
© 2008 Microchip Technology Inc. DS01227A-page 1

INTRODUCTION
Graphics displays are widely used in many applications
and the number of products with displays grows every
day. A primary reason is that a Graphical User Interface
(GUI) can greatly simplify the use of a device.

The GUI can interface a display with a variety of input
devices, such as keyboards, touch screens or mice.
Keyboards range from devices with several side
buttons to those enabling text entry. Low cost and the
ability to quickly enter data are resulting in the frequent
use of keyboards.

The Microchip Graphics Library simplifies the design of
a keyboard-based GUI, as this application note will
demonstrate. For more information on the library, see
AN1136, “How to Use Widgets in Microchip Graphics
Library”.

MESSAGE INTERFACE
The Microchip Graphics Library supports several kinds
of input devices, achieving that flexibility through a
message interface. The interface has a structure con-
taining information about input device events. The input
device firmware is not a part of the library and must be
implemented in the application.

The application must provide the event information in a
a prescribed format and pass the data to the library’s
message manager. The rest of the work is done by the
library with the on-screen widgets displaying the new
state automatically.

The code structure of the message manager function is
shown in Example 1.

The format of the graphics library message structure is
shown in Example 2.

The keyboard related definitions for the preceding
example’s fields are given in Table 1.

TABLE 1: MESSAGE STRUCTURE
FIELDS’ DEFINITIONS

Keyboard messages use the standard AT keyboard
scan codes. The Most Significant bit of the AT scan
code defines the key state of pressed or released.

Frequently used scan codes for the graphics library
widgets are listed in Table 2. The constants definitions
for the codes is in the ScanCodes.h file included in the
graphics library.

EXAMPLE 1: MESSAGE MANAGER
FUNCTION PROTOTYPE

void GOLMsg(GOL_MSG *pMsg)

The pMsg parameter is a pointer to the message
structure filled by the input device.

Author: Anton Alkhimenok
Microchip Technology Inc.

EXAMPLE 2: MESSAGE STRUCTURE
FORMAT

typedef struct {
BYTE type,
BYTE uiEvent,
SHORT param1,
SHORT param2
} GOL_MSG;

Field Description Bytes

type The type of input device.
For a keyboard, this value must be
TYPE_KEYBOARD.

1

uiEvent The input event.
A keyboard has two kinds of events:
• EVENT_KEYSCAN – When the
param2 field contains a scan
code

• EVENT_KEYCODE – When the
param2 field contains a
character code.

1

param1 The ID of the widget receiving the
message.
This unique ID is assigned by the
application when the object is
created.

2

param2 The scan code or character code,
depending on the value in the
uiEvent field.

2

AN1227
Using a Keyboard with the Microchip Graphics Library

AN1227

DS01227A-page 2 © 2008 Microchip Technology Inc.

TABLE 2: AT KEYBOARD SCAN CODES

The key code in a keyboard message can have
different encoding. An application must ensure that a
message’s encoding matches the one used for the font
of the widget receiving the message.

For example, if the Edit Box widget has an ASCII
encoded font, the key code in the keyboard message
also must be in ASCII.

WIDGETS KEYBOARD MESSAGES
Each widget has a set of valid keyboard messages.
Invalid messages result in no action.

Some widgets – such as Window, Static Text, Picture,
Progress Bar and Group Box – cannot accept keyboard
input. If a widget is in a disabled state, it ignores all
messages.

Table 3 summarizes the keyboard messages for the
different widgets.

