomit-frame-pointer)

Stack 100 bytes (debug build)

Execution Time  602228 cycles (7.52785 ms) for 1024 bytes of RAM test(1)

Note 1: The value for the CPU cycles can vary greatly depending on the system settings and the build parameters. 
All execution time measurements are done with the following settings: 80 MHz, two Flash Wait states, zero 
RAM Wait states, Prefetch and Cache enabled, PBDIV = 1:1 interrupts and DMA disabled. Build: MPLAB 
C32 V1.10(b) Release -O3 -fomit-frame-pointer.
 2008-2012 Microchip Technology Inc. DS01229C-page 49



AN1229
SSL_32bitsFamily_RAM_STACKtest_MarchC

Description

This function implements the March C test on both a RAM and a stack area.

First the RAM area is tested using the standard March C test. If the test succeeded the requested Stack area is copied
into the RAM area that has just been tested and then the March C test is run over the Stack area as if it were a regular
RAM area. The saved Stack area is restored and the result of the test is returned to the user.

This test performs 32-bit word RAM accesses. The address of both the RAM and stack areas to be tested have to be
32-bit aligned and the size of the tested areas must be an integral multiple of 4. 

The tested RAM memory will be cleared when the control returns from the 
SSL_32bitsFamily_RAM_STACKtest_MarchC function.

Include

SSL_MarchC.h

Prototype

int SSL_32bitsFamily_RAM_STACKtest_MarchC(int* ramStartAddress, int ramSize, int* 
stackTopAddress, int stackSize);

Arguments

ramStartAddress Start address of RAM area for which the March C test is to be performed. Must not
overlap the Stack area! Must be properly 32-bit aligned.

ramSize Number of consecutive byte locations for which the test is to be performed. The size must
be a number multiple of 4. The size of the RAM area tested must be > 100 bytes.

stackTopAddress Address of the top of the Stack area for which the March C test is to be performed. Note
that the stack is supposed to grow downward. This must not overlap the RAM area. Must                       
be properly 32-bit aligned.

stackSize Number of consecutive byte locations in the Stack area for which the test is to be
performed. The size must be a number multiple of 4 and must be < RAM size.

Return Value

MARCHC_TEST_PASS The test passed. RAM and Stack area tested have not been detected to have Faults. 

MARCHC_TEST_FAIL The test failed. Either some RAM or Stack area location has been detected to have
Faults. 

MARCHC_TEST_FAIL_SIZE The test failed. There was not enough space in the RAM area to save the Stack area.

MARCHC_TEST_FAIL_STACK The test failed. The requested Stack area does not actually contain the current
hardware SP register.

Remarks

The RAM and Stack areas must not overlap.

The Stack grows downward so the tested area is: [stackTopAddress-stackSize, stackTopAddress]

The processor SP register is changed to the point to the RAM area while the Stack area is tested.

The size of the Stack area to be tested must be less than the size of the RAM area.

Since running the March C RAM and Stack test requires at least 128 bytes of stack, it implies that the size of the tested
RAM area should be at least 128 bytes long.

Once the Stack area is tested, the SP register is restored.

This is a destructive memory test.
DS01229C-page 50  2008-2012 Microchip Technology Inc.



AN1229
SSL_32bitsFamily_RAM_STACKtest_MarchC(Continued)

The test must not be performed over the RAM areas that have to be preserved; otherwise, these RAM areas must be
saved/restored before/after running the test.

Alternately, the test could be run at system start-up before the memory and the run time library is initialized; however,
the stack needs to be initialized.

At least 128 bytes should be available to the stack for executing the March C test.

The tested RAM area must not overlap the stack. 

Other statically allocated resources, such as the MPLAB ICD or REAL ICE allocated RAM buffers should be excluded
from this test.

The start address for both RAM and the stack areas to be tested and the size of these areas are PIC32MX variant and
application-dependent. They are run-time parameters.

The standard C language call convention applies regarding the registers usage (refer to Section 5.6 “Function Calling
Convention” in the MPLAB® C Compiler For PIC32 MCUs User’s Guide (DS51686).

Upon the function return the register v0 will contain the return code.

