INTRODUCTION

The MRF24J40 Radio Utility Driver program provides design engineers a development and testing platform for the MRF24J40 IEEE 802.15.4™ 2.4-GHz RF transceiver. The program configures and runs tests of basic transceiver functionality such as transmission, reception sleep and Turbo mode, using a command-line and menu-driven user interface.

The MRF24J40 utility program can run on either the PICDEM™ Z or Explorer 16 development board, to which the MRF24J40 RF transceiver is attached. The board is connected to a PC’s serial port and operated from a hyper terminal command window. For more details on the setup, see the section “Getting Started” on page 1.

For more detailed testing, engineers can use additional tools such as a spectrum analyzer or the ZENA™ packet analyzer, Microchip’s IEEE 802.15.4 sniffer program. For more details on the ZENA analyzer, see the “ZENA™ Wireless Network Analyzer User’s Guide” (DS51606).

The MRF24J40 utility program source code and hex files are in the application note’s compressed file. Additional reference material is listed in “References” on page 22.

Table 1 gives the program’s basic features.

TABLE 1: MRF24J40 RADIO UTILITY DRIVER FEATURES

<table>
<thead>
<tr>
<th>Feature</th>
<th>Functionality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sniffer/Packet Analysis</td>
<td>Functions as a sniffer or packet analyzer, when transceiver is programmed in</td>
</tr>
<tr>
<td></td>
<td>Receive mode.</td>
</tr>
<tr>
<td>IEEE 802.15.4™ Specification</td>
<td>Transmits and receives packets compliant with the IEEE 802.15.4 specification.</td>
</tr>
<tr>
<td>Compliance</td>
<td></td>
</tr>
<tr>
<td>All-Channel Energy Detection</td>
<td>Performs energy-detect scans on all channels.</td>
</tr>
<tr>
<td>Low-Power Testing</td>
<td>Enables testing of the MRF24J40 RF transceiver in Sleep mode.</td>
</tr>
<tr>
<td>End-to-End Testing</td>
<td>Provides Packet Error Rate (PER) and Ping Pong testing between two transceivers.</td>
</tr>
</tbody>
</table>

GETTING STARTED

To set up the MRF24J40 RF transceiver:

1. Insert the MRF24J40 RF transceiver daughter card into the development board.
 - If using the PICDEM™ Z development board, see Figure 1 on page 2.
 - If using the Explorer 16 development board, see Figure 2 on page 3.
2. Plug in the power cord for the demonstration board that will hold the MRF24J40 RF transceiver.
3. Connect an RS-232-to-USB serial cable between the development board and the computer that will display the MRF24J40 utility program user interface.
4. Program the demonstration kit with the appropriate hex file.

First-time users of MPLAB® ICD 2, see the “MPLAB® ICD 2 User’s Guide” (DS51331), Section 4.3.2, “Loading a Hex File.”
Using the PICDEM™ Z Board

The MRF24J40 RF transceiver daughter card’s 12-pin connector (P1) can be used to connect to the PICDEM Z motherboard’s J2 connector. That connection supplies 3.3V power, four-wire SPI, Reset, wake and interrupt connections to the MRF24J40 RF transceiver.

For the schematics of the MRF24J40 RF transceiver’s daughter card, see Appendix C of the “PICDEM™ Z Demonstration Kit User’s Guide” (DS51524).

FIGURE 1: MRF24J40 RF TRANSCEIVER ON PICDEM™ Z DEVELOPMENT BOARD
Using the Explorer 16 Board

The MRF24J40 RF transceiver daughter card’s 30-pin connector (P1), a PCB-edge connector, can be used to connect to Explorer 16 development board’s PICtail™ Plus connector (J5 or J6). That connection supplies 3.3V power, four-wire SPI, Reset, wake and interrupt connections to the MRF24J40 RF transceiver.

For the schematics of the MRF24J40 RF transceiver’s daughter card, see Appendix C of the “PICDEM™ Z Demonstration Kit User’s Guide” (DS51524). For the schematics of Explorer 16 development board, see the “Explorer 16 Development Board User’s Guide” (DS51589).

Connecting to the Host PC

The PC displaying the MRF24J40 utility program’s user interface connects to the development board through the PC’s serial port. PCs with the Windows® XP or Windows NT® operating system can use the HyperTerminal program for communications to set up the user interface.