Description
Press Release

Name Defined in
ScanCodes.h

Code Name Defined in
ScanCodes.h

Code

Carriage Return SCAN_CR_PRESSED 0x1C SCAN_CR_RELEASED 0x9C
Delete SCAN_DEL_PRESSED 0x53 SCAN_DEL_RELEASED 0xD3
Back Space SCAN_BS_PRESSED 0x0E SCAN_BS_RELEASED 0x8E
Tabulation SCAN_TAB_PRESSED 0x0F SCAN_TAB_RELEASED 0x8F
Home SCAN_HOME_PRESSED 0x47 SCAN_HOME_RELEASED 0xC7
End SCAN_END_PRESSED 0x4F SCAN_END_RELEASED 0xCF
Page Up SCAN_PGUP_PRESSED 0x49 SCAN_PGUP_RELEASED 0xC9
Page Down SCAN_PGDOWN_PRESSED 0x51 SCAN_PGDOWN_RELEASED 0xD1
Arrow Up SCAN_UP_PRESSED 0x48 SCAN_UP_RELEASED 0xC8
Arrow Down SCAN_DOWN_PRESSED 0x50 SCAN_DOWN_RELEASED 0xD0
Arrow Left SCAN_LEFT_PRESSED 0x4B SCAN_LEFT_RELEASED 0xCB
Arrow Right SCAN_RIGHT_PRESSED 0x4D SCAN_RIGHT_RELEASED 0xCD
Space SCAN_SPACE_PRESSED 0x39 SCAN_SPACE_RELEASED 0xB9

©
 2008 M

icrochip Technology Inc.
D

S
01227A

-page 3

A
N

1227

TABLE 3: MICROCHIP GRAPHICS LIBRARY KEYBOARD MESSAGES FOR WIDGETS

Widget
Translated Message in the

Message Callback
Function

Message from the Input Device

Type of the Input Device
(the Type field in the message
structure)

Event Description
(the uiEvent field in
the message structure)

Parameter 1 Description
(param1 field in the message
structure)

Parameter 2 Description
(param2 field in the message
structure)

Button

The button is pressed.
(BTN_MSG_PRESSED
constant)

Keyboard
(TYPE_KEYBOARD constant)

Key scan code event.
(EVENT_KEYSCAN
constant)

ID of the button assigned by
application when the button was
created.

Carriage return pressed scan code
(SCAN_CR_PRESSED constant)
or
Space pressed scan code
(SCAN_SPACE_PRESSED constant)

The button is released.
(BTN_MSG_RELEASED
constant)

Carriage return released scan code
(SCAN_CR_RELEASED constant)
or
Space released scan code
(SCAN_SPACE_RELEASED
constant)

Check
Box

• The check box is
checked.
(BTN_MSG_CHECKED
constant)

• The check box is
unchecked.
(BTN_MSG_
UNCHECKED constant)

Keyboard
(TYPE_KEYBOARD constant)

Key scan code event.
(EVENT_KEYSCAN
constant)

ID of the check box assigned by
application when the check box was
created.

Carriage return pressed scan code
(SCAN_CR_PRESSED constant)
or
Space pressed scan code
(SCAN_SPACE_PRESSED
 constant)

Radio
Button

The same radio button in the
group is checked.
(RB_MSG_CHECKED
constant)

Keyboard
(TYPE_KEYBOARD constant)

Key scan code event.
(EVENT_KEYSCAN
constant)

ID of any radio button in the group
assigned by application when the
radio button was created.

Carriage return pressed scan code
(SCAN_CR_PRESSED constant)
or
Space pressed scan code
(SCAN_SPACE_PRESSED
 constant)

Edit Box

A new character is added to
the edit box.
(EB_MSG_CHAR constant) Keyboard

(TYPE_KEYBOARD constant)

Character code event.
(EVENT_KEYCODE
constant) ID of the edit box assigned by

application when the edit box was
created.

Character code

The last character is
removed from edit box.
(EB_MSG_DEL constant)

Key scan code event.
(EVENT_KEYSCAN
constant)

Back space pressed scan code
(SCAN_BS_PRESSED constant)

A
N

1227

D
S

01227A
-page 4

©
 2008 M

icrochip Technology Inc.