Source File

SSL_MarchCStackTest.S

TABLE 33: RESOURCE REQUIREMENTS

Parameter Requirements

Program Memory 1572 bytes (debug build)
992 bytes (-O3 -fomit-frame-pointer)

Stack 128 bytes (debug build)

Execution Time 1208616 cycles (15.1077 ms) for 1024 bytes RAM + 1024 
bytes stack test(1)

Note 1: The value for the CPU cycles can vary greatly depending on the system settings and the build parameters. 
All execution time measurements are done with the following settings: 80 MHz, two Flash Wait states, zero 
RAM Wait states, Prefetch and Cache enabled, PBDIV = 1:1 interrupts and DMA disabled. Build: MPLAB 
C32 V1.10(b) Release -O3 -fomit-frame-pointer.
 2008-2012 Microchip Technology Inc. DS01229C-page 51



AN1229
SSL_32bitsFamily_RAMtest_MarchC_Minus

Description

This function implements the March C Minus test. This test performs 32-bit word RAM accesses. The address of the
RAM area to be tested must be 32-bit aligned and the size of the tested RAM area must be an integral multiple of 4. 

The tested RAM memory will be cleared when the control returns from the 
SSL_32bitsFamily_RAMtest_MarchC_Minus function.

Include

SSL_MarchC.h

Prototype

int SSL_32bitsFamily_RAMtest_MarchC_Minus(int* ramStartAddress, int ramSize);

Arguments

ramStartAddress Start address from which the March C Minus test is to be performed. Must be properly 
32-bit aligned.

ramSize Number of consecutive byte locations for which the test is to be performed. The size must
be a number multiple of 4.

Return Value

MARCHC_TEST_PASS The test passed. RAM area tested has not been detected to have Faults.

MARCHC_TEST_FAIL The test failed. Some RAM area location has been detected to have Faults.

Remarks

This is a destructive memory test.

The test must not be performed over the RAM areas that have to be preserved; otherwise, those RAM areas must be
saved/restored before/after running the test.

Alternatively, the test could be run at system start-up before the memory and the run time library is initialized; however,
the stack needs to be initialized.

At least 100 bytes should be available to the stack for executing the March C Minus test.

The tested RAM area must not overlap the stack.

Other statically allocated resources such as the MPLAB ICD or REAL ICE allocated RAM buffers should be excluded
from this test.

The start address from which the March C Minus test is to be performed and the size of the RAM area are PIC32 variant
and application-dependent. They are run-time parameters.
DS01229C-page 52  2008-2012 Microchip Technology Inc.



AN1229
SSL_32bitsFamily_RAMtest_MarchC_Minus(Continued)

Source File

SSL_MarchCRamTest.c

TABLE 34: RESOURCE REQUIREMENTS

Parameter Requirements

Program Memory 1304 bytes (debug build)
724 bytes (-O3 -fomit-frame-pointer)

Stack 100 bytes (debug build)

Execution Time 526956 cycles (6.58695 ms) for 1024 bytes of RAM 
test.(1)

Note 1: The value for the CPU cycles can vary greatly depending on the system settings and the build parameters. 
All execution time measurements are done with the following settings: 80 MHz, two Flash Wait states, zero 
RAM Wait states, Prefetch and Cache enabled, PBDIV = 1:1 interrupts and DMA disabled. Build: MPLAB 
C32 V1.10(b) Release -O3 -fomit-frame-pointer.
 2008-2012 Microchip Technology Inc. DS01229C-page 53



AN1229
SSL_32bitsFamily_RAMtest_MarchB

Description

This function implements the March B test. This test performs 32-bit word RAM accesses. The address of the RAM area
to be tested must be 32-bit aligned and the size of the tested RAM area must be an integral multiple of 4. 

The tested RAM memory will be cleared when the control returns from the SSL_32bitsFamily_RAMtest_MarchB
function.

Include

SSL_MarchB.h

Prototype

int SSL_32bitsFamily_RAMtest_MarchB(int* ramStartAddress, int ramSize);

Arguments

ramStartAddress Start address from which the March B test is to be performed. Must be 32-bit aligned.

ramSize Number of consecutive byte locations for which the test is to be performed. The size must
be a number multiple of 4.

Return Value

MARCHB_TEST_PASS The test passed. RAM area tested has not been detected to have Faults.