Other serial port communications can be used and open-source programs are available for downloading and use.

The required configuration settings for the serial port communication program are shown in Table 2.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bits per second</td>
<td>19200</td>
</tr>
<tr>
<td>Data bits</td>
<td>8</td>
</tr>
<tr>
<td>Parity</td>
<td>None</td>
</tr>
<tr>
<td>Stop bits</td>
<td>1</td>
</tr>
<tr>
<td>Flow control</td>
<td>None</td>
</tr>
</tbody>
</table>
USING THE DRIVER FIRMWARE

Firmware Overview

The MRF24J40 utility program is operated through a menu displayed on the host computer, using a serial port communication application.

There are two major menus, shown in Figure 3.

FIGURE 3: PRIMARY MENUS

- The Main Menu primarily contains the test function commands
- The Configure Menu – accessed from the Main Menu – primarily configures the transceiver

TABLE 3: KEYBOARD HOT KEY COMMANDS

<table>
<thead>
<tr>
<th>Hot Key</th>
<th>Functionality</th>
</tr>
</thead>
<tbody>
<tr>
<td><Ctrl> + <z></td>
<td>Exit and return to Main Menu. This hot key is used to stop/exit from any step.</td>
</tr>
<tr>
<td><Ctrl> + <x></td>
<td>Reset the transceiver and return configuration settings to their default values. This hot key can be used at any step.</td>
</tr>
<tr>
<td><Ctrl> + <s></td>
<td>Display the current system status and configuration values. The displayed configuration values are shown in Figure 4. This hot key can be used at any step in the program.</td>
</tr>
<tr>
<td><Ctrl> + <t></td>
<td>Continuously transmit predefined packet. This hot key can only be used from the Main Menu.</td>
</tr>
<tr>
<td><Ctrl> + <r></td>
<td>Set the radio in Receive mode (verbose). This hot key can only be used from the Main Menu.</td>
</tr>
</tbody>
</table>

Figure 4 displays the Main Menu and the status and configuration values displayed by the hot keys <Ctrl> + <s>. |
FIGURE 4: MAIN MENU AND STATUS LINE

Microchip MRF24J40 Radio Utility Driver Program
Version: v3.0

Main Menu:

(a) Configure MRF24J40
(b) Set the Radio in Receiving Mode
(c) Transmit Predefined Packet Continuously
(d) Transmit Packet Defined by User
(e) Test Low Power Mode
(f) Energy Detection on All Channels
(g) Test Simple Local Oscillator
(h) Test Single Tone Modulation
(i) Test Sequential Transmit Mode for All Channels
(j) PER Test between Two Devices
(k) Ping Pong Test
(l) Dump Values of Transceiver’s Registers

System Status:

Channel = 11 TX Power = 0.0 dBm - Gain of External PA Turbo Mode = Off
H/W CRC Checking = On External PA/LNA = Off Packet Delay = 1 units

>>
Process Overview

The sections “Configuration Commands” on page 7 and “Test Function Commands” on page 11 give the details of the MRF24J40 utility program’s commands. This section provides an overview of the sequence in which the commands are used.