Slider

Slider position is
incremented.
(SLD_MSG_INC constant)

Keyboard
(TYPE_KEYBOARD constant)

Key scan code event.
(EVENT_KEYSCAN
constant)

ID of the slider assigned by application
when the slider was created.

Arrow down pressed scan code
(SCAN_UP_PRESSED constant)
or
Arrow right pressed scan code
(SCAN_LEFT_PRESSED constant)

Slider position is
decremented.
(SLD_MSG_DEC constant)

Arrow up pressed scan code
(SCAN_DOWN_PRESSED constant)
or
Arrow left pressed scan code
(SCAN_RIGHT_PRESSED constant)

List Box

Current item mark is moved
to the next item.
(LB_MSG_MOVE constant)

Keyboard
(TYPE_KEYBOARD constant)

Key scan code event.
(EVENT_KEYSCAN
constant)

ID of the list box assigned by
application when the list box was
created.

Arrow up pressed scan code
(SCAN_UP_PRESSED constant)
or
Arrow down pressed scan code
(SCAN_DOWN_PRESSED constant)

Current item is selected.
(LB_MSG_SEL constant)

Carriage return pressed scan code
(SCAN_CR_PRESSED constant)
or
Space pressed scan code
(SCAN_SPACE_PRESSED
 constant)

Dial

Keyboard messages are not supported for these objects.

Group
Box
Meter
Picture
Progress
Bar
Static
Text
Window

TABLE 3: MICROCHIP GRAPHICS LIBRARY KEYBOARD MESSAGES FOR WIDGETS (CONTINUED)

Widget
Translated Message in the

Message Callback
Function

Message from the Input Device

Type of the Input Device
(the Type field in the message
structure)

Event Description
(the uiEvent field in
the message structure)

Parameter 1 Description
(param1 field in the message
structure)

Parameter 2 Description
(param2 field in the message
structure)

© 2008 Microchip Technology Inc. DS01227A-page 5

AN1227
Example 3 shows how to pass the button’s “press” or
“release” events to the library. As a keyboard key, the
switch connected to the RD6 port is used. If the switch

is pressed, ‘0’ is presented on this port. If the key is in
a released state, ‘1’ is read from this port.

EXAMPLE 3: PASSING BUTTON EVENTS TO GRAPHICS LIBRARY
#define BUTTON1_ID 1111 // button unique ID

int main(void)
{
GOL_MSG msg; // message interface structure, should

// be filled by the keyboard driver and
// passed to the message manager

BYTE previousKey1State; // previous state of the key

// initialize the keyboard
TRISDbits.TRISD6 = 1; // set port RD6 to be an input
previousKey1State = PORTDbits.RD6; // previous state equals the current state

GOLInit(); // initialize the graphics library

BtnCreate(// create a button widget
BUTTON1_ID, // button unique ID
0,40, // left, top corner coordinates
100,90, // right, bottom corner
0, // corner radius is zero, it’s a square

// button
BTN_DRAW, // will be dislayed after creation
NULL, // no bitmap
“Released”, // text for released state
NULL // default color scheme is used
);

while(1)
{

if(GOLDraw()) // drawing manager to display widgets
{

// Keyboard driver
if(PORTDbits.RD6 != previousKey1State)
// check if the button has changed its state
{

if(previousKey1State)
{ // if RD6 equals zero it means the key is pressed

msg.type = TYPE_KEYBOARD;
msg.uiEvent = EVENT_KEYSCAN;
msg.param1 = BUTTON1_ID;
msg.param2 = SCAN_CR_PRESSED;

}else{
// if RD6 equals one it means the key is released
msg.type = TYPE_KEYBOARD;
msg.uiEvent = EVENT_KEYSCAN;
msg.param1 = BUTTON1_ID;
msg.param2 = SCAN_CR_RELEASED;

} // end of else

// state of the key was changed
previousKey1State = ! previousKey1State;

// pass the message to the graphics library
GOLMsg(&msg);

} // end of if
} // end of if

} // end of while
return 0;

} // end of main

WORD GOLMsgCallback(WORD objMsg, OBJ_HEADER* pObj, GOL_MSG* pMsg)
{

// Application should process messages here
return 1; // process the message by default

} // end of GOLMessageCallback

AN1227

DS01227A-page 6 © 2008 Microchip Technology Inc.