MARCHB_TEST_FAIL The test failed. Some RAM area location has been detected to have Faults.

Remarks

This is a destructive memory test.

The test must not be performed over the RAM areas that have to be preserved; otherwise, these RAM areas must be
saved/restored before/after running the test.

Alternately, the test could be run at system start-up before the memory and the run time library is initialized; however,
the stack needs to be initialized.

At least 100 bytes should be available to the stack for executing the March B test.

The tested RAM area must not overlap the stack.

Other statically allocated resources such as the MPLAB ICD or REAL ICE allocated RAM buffers should be excluded
from this test.

The start address from which the March B test is to be performed and the size of the RAM area are PIC32 variant and
application-dependent. They are run-time parameters.

Source File

SSL_MarchBRamTest.c

TABLE 35: RESOURCE REQUIREMENTS

Parameter Requirements

Program Memory 1540 bytes (debug build)
612 bytes (-O3 -fomit-frame-pointer)

Stack 100 bytes (debug build)

Execution Time 737622 cycles (9.220275 ms) for 1024 bytes RAM test.(1)

Note 1: The value for the CPU cycles can vary greatly depending on the system settings and the build parameters. 
All execution time measurements are done with the following settings: 80 MHz, two Flash Wait states, 
zero RAM Wait states, Prefetch and Cache enabled, PBDIV=1:1 interrupts and DMA disabled. Build: 
MPLAB C32 V1.10(b) Release -O3 -fomit-frame-pointer.
DS01229C-page 54  2008-2012 Microchip Technology Inc.



AN1229
SSL_32bitsFamily_RAMtest_CheckerBoard

Description

This function implements the Checkerboard test on the RAM memory.

It writes the checkerboard pattern (0x55555555 followed by 0xAAAAAAAA) to adjacent memory locations starting at
ramStartAddress.

It performs the following steps:

1. The content of a 64 bytes memory chunk to be tested is saved in temporary CPU registers.

2. Writes the pattern 0x55555555 followed by 0xAAAAAAAA to adjacent memory locations filling up the 64 bytes
memory chunk.

3. It reads the memory chunk adjacent locations and checks that the read-back values match the written pattern. If
the values match set the success result and go to step 4; otherwise, set the error result and go to step 6.

4. Writes the inverted pattern 0xAAAAAAAA followed by 0x55555555 to adjacent memory locations filling up the 64
bytes memory chunk.

5. It reads the memory chunk adjacent locations and checks that the read-back values match the written pattern. If
the values match set the success result; otherwise, set the error result.

6. The content of the tested 64 bytes memory chunk is restored from the temporary CPU registers.

7. If the result shows error, the test is done and returns.

8. The Address Pointer is incremented to point to the next sequential 64 bytes memory chunk and the test is
repeated from step 1 until all the number of requested memory locations is tested.

Include

SSL_CBram.h

Prototype

int SSL_32bitsFamily_RAMtest_CheckerBoard(int* ramStartAddress, int ramSize);

Arguments

ramStartAddress Start address from which the Checkerboard test is to be performed. Must be properly 
32-bit aligned.

ramSize Number of consecutive byte locations for which the test is to be performed. The size must
be a number multiple of 64.

Return Value

CB_TEST_PASS The test passed. RAM area tested has not been detected to have stuck bits.

CB_TEST_FAIL The test failed. Some RAM area location has been detected to have stuck bits.

Remarks

This is a non-destructive memory test. The content of the tested memory area is saved and restored. The test operates
in 64 bytes long memory chunks at a time.

At least 32 bytes should be available to the stack for executing the RAM Checker Board test.

The tested RAM area must not overlap the stack.

The start address from which the Checkerboard test is to be performed and the size of the RAM area are PIC32 variant
and application-dependent. They are run-time parameters.

The routine accesses one 4-byte RAM word at a time.

The standard C language call convention applies regarding the registers usage (refer to Section 5.6 “Function Calling
Convention” in the MPLAB® C Compiler For PIC32 MCUs User’s Guide (DS51686).
 2008-2012 Microchip Technology Inc. DS01229C-page 55



AN1229
SSL_32bitsFamily_RAMtest_CheckerBoard(Continued)

Upon the function entry all registers that need to be preserved are save into the stack. These registers are restored upon
the completion of the test.