TABLE 4: FUNCTIONAL OVERVIEW

<table>
<thead>
<tr>
<th>Task (Optional Task)</th>
<th>Command</th>
<th>Details Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmitting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set operating channel</td>
<td>Configure Menu (a)</td>
<td>7</td>
</tr>
<tr>
<td>Configure External PA/LNA</td>
<td>Configure Menu (d)</td>
<td>9</td>
</tr>
<tr>
<td>Program TX output power</td>
<td>Configure Menu (b)</td>
<td>8</td>
</tr>
<tr>
<td>(Enable Turbo mode)</td>
<td>Configure Menu (g)</td>
<td>10</td>
</tr>
<tr>
<td>(If continuous transmission: Set inter-packet delay)</td>
<td>Configure Menu (e)</td>
<td>9</td>
</tr>
</tbody>
</table>
| Set type of transmission:
 • Continuous
 • Single packet
 • *(See “End-to-End Testing”)* | Main Menu (c) | 12 |
| | Main Menu (d) | 13 |
| **Receiving** | | |
| Set operating channel | Configure Menu (a) | 7 |
| Configure External PA/LNA | Configure Menu (d) | 9 |
| *(Enable CRC checking)* | Configure Menu (c) | 7 |
| Program RSSI samples | Configure Menu (f) | 10 |
| *(Enable Turbo mode)* | Configure Menu (g) | 10 |
| Enable receiving | Main Menu (b) | 11 |
| **End-to-End Testing**| | |
| Set operating channel | Configure Menu (a) | 7 |
| Configure External PA/LNA | Configure Menu (d) | 9 |
| Program TX output power | Configure Menu (b) | 8 |
| *(Enable Turbo mode)* | Configure Menu (g) | 10 |
| *(Enable CRC checking)* | Configure Menu (c) | 7 |
| Initiate test:
 • Ping Pong test
 • PER test | Main Menu (k) | 21 |
| | Main Menu (j) | 20 |
| **Other Tests** | | |
| Sleep Mode: Enable, Wake-up | Main Menu (e) | 14 |
| Perform energy scan on all channels | Main Menu (f) | 15 |
| Test local oscillator | Main Menu (g) | 16 |
| Test single-tone modulation | Main Menu (h) | 17 |
| Sequential transmit on all channels | Main Menu (i) | 19 |
| Read transceiver’s registers | Main Menu (l) | 22 |
EXECUTING FIRMWARE COMMANDS

This section gives details about the commands issued by the Main and Configure menus. Its subsections include:

• “Configuration Commands” – The Main Menu command for accessing the Configure Menu and the Configure Menu commands
• “Test Function Commands” – The test and functional commands on the Main Menu

Configuration Commands

The MRF24J40 RF transceiver is ready to operate, using the MRF24J40 utility program’s default values. Those values are shown in Table 5.

TABLE 5: DEFAULT CONFIGURATION SETTINGS (1)

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel</td>
<td>11</td>
</tr>
<tr>
<td>TX Output Power</td>
<td>0 dBm</td>
</tr>
<tr>
<td>Hardware CRC Checking</td>
<td>On</td>
</tr>
<tr>
<td>External PA and LNA</td>
<td>Off</td>
</tr>
<tr>
<td>TX Delay between Packets</td>
<td>1 unit</td>
</tr>
<tr>
<td>Number of averaged RSSI samples</td>
<td>1</td>
</tr>
<tr>
<td>Turbo Mode</td>
<td>Off</td>
</tr>
<tr>
<td>Ping Pong Test Package Size</td>
<td>100</td>
</tr>
</tbody>
</table>

Note 1: Resetting the MRF24J40 RF transceiver returns the settings to these default values.

If desired, the values can be reconfigured through the secondary, Configuration Menu displayed in Figure 5.

FIGURE 5: CONFIGURATION MENU

CONFIGURE MRF24J40

This Main Menu command displays the Configuration Menu, shown in Figure 5.

SET OPERATING CHANNEL

This Configuration Menu option, shown in Figure 6, enables the selection of one of the 16 operating channels available in the 2.4-GHz range. The default operating channel is 11.

When a channel is selected, the current system status displays at the bottom of the screen. Check the Channel = value to confirm the setting.

FIGURE 6: OPERATING CHANNEL MENU

Note: For details on finding the channel with the least noise, see “Energy Detection on All Channels” on page 15.
SET TX OUTPUT POWER

This Configuration Menu option sets the transceiver’s output power. The default transmitting output power is 0 dBm.

This parameter is configured with a two-tier menu:

- The first menu designates the range from which the output power value will be chosen.
- The second menu specifies the output power value by indicating the value to be added to the beginning value of the previous menu’s range.

See Table 6

TABLE 6: TX OUTPUT POWER MENUS – OUTPUT COMPUTATION

<table>
<thead>
<tr>
<th>Process</th>
<th>Option from Range Menu</th>
<th>Option from Fine-Scale Menu</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>x dBm to y dBm</td>
<td>z dBm</td>
<td></td>
<td>x + z dBm</td>
</tr>
<tr>
<td>Example</td>
<td>(b)-10 to -20 dBm</td>
<td>(b)0.5 dBm</td>
<td>-10.5 dBm</td>
</tr>
</tbody>
</table>

FIGURE 7: OUTPUT POWER RANGE AND SELECTION MENUS

The two-tier menus enable the values shown in Table 7.