MESSAGE CALLBACK FUNCTION
After the library’s message manager, GOLMsg(…), has
received a message from the input device, the graphics
library finds the widgets affected in the active link list

and uses a special callback function so the program
reacts on the event. This function must be implemented
in the application. Example 4 shows this function’s
prototype.

EXAMPLE 4: MESSAGE CALLBACK FUNCTION PROTOTYPE

The first parameter – objMsg – is a translated
message. The graphics library parses the message
from the input device and translates it into a form for the
particular widget.

For example, if the keyboard sends the button the
carriage return pressed code, the library returns the
translated message, BUTTON IS PRESSED
(BTN_MSG_PRESSED constant), to the message callback
function in the objMsg parameter.

The second parameter, pObj, is a pointer to the widget
affected by the message. The third parameter, pMsg, is
a pointer to the original message from the input device.

This information is enough for the application to
perform any action on an event.

The graphics library has a default action of all events
for each widget. (For the button, the library can display
a pressed or released state). If the callback function
returns non-zero, the message for the object will be
processed by default. If ‘0’ is returned, the library will
not perform any default action.

Example 5 adds application code to the previous
example for processing messages for the button with
the ID BUTTON1_ID. This example shows the code for
changing the text on the face of the button for “pressed”
and “released” events. GOLMsgCallback() returns
‘1’ to enable the default action on the button which is
the change in state from released to pressed and
pressed to released.

EXAMPLE 5: CHANGING BUTTON TEXT FOR PRESSED AND RELEASED EVENTS

WORD GOLMsgCallback(WORD objMsg, OBJ_HEADER* pObj, GOL_MSG* pMsg);

WORD GOLMsgCallback(WORD objMsg, OBJ_HEADER* pObj, GOL_MSG* pMsg)
{

// Application should process messages here

if(GetobjID(pObj) == BUTTON1_ID) // if the button with BUTTON_ID is
// receiving the message

{
if(objMsg == BTN_MSG_PRESSED)
{

BtnSetText(pObj,”Pressed”); // set text for pressed state
}
if(objMsg == BTN_MSG_RELEASED)
{

BtnSetText(pObj,”Released”); // set text for released state
}

}

return 1; // process the message by default
} // end of GOLMessageCallback

© 2008 Microchip Technology Inc. DS01227A-page 7

AN1227

KEYBOARD FOCUS
The keyboard focus determines which widget receives
the information typed on the keyboard. The Microchip
Graphics Library shows which widget has focus by
putting a dashed rectangle around it.

Focus is especially useful when the number of widgets
is greater than the number of keyboard keys. In such
cases, some keys can be assigned to navigate
between controls on the screen.

Widgets not supporting the keyboard cannot accept
focus. To allow focus, the USE_FOCUS compile-time
option must be defined in the GraphicsConfig.h
file. If another type of input device, such as a touch
screen, is used simultaneously with a keyboard, the
second device will move the keyboard focus
automatically to the active widget.

The following functions are available to control focus.

WORD GOLCanBeFocused
(OBJ_HEADER* object)

This function returns non-zero if the object can be
focused. Only the button, check box, radio button,
slider, edit box and list box can accept focus. If the
object is disabled, it cannot be set to the focused state.

OBJ_HEADER *GOLGetFocusNext()

This function returns the pointer of the next object in the
active list that is capable of receiving keyboard input. If
there is no such object, NULL is returned.

void GOLSetFocus
(OBJ_HEADER* object)

This function sets the keyboard input focus to the
object. If the object cannot accept keyboard messages,
focus will not be changed.