Upon the function return the register v0 will contain the return code.

Source File

SSL_CheckerBoardTest.S

TABLE 36: RESOURCE REQUIREMENTS

Parameter Requirements

Program Memory 776 bytes

Stack 32 bytes

Execution Time 3412 cycles (42.65 µs) for 1024 bytes RAM test(1)

Note 1: The value for the CPU cycles can vary greatly depending on the system settings and the build parameters. 
All execution time measurements are done with the following settings: 80 MHz, two Flash Wait states, zero 
RAM Wait states, Prefetch and Cache enabled, PBDIV = 1:1 interrupts and DMA disabled. Build: MPLAB 
C32 V1.10(b) Release -O3 -fomit-frame-pointer.
DS01229C-page 56  2008-2012 Microchip Technology Inc.



AN1229
SSL_32bitsFamily_CLOCKtest

Description

The CPU Clock test verifies that the system clock is within specified limits.

The SOSC is used as the reference clock.

The function monitors the CPU Core Timer that runs on the CPU system clock.

The test performs the following major steps:

1. The SOSC is used as the independent clock source/reference clock source connected to hardware Timer1.

2. The CPU Core Timer monitored in this measurement is incremented every other CPU system clock.

3. Usually the system runs on the POSC with PLL as the clock source to the CPU. However, any CPU clock source
except the SOSC itself which is used as a reference is valid for this test.

4. Timer1 is configured to time out after the specified interval of time elapsed (e.g., 10 ms).

5. The content of the Core Timer is saved at the beginning of the measurement, once Timer1 is started.

6. When the hardware Timer1 times out another reading of the Core Timer is taken and the difference is made with
the start value. This difference value represents the number of CPU clock cycles counted by the Core Timer
during the SOSC period of time.

7. If this value crosses the defined boundary limits, the function returns an appropriate error value, specifying which
exact limit (upper/lower) was violated.

Include

SSL_ClockTest.h

Prototype

int SSL_32bitsFamily_CLOCKtest(unsigned int sysClk, int nMs, int hiClkErr, int loClkErr);

Arguments

sysClk The current system running frequency, Hz

nMs Number of milliseconds to be used for the CPU Clock monitoring (1  nMs  1000)

hiClkErr The upper error limit for the system clock, Hz. A monitored value greater than
(sysClk+hiClkErr) will trigger the return of the CLOCK_TEST_FAIL_HI error code.

loClkErr The lower error limit for the system clock, Hz. A monitored value less than 
(sysClk-loClkErr) will trigger the return of the CLOCK_TEST_FAIL_LOW error code.

Return Value

CLOCK_TEST_PASS The test passed. The monitored CPU clock is within the requested limits.

CLOCK_TEST_FAIL_HI The test failed. The monitored CPU clock is greater than the specified upper limit.

CLOCK_TEST_FAIL_LOW The test failed. The monitored CPU clock is less than the specified lower limit.

Remarks

The test uses the hardware Timer1. It initializes the timer as needed and, after the test is done, shuts off the timer. The
previous state of Timer1 is not preserved/restored.

The test assumes that the Core Timer is enabled and linearly counting up as it should do during normal system opera-
tion. If the application code specifically disables the Core Timer, it should enable it before this test is called. Also if the
value in the Core Timer is updated/changed as part of an ISR, this ISR should be disabled.

The interrupts should be disabled when executing this test as the time spent in ISRs will affect the accurate timing of
this routine.
 2008-2012 Microchip Technology Inc. DS01229C-page 57



AN1229
SSL_32bitsFamily_CLOCKtest(Continued)

The SOSC is used as a reference. The frequency of the signal/crystal connected to this input is defined using the
CLOCK_TEST_SOSC_FREQ symbol.

The value of the CPU clock monitoring time, nMs, is limited because of the use of the hardware Timer1, which is a
16-bit timer. Therefore, the value loaded into this Timer1 register should not exceed 216-1.

Source File

SSL_ClockTest.c

TABLE 37: RESOURCE REQUIREMENTS

Parameter Requirements

Program Memory 768 bytes (debug build)
528 bytes (-O3 -fomit-frame-pointer)

Stack 100 bytes (debug build)

Execution Time 16012192 cycles (200.1524 ms) for 100 ms 
measurement.(1,2)

Note 1: The maximum execution time is routine execution + 2 SOSC signal periods (1 period for measurement + 
synchronization time).