<table>
<thead>
<tr>
<th>Range</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to -10 dBm</td>
<td>0 dBm</td>
</tr>
<tr>
<td>-10 to -20 dBm</td>
<td>10 dBm</td>
</tr>
<tr>
<td>-20 to -30 dBm</td>
<td>20 dBm</td>
</tr>
<tr>
<td>-30 to -40 dBm</td>
<td>30 dBm</td>
</tr>
</tbody>
</table>

When the Tx output power value is programmed, the current system status displays on the screen. Check the TX Power = value to confirm the setting.

ENABLE/DISABLE HARDWARE CRC CHECKING

This Configuration Menu option, as shown in Figure 8, enables or disables a Cyclic Redundancy Check (CRC) of incoming packets. If CRC checking is enabled, incoming packets with incorrect CRC will be discarded by the Medium Access Layer (MAC). If CRC checking is disabled, even CRC-incorrect packets will be passed to the host layer.

FIGURE 8: CRC CHECKING MENU

By default, this feature is turned on.

When this parameter is set, the current system status displays at the bottom of the screen. Check the status line’s H/W CRC Checking value to confirm the change.
CONFIGURE EXTERNAL PA AND LNA

This Configuration Menu option enables or disables an external Power Amplifier (PA) and Low Noise Amplifier (LNA). The configuration of those amplifiers is done through the MRF24J40 RF transceiver's general purpose digital I/O (GPIOx) pins. (For more information, see section 4.2 “External PA/LNA Control” of the MRF24J40 Data Sheet (DS39776).)

By default external PA and LNA option is disabled.

When the External PA and LNA are enabled, the current system status displays on the screen, as shown in Figure 9. Check the External PA/LNA value to confirm the setting.

Note: Do not enable PA/LNA on the MRF24J40MA module. The module’s GPIO pins are grounded, doing that will drive the pins to ground.

The external PA and LNA can subsequently be disabled by resetting the MRF24J40 RF transceiver – which returns the configuration to its default values. To do this, press the hot keys <Ctrl> + <x>.

FIGURE 9: PA AND LNA MENU

SET TX DELAY BETWEEN PACKETS

This Configuration Menu option, shown in Figure 10, determines the size of the inter-packet delay between continuously transmitted TX packets. (To have the transmitting MRF24J40 RF transceiver send these packets, select Main Menu option (c) Transmit Predefined Packet Continuously.)

The size of the delay can be set with the PC’s number or letter keys – numbers configuring no delay to a 81-unit delay and letters setting a delay of 100 to 1,225 units. (See Table 8.)

TABLE 8: TX PACKET DELAY MENU – DELAY CONFIGURATION

<table>
<thead>
<tr>
<th>Key Type</th>
<th>Value</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>(n = n^2)</td>
<td>(9 = 81)</td>
</tr>
<tr>
<td>Letter</td>
<td>(a = 10 = 10^2)</td>
<td>(a = 100)</td>
</tr>
<tr>
<td></td>
<td>(b = 11 = 11^2)</td>
<td>(b = 121)</td>
</tr>
<tr>
<td></td>
<td>(z = 35 = 35^2)</td>
<td>(z = 1,225)</td>
</tr>
</tbody>
</table>

By default, the delay is one unit – the equivalent being:
- PICDEM Z board – 2 ms
- Explorer 16 board – 4 ms

When the packet delay value is configured, the current system status displays on the screen. Check the Packet Delay value to confirm the setting.
SET NUMBER OF AVERAGED RSSI SAMPLES
The Received Signal Strength Indicator (RSSI) measures the signal quality of a received packet. Using an RSSI measurement that is averaged over multiple readings provides a more accurate value than a single-reading RSSI.

This Configuration Menu option, shown in Figure 11, sets the number of RSSI samples to be averaged. The resulting measurement are displayed on the screen by using the Main Menu option (a) Set the Radio in Receiving Mode. (See “Set the Radio in Receiving Mode” on page 11.)

FIGURE 11: RSSI SAMPLE MENU

By default, the sample size is one.

ENABLE/DISABLE TURBO MODE
The MRF24J40 RF transceiver has a Turbo mode that transmits and receives data at 625 kbps – two and a half times the normal rate for proprietary protocols.