This function resets the focused state for the object that
previously was in focus, sets the focused state for the
required object and marks the objects to be redrawn.

OBJ_HEADER *GOLGetFocus(void)

This macro returns the pointer to the object receiving
keyboard input. If there is no object in focus, NULL is
returned.

Example 6 illustrates the use of focus by adding
second and third button widgets. The initial state of the
third button widget is disabled such that it will not
accept the keyboard focus. The second keyboard key,
connected to port RD13, also is added to move the
input focus between widgets on the current screen.

EXAMPLE 6: USING FOCUS WITH THREE BUTTON WIDGETS
#define BUTTON1_ID 1111 // button unique ID
#define BUTTON2_ID 2222 // button unique ID
#define BUTTON3_ID 3333 // button unique ID

int main(void)
{
GOL_MSG msg; // message interface structure, should be

// filled by the keyboard driver and
// passed to the message manager

OBJ_HEADER* pFocusedObj; // temporary variable for the widget
// receiving the keyboard focus

BYTE previousKey1State; // previous state of the button 1
BYTE previousKey2State; // previous state of the button 2

// initialize the keyboard’s keys
TRISDbits.TRISD6 = 1; // set port RD6 to be an input
previousKey1State = PORTDbits.RD6; // previous state equals the current state
TRISDbits.TRISD13 = 1; // set port RD13 to be an input
previousKey2State = PORTDbits.RD13; // previous state equals the current state

GOLInit(); // initialize the graphics library

AN1227

DS01227A-page 8 © 2008 Microchip Technology Inc.

// create button widgets
BtnCreate(

BUTTON1_ID, // button unique ID
10,40, // left, top corner coordinates
110,90, // right, bottom corner
0, // corner radius is zero, it’s a square

// button
BTN_DRAW, // will be dislayed after creation
NULL, // no bitmap
“Released”, // text for released state
NULL // default color scheme is used
);

BtnCreate(
BUTTON2_ID, // button unique ID
10,100, // left, top corner coordinates
110,150, // right, bottom corner
0, // corner radius is zero, it’s a square

// button
BTN_DRAW, // will be dislayed after creation
NULL, // no bitmap
“Button 2”, // text
NULL // default color scheme is used
);

BtnCreate(
BUTTON3_ID, // button unique ID
10,160, // left, top corner coordinates
110,210, // right, bottom corner
0, // corner radius is zero, it’s a square

// button
BTN_DRAW|BTN_DISABLED, // will be dislayed and disabled after

// creation
NULL, // no bitmap
“Disabled”, // text
NULL // default color scheme is used
);

pFocusedObj = NULL; // there are no widgets in focus

while(1)
{

if(GOLDraw()) // drawing manager to display widgets
{

// Keyboard driver
if(GOLGetFocus() != NULL) // if there’s a widget in focus send a

// message
{

// check if the button has changed its state
if(PORTDbits.RD6 != previousKey1State)
{

if(previousKey1State)
{

// if RD6 equals zero it means the button
// is pressed
msg.type = TYPE_KEYBOARD;
msg.uiEvent = EVENT_KEYSCAN;
// the focused button will receive the
// message
msg.param1 = GetObjID(GOLGetFocus());
msg.param2 = SCAN_CR_PRESSED;

}else{
// if RD6 equals one it means the button is
// released
msg.type = TYPE_KEYBOARD;
msg.uiEvent = EVENT_KEYSCAN;
// the focused button will receive the
// message
msg.param1 = GetObjID(GOLGetFocus());
msg.param2 = SCAN_CR_RELEASED;

} // end of else

EXAMPLE 6: USING FOCUS WITH THREE BUTTON WIDGETS (CONTINUED)

© 2008 Microchip Technology Inc. DS01227A-page 9

AN1227

// state of the button was changed
previousKey1State = ! previousKey1State;

// pass the message to the graphics ibrary
GOLMsg(&msg);
continue;