2: The value for the CPU cycles can vary greatly depending on the system settings and the build parameters. 
All execution time measurements are done with the following settings: 80 MHz, two Flash Wait states, zero 
RAM Wait states, Prefetch and Cache enabled, PBDIV=1:1 interrupts and DMA disabled. Build: MPLAB 
C32 V1.10(b) Release -O3 -fomit-frame-pointer.
DS01229C-page 58  2008-2012 Microchip Technology Inc.



AN1229
SSL_32bitsFamily_CLOCKtest_LineFreq

Description

The CPU Clock Line Test verifies that the system clock is within specified limits.

An external frequency applied on the Input Capture 1 pin (IC1) is used as the reference clock.

The hardware Timer2 that runs on the system Peripheral Bus (PB) clock is used to monitor the CPU clock and Peripheral
Bus divider.

The test performs the following major steps:

1. The IC1 input is used as the independent clock source/reference clock source to capture the hardware Timer2.
An external reference frequency, usually the line frequency, must be applied to the IC1 input pin.

2. The Input Capture 1 is configured as follows:

• Timer2 is selected as the IC1 time base
• Capture is performed on every rising edge
• Capture done event is generated on every second capture

3. The hardware Timer2 prescaler is calculated (based on the input reference frequency and the current PB
frequency) as being the smallest divider possible, such that the 16-bit Timer2 does not overflow within a period
time of the input reference signal.

This way, the best resolution is achieved for the given conditions. If no valid prescaler value can be obtained an
error value is returned (the maximum divider for Timer2 is 256).

4. The IC1 performs the capture on every rising edge of the input reference frequency. For period measurement,
the capture done event is generated after the IC1 module takes two time stamps (i.e., after every period of the
input reference (20 ms if reference frequency is 50 Hz, 16.66ms if the reference frequency is 60 Hz)).

5. Once the capture done event is signaled, the two Timer2 captured readings are extracted and the number of
elapsed PB clocks is calculated as being the difference between the two readings multiplied by the Timer2
prescaler.

If this value crosses the defined boundary limits the function returns an appropriate error value, specifying which
exactly limit (upper/lower) was violated.

CALCULATION EXAMPLE 1:

System Clock = 80 MHz

PB Clock = 80 MHz (PB divider = 1:1)

Input Reference = 50 Hz

T2 Min Divider = floor(PBclk/(65536*RefClk)) + 1 = 25

Actual T2 Divider = 32

The number of cycles counted by the Timer2 in the Reference clock period is = (80,000,000/32)/50 = 50,000.

CALCULATION EXAMPLE 2:

System Clock = 80 MHz

PB Clock = 10 MHz (PB divider = 1:8)

Input Reference = 60 Hz

T2 Min Divider = floor(PBclk/(65536*RefClk)) + 1 = 3

Actual T2 Divider = 4

The number of cycles counted by Timer2 in the Reference clock period is = (10,000,000/4)/60 = 41,666.

Include

SSL_ClockTest_LineFreq.h

Prototype

int SSL_32bitsFamily_CLOCKtest_LineFreq(unsigned int sysClk, unsigned int lineRefClk,
int hiClkErr, int loClkErr);
 2008-2012 Microchip Technology Inc. DS01229C-page 59



AN1229
SSL_32bitsFamily_CLOCKtest_LineFreq(Continued)

Arguments

sysClk The current system running frequency, Hz

lineRefClk The frequency of the reference applied to the IC1 input pin, Hz. Usual values are 50/60 Hz

hiClkErr The upper error limit for the system clock, Hz. A monitored value greater than
(sysClk+hiClkErr) will trigger the return of the CLOCK_TEST_FAIL_HI error code.

loClkErr The lower error limit for the system clock, Hz. A monitored value less than 

(sysClk-loClkErr) will trigger the return of the CLOCK_TEST_FAIL_LOW error code.

Return Value

CLOCK_TEST_PASS The test passed. The monitored CPU clock is within the requested limits.

CLOCK_TEST_FAIL_HI The test failed. The monitored CPU clock is greater than the specified upper limit.