This Configuration Menu option, shown in Figure 12, enables or disables that mode.

Note: ZENA packet analyzer cannot capture packets transmitted in Turbo mode.

FIGURE 12: TURBO MODE MENU

By default the Turbo mode is disabled.

When the mode is enabled or disabled, the current system status displays on the screen. Check the Turbo Mode value to confirm the setting.

SET PING PONG TEST PACKAGE SIZE
This Configuration Menu option, shown in Figure 12, sets the number of ping pong packets exchanged between the transmitting and receiving transceivers. (For more details about ping pong tests, see “Ping Pong Test” on page 21.)

FIGURE 13: PING PONG MENU

Type one to three digits and press <Enter>. The default value of this parameter is 100.
Test Function Commands

Test activation and other functional commands are issued through the Main Menu, shown in Figure 14. To display this menu from anywhere in the firmware interface, press <Ctrl> + <z>.

FIGURE 14: MAIN MENU

SET THE RADIO IN RECEIVING MODE

This Main Menu option displays a received packet’s statistics on the screen. Two display modes are available, as shown in Figure 15:

FIGURE 15: SET RADIO TO RECEIVE

- Verbose mode – Displays all of the packet data (See Figure 16.)
- Summary mode – Displays statistics accumulated and printed for every second (See Figure 17.)

When you select one of the options, the received data is displayed. To take the transceiver out of Receiving mode, press <Ctrl> + <z> – which also redisplays the Main Menu.

Before executing the command on the receiving transceiver, ensure that you have executed one of the “transmit packet” commands on the transmitting transceiver.
TRANSMIT PREDEFINED PACKET CONTINUOUSLY

This Main Menu option, shown in Figure 18, continuously transmits a predefined packet until <Ctrl> + <z> (Exit and Return to Main Menu) is pressed. The predefined packet is:

01 08 C4 FF FF FF FF 07 00 00 00 00 00

FIGURE 18: TRANSMIT PREDEFINED PACKET MENU

Before executing this command:

1. Review the transmitting transceiver’s configuration values. (Most of these values can be displayed by pressing <Ctrl> + <s>.)

The default configuration value are shown in “Configuration Commands” on page 7.

2. If some parameters need to be changed:
 - Display the Main Menu (by pressing <Ctrl> + <z>) and select (a) Configure MRF24J40. The Configure Menu, shown in Figure 5, appears.
 - Edit the desired parameter(s).
 - Return to the Main Menu (<Ctrl> + <z>).

The configuration for the delay between each packet (inter-packet delay) may need to be changed from its default value (1 unit). If a second transceiver is using the MRF24J40 utility program as a receiver/sniffer, the transmitting transceiver’s use of the default value may be too short. The second transceiver may not be able to display the continuously received packets. This particularly can be the case when using high-speed communications such as the ZENA™ Packet Analyzer.

Figure 19 shows a second transceiver using the ZENA analyzer to monitor a message sent with this command.

If a second transceiver is using the MRF24J40 utility program as a sniffer/analyzer, see “Set the Radio in Receiving Mode” on page 11.
TRANSMIT PACKET DEFINED BY USER

This Main Menu option, shown in Figure 20, enables transmission of a user-defined packet that conforms to IEEE 802.15.4™ specifications.

FIGURE 20: TRANSMIT DEFINED PACKET MENU

After the menu appears:

1. Type the hexadecimal values to be transmitted—capitalizing all letters.
2. Send the entered data by pressing <=> (the "equals" key).

 The MRF24J40 utility program automatically checks if the packet conforms to the IEEE 802.15.4 format.
 • If the format is correct:
 – The message is sent.
 – The following message appears: Packet Transmission — Success.
 – The Main Menu reappears.
 • If the format is incorrect, an error message is displayed.

3. If an error message appears:
 • Double-check your message and retype it.
 • Repeat steps 1 and 2.

 The user-defined packet is transmitted only once. To transmit the same packet multiple times, re-execute the (d) Transmit Packet Defined by User option as many times as desired.

 Figure 21 shows how the packet — sent in Figure 20 — appears on a second transceiver whose MRF24J40 utility program has been set in Receive mode.