} // end of if
} // end of if

// check if the button has changed its state
if(PORTDbits.RD13 != previousKey2State)
{

if(previousKey2State)
{ // if RD13 equals zero it means the button

// is pressed
// get the object can be focused next
pFocusedObj = GOLGetFocusNext();
// move focus
GOLSetFocus(pFocusedObj);

}else{
// if RD13 equals one it means the button is
// released

} // end of else
// state of the button was changed

previousKey2State = ! previousKey2State;
// pass the message to the graphics library
GOLMsg(&msg);

} // end of if

} // end of if
} // end of while
return 0;

} // end of main

WORD GOLMsgCallback(WORD objMsg, OBJ_HEADER* pObj, GOL_MSG* pMsg)
{

// Application should process messages here

if(GetobjID(pObj) == BUTTON1_ID) // if the button with BUTTON_ID is
// receiving the message

{
if(objMsg == BTN_MSG_PRESSED)
{

BtnSetText(pObj,”Pressed”); // set text for pressed state
}
if(objMsg == BTN_MSG_RELEASED)
{

BtnSetText(pObj,”Released”); // set text for released state
}

}

return 1; // process the message by default
} // end of GOLMessageCallback

EXAMPLE 6: USING FOCUS WITH THREE BUTTON WIDGETS (CONTINUED)

AN1227

DS01227A-page 10 © 2008 Microchip Technology Inc.

CONCLUSION
Any type of keyboard can easily be integrated into an
application using the Microchip Graphics Library. This
is done with a message interface, widgets messages,
message processing and keyboard focus control.

© 2008 Microchip Technology Inc. DS01227A-page 11

Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, Accuron,
dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro,
PICSTART, rfPIC and SmartShunt are registered trademarks
of Microchip Technology Incorporated in the U.S.A. and other
countries.

FilterLab, Linear Active Thermistor, MXDEV, MXLAB,
SEEVAL, SmartSensor and The Embedded Control Solutions
Company are registered trademarks of Microchip Technology
Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard,
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,
ECONOMONITOR, FanSense, In-Circuit Serial
Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB
Certified logo, MPLIB, MPLINK, mTouch, PICkit, PICDEM,
PICDEM.net, PICtail, PIC32 logo, PowerCal, PowerInfo,
PowerMate, PowerTool, REAL ICE, rfLAB, Select Mode, Total
Endurance, UNI/O, WiperLock and ZENA are trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2008, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

 Printed on recycled paper.

Note the following details of the code protection feature on Microchip devices:
• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Microchip received ISO/TS-16949:2002 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

DS01227A-page 12 © 2008 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260
Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445
Toronto
Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431
China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130
China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256
China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-4182-8400
Fax: 91-80-4182-8422
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513
Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122
Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934
Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859
Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850
Taiwan - Hsin Chu
Tel: 886-3-572-9526
Fax: 886-3-572-6459
Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803
Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820

WORLDWIDE SALES AND SERVICE

01/02/08

	Introduction
	Message Interface
	EXAMPLE 1: Message Manager Function Prototype
	EXAMPLE 2: Message Structure Format
	TABLE 1: Message Structure FIELDS’ Definitions
	TABLE 2: AT Keyboard Scan Codes

	Widgets keyboard messages
	TABLE 3: Microchip Graphics Library Keyboard Messages for Widgets
	EXAMPLE 3: Passing Button Events to Graphics Library

	Message callback function
	EXAMPLE 4: Message Callback Function Prototype
	EXAMPLE 5: Changing Button Text for Pressed and Released Events

	Keyboard focus
	WORD GOLCanBeFocused (OBJ_HEADER* object)
	OBJ_HEADER *GOLGetFocusNext()
	void GOLSetFocus (OBJ_HEADER* object)
	OBJ_HEADER *GOLGetFocus(void)
	EXAMPLE 6: Using Focus with Three Button Widgets

	Conclusion
	Worldwide Sales and Service