CLOCK_TEST_FAIL_LOW The test failed. The monitored CPU clock is less than the specified lower limit.

CLOCK_TEST_FAIL_LOW_REF The test failed. The frequency of the provided reference was too low and could
not be used.

Remarks

The test uses the hardware Input Capture 1 module. It initializes the module as needed and, after the test is done, it
shuts it off. The previous state of IC1 is not preserved/restored.

The test uses the hardware Timer2. It initializes the timer as needed and, after the test is done, shuts off the timer. The
previous state of Timer1 is not preserved/restored.

The value of the PB frequency which is used as input by the Timer2 is derived from the system CPU clock by dividing
it with the PB divider. The test does not change the value of the PB divider, it uses the current value.

The interrupts should be disabled when executing this test as the time spent in ISRs affects the accurate timing of this
routine.

The frequency of the signal used as a reference on IC1 input should normally be the line frequency.

However, any frequency can be used as long as a valid Timer2 divider can be obtained (see the example calculation
below for the 16-bit Timer2).

If the reference frequency is too low, a valid divider for the Timer2 will not be possible (the maximum divider for Timer2
is 256). A greater PB divider must be selected in this case.

If the selected reference frequency is too high, the number of Timer2 captured counts will be too small and the
measurement will not have enough resolution.

Source File

SSL_ClockTest_LineFreq.c
DS01229C-page 60  2008-2012 Microchip Technology Inc.



AN1229
TABLE 38: RESOURCE REQUIREMENTS

Parameter Requirements

Program Memory 796 bytes (debug build)
488 bytes (-O3 -fomit-frame-pointer)

Stack 48 bytes (debug build)

Execution Time 4198140 cycles (52.47675 ms) for 50 Hz reference(1,2).

Note 1: The maximum execution time is routine execution + 3 reference signal periods (2 periods for 
measurement + synchronization time).

2: The value for the CPU cycles can vary greatly depending on the system settings and the build parameters. 
All execution time measurements are done with the following settings: 80 MHz, two Flash Wait states, 
zero RAM Wait states, Prefetch and Cache enabled, PBDIV = 1:1 interrupts and DMA disabled. Build: 
MPLAB C32 V1.10(b) Release -O3 -fomit-frame-pointer.
 2008-2012 Microchip Technology Inc. DS01229C-page 61



AN1229
SUMMARY

This application note describes how to implement
various diagnostic measures proposed by the
IEC 60730 standard. These measures ensure the safe
operation of controlled equipment that falls under the
Class B category. In addition, this application note also
describes the different APIs that are available in the
Class B Safety Software Library. These APIs can be
directly integrated with the end user’s application to test
and verify the critical functionalities of a controller and
are intended to maximize the application reliability
through Fault detection. When implemented on a
dsPIC DSC or PIC MCU, these APIs help meet the IEC
60730 standard’s requirements. 

Microchip has developed the Class B Safety Software
Library to assist you in implementing the safety
software routines. Contact your Microchip sales or
application engineer if you would like further support.

REFERENCES

• IEC 60730 Standard, “Automatic Electrical 
Controls for Household and Similar Use”, 
IEC 60730-1 Edition 3.2, 2007-03

• Bushnell, M., Agarwal, V. “Essentials of Electronic 
Testing for Digital, Memory, and Mixed-Signal 
VLSI Circuits” New York: Springer, 1st ed. 2000. 
Corr. 2nd printing, 2005

• Wu, C. “Memory Testing” 

• Wu, C. “RAM Fault Models and Memory Testing” 

• Suk, D.S. and Reddy, S.M. “A March Test for 
Functional Faults in Semiconductor 
Random-Access Memories”, lEEE Trans. 
Computers, Vol. C-30, No. 12, 1981, pp. 982-985
DS01229C-page 62  2008-2012 Microchip Technology Inc.



AN1229
APPENDIX A: SOURCE CODE

All of the software covered in this application note is available as a single WinZip archive file. This archive can be
downloaded from the Microchip corporate web site at:

www.microchip.com

Software License Agreement
The software supplied herewith by Microchip Technology Incorporated (the “Company”) is intended and supplied to you, the
Company’s customer, for use solely and exclusively with products manufactured by the Company.
The software is owned by the Company and/or its supplier, and is protected under applicable copyright laws. All rights are reserved.
Any use in violation of the foregoing restrictions may subject the user to criminal sanctions under applicable laws, as well as to civil
liability for the breach of the terms and conditions of this license.
THIS SOFTWARE IS PROVIDED IN AN “AS IS” CONDITION. NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATU-
TORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
 2008-2012 Microchip Technology Inc. DS01229C-page 63

http://www.microchip.com


AN1229
APPENDIX B: IEC 60730-1 TABLE H.11.12.7

The following table is reproduced with the permission of the International Electrotechnical Commission (IEC). IEC
60730-1 ed.3.2 “Copyright © 2007 IEC, Geneva, Switzerland. www.iec.ch”.

TABLE B-1: H.11.12.7
DS01229C-page 64  2008-2012 Microchip Technology Inc.

http://www.iec.ch


AN1229
TABLE B-1: H.11.12.7 (CONTINUED)
 2008-2012 Microchip Technology Inc. DS01229C-page 65



AN1229
TABLE B-1: H.11.12.7 (CONTINUED)
DS01229C-page 66  2008-2012 Microchip Technology Inc.



AN1229
TABLE B-1: H.11.12.7 (CONTINUED)
 2008-2012 Microchip Technology Inc. DS01229C-page 67



AN1229
TABLE B-1: H.11.12.7 (CONTINUED)
DS01229C-page 68  2008-2012 Microchip Technology Inc.



AN1229
APPENDIX C: REVISION HISTORY

Revision A (September 2008)

This is the initial release of this application note.

Revision B (May 2010)

Information related to 32-bit PIC microcontrollers has
been added throughout the document, which includes
the following new functions:

• SSL_32bitsFamily_CPU_RegisterTest

• SSL_32bitsFamily_PCtest

• SSL_32bitsFamily_Flashtest_CRC16

• SSL_32bitsFamily_RAMtest_MarchC

• SSL_32bitsFamily_RAM_STACKtest_MarchC

• SSL_32bitsFamily_RAMtest_MarchC_Minus

• SSL_32bitsFamily_RAMtest_MarchB

• SSL_32bitsFamily_RAMtest_CheckerBoard

• SSL_32bitsFamily_CLOCKtest

• SSL_32bitsFamily_CLOCKtest_LineFreq

Revision C (04/2012)

Added 8-bit information.
 2008-2012 Microchip Technology Inc. DS01229C-page 69



AN1229
NOTES:
DS01229C-page 70  2008-2012 Microchip Technology Inc.



Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the 
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our 
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data 
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not 
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.
 2008-2012 Microchip Technology Inc.

QUALITY MANAGEMENT  SYSTEM 
CERTIFIED BY DNV 

== ISO/TS 16949 == 
Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, 
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, 
PIC32 logo, rfPIC and UNI/O are registered trademarks of 
Microchip Technology Incorporated in the U.S.A. and other 
countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, 
MXDEV, MXLAB, SEEVAL and The Embedded Control 
Solutions Company are registered trademarks of Microchip 
Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, chipKIT, 
chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, 
dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, 
FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, 
Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, 
MPLINK, mTouch, Omniscient Code Generation, PICC, 
PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, 
rfLAB, Select Mode, Total Endurance, TSHARC, 
UniWinDriver, WiperLock and ZENA are trademarks of 
Microchip Technology Incorporated in the U.S.A. and other 
countries.

SQTP is a service mark of Microchip Technology Incorporated 
in the U.S.A.

All other trademarks mentioned herein are property of their 
respective companies.

© 2008-2012, Microchip Technology Incorporated, Printed in 
the U.S.A., All Rights Reserved.

 Printed on recycled paper.

ISBN: 9781620762523
DS01229C-page 71

Microchip received ISO/TS-16949:2009 certification for its worldwide 
headquarters, design and wafer fabrication facilities in Chandler and 
Tempe, Arizona; Gresham, Oregon and design centers in California 
and India. The Company’s quality system processes and procedures 
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping 
devices, Serial EEPROMs, microperipherals, nonvolatile memory and 
analog products. In addition, Microchip’s quality system for the design 
and manufacture of development systems is ISO 9001:2000 certified.



DS01229C-page 72  2008-2012 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200 
Fax: 480-792-7277
Technical Support: 
http://www.microchip.com/
support
Web Address: 
www.microchip.com

Atlanta
Duluth, GA 
Tel: 678-957-9614 
Fax: 678-957-1455

Boston
Westborough, MA 
Tel: 774-760-0087 
Fax: 774-760-0088

Chicago
Itasca, IL 
Tel: 630-285-0071 
Fax: 630-285-0075

Cleveland
Independence, OH 
Tel: 216-447-0464 
Fax: 216-447-0643

Dallas
Addison, TX 
Tel: 972-818-7423 
Fax: 972-818-2924

Detroit
Farmington Hills, MI 
Tel: 248-538-2250
Fax: 248-538-2260

Indianapolis
Noblesville, IN 
Tel: 317-773-8323
Fax: 317-773-5453

Los Angeles
Mission Viejo, CA 
Tel: 949-462-9523 
Fax: 949-462-9608

Santa Clara
Santa Clara, CA 
Tel: 408-961-6444
Fax: 408-961-6445

Toronto
Mississauga, Ontario, 
Canada
Tel: 905-673-0699 
Fax: 905-673-6509

ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431

Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Tel: 86-10-8569-7000 
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889

China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500

China - Hangzhou
Tel: 86-571-2819-3187 
Fax: 86-571-2819-3189

China - Hong Kong SAR
Tel: 852-2401-1200 
Fax: 852-2401-3431

China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470

China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

China - Shanghai
Tel: 86-21-5407-5533 
Fax: 86-21-5407-5066

China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8203-2660 
Fax: 86-755-8203-1760

China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118

China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

China - Xiamen
Tel: 86-592-2388138 
Fax: 86-592-2388130

China - Zhuhai
Tel: 86-756-3210040 
Fax: 86-756-3210049

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-3090-4444 
Fax: 91-80-3090-4123

India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632

India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513

Japan - Osaka
Tel: 81-66-152-7160 
Fax: 81-66-152-9310

Japan - Yokohama
Tel: 81-45-471- 6166 
Fax: 81-45-471-6122

Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302

Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or 
82-2-558-5934

Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859

Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068

Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069

Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-5778-366
Fax: 886-3-5770-955

Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-330-9305

Taiwan - Taipei
Tel: 886-2-2500-6610 
Fax: 886-2-2508-0102

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828 
Fax: 45-4485-2829

France - Paris
Tel: 33-1-69-53-63-20 
Fax: 33-1-69-30-90-79

Germany - Munich
Tel: 49-89-627-144-0 
Fax: 49-89-627-144-44

Italy - Milan 
Tel: 39-0331-742611 
Fax: 39-0331-466781

Netherlands - Drunen
Tel: 31-416-690399 
Fax: 31-416-690340

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820

Worldwide Sales and Service

11/29/11

http://support.microchip.com
http://www.microchip.com

	Introduction
	Overview of the IEC 60730 Standard
	System Requirements
	Class B Safety Software Library
	CPU Register Test
	Program Counter Test
	EXAMPLE 1: Linker Script Modification

	Invariable Memory (Flash/EEPROM) Test
	FIGURE 1: Flowchart for the Invariable Memory Test

	Variable Memory Test
	FIGURE 2: March Test Notations
	FIGURE 3: March C Algorithm
	EXAMPLE 2: Pseudocode for March C Test
	FIGURE 4: March C Minus Algorithm
	FIGURE 5: March B Algorithm
	EXAMPLE 3: Pseudocode for March B Test

	Interrupt Test
	Clock Test
	FIGURE 6: Timer Value Capture

	Addressing of Variable and Invariable Memory and Internal Data Path
	Addressing Wrong Address
	External Communication
	Timing
	Plausibility Check

	API Functions for 8-Bit PIC MCUs (PIC10/12/16)
	API Functions for 8-bit PIC MCUs (PIC18)
	API Functions for 16-Bit PIC MCUs and dsPIC DSCs
	32-Bit API Functions for 32-Bit PIC MCUs
	Summary
	References
	Appendix A: Source Code
	Appendix B: IEC 60730-1 Table H.11.12.7
	Appendix C: Revision History
	Trademarks
	Worldwide Sales