FIGURE 21: DEFINED PACKET, AS RECEIVED
TEST LOW-POWER MODE

This Main Menu option can:

• Put the MRF24J40 RF transceiver in Sleep mode
• Wake the transceiver from Sleep mode
• Reset the transceiver

The Sleep mode enables designers to measure the MRF24J40 RF transceiver's Sleep current.

FIGURE 22: TEST LOW-POWER MODE MENU

Figure 22 shows the option menu and the prompt that appears when the transceiver is put into Sleep mode.

To bring the transceiver out of Sleep mode, use option (b) Wake up the MRF from Sleep Mode or reset the transceiver. Resetting the transceiver returns all configuration settings to their default values.

Microchip MRF24J40 Radio Utility Driver Program
Version: v3.0
ENERGY DETECTION ON ALL CHANNELS

This Main Menu option, shown in Figure 23, scans the energy levels on all the 2.4-GHz IEEE 802.15.4 channels. For more accuracy, the RSSI reading from the MRF24J40 RF transceiver is averaged over 200 samples.

FIGURE 23: ENERGY DETECTION MENU

Use this option — before selecting your operating channel — to find the least-occupied channel. This will be particularly helpful with tests like the Packet Error Rate (PER) test between two devices.

This test is comparable with that done by a spectrum analyzer. (See Figure 24.)

In order to correlate Figure 23 and Figure 24:

• Equivalent antennas must be used and the comparison must incorporate cable loss.
 (For Figure 24, the whip antenna has 1 dBi gain and 0.3 dB cable loss.)
• The sweeping time of ISM bands must be the same.
• The spectrum analyzer must have the appropriate resolution bandwidth.
• If the board has a high-gain low-noise amplifier (LNA), the values in Figure 23 must be adjusted accordingly.

FIGURE 24: ENERGY DETECTION TEST ON A SPECTRUM ANALYZER
TEST SIMPLE LOCAL OSCILLATOR

This Main Menu option, shown in Figure 25, can be used to check the frequency and output level of a local oscillator for a specific channel.

This command enables the local oscillator to start running without any modulation.

To end the test and return to the Main Menu, press <Ctrl> + <z>.

Before executing this test, select the required channel.

Figure 26 shows a comparable test by a spectrum analyzer.
TEST SINGLE TONE MODULATION

This Main Menu option, shown in Figure 27, allows users to tune RF circuits and to see a Continuous Wave (CW) signal as the transceiver's output. This single-tone modulation test can be done for a single channel (the first option) or for all the channels, one after another.

Figure 28 shows how the **Single Channel** test appears on a spectrum analyzer. Figure 29 shows how the **Sweeping Channels** test appears on an analyzer.

To end the test and return to the Main Menu, press <Ctrl> + <z>.

Note: The actual level is 1 dB higher than the level displayed in this figure. That difference is due to the loss in the coaxial cable used to measure the signal. This rule should be applied to all spectrum analyzer measurement presented in the application note.
FIGURE 29: SWEEPING-CHANNELS TONE TEST ON A SPECTRUM ANALYZER
TEST SEQUENTIAL TRANSMIT MODE FOR ALL CHANNELS

This Main Menu option, shown in Figure 30, is equivalent to using the Transmit Predefined Packet Continuously option's test – except that the continuous transmission sweeps from channel 11 through 26.

To end the test and return to the Main Menu, press <Ctrl> + <z>.

Figure 31 shows how this test looks on a spectrum analyzer.
PER TEST BETWEEN TWO DEVICES
This Main Menu option performs a test of the packet-error rate (PER) between two devices. This is a one-iteration test with a predetermined number of packets.

The IEEE 802.15.4 specification defines a reliable link as having a PER less than 1%.

This test requires two MRF24J40 RF transceivers – each one running the MRF24J40 utility program and set to the same operating channel. After the command is executed from Unit 1:

1. Unit 1 sends a message to Unit 2 for it to transmit 1,000 packets and, as shown by underlined prompt line in Figure 32, reports that the test has commenced.

2. Unit 2 sends the packets and, as shown by the underlined prompt line in Figure 33, reports that the packets have been sent.

3. As shown in Figure 32, Unit 1 reports how many packets were received.

If desired, this test can be repeated with the units at different distances – to determine the devices’ coverage.
PING PONG TEST

This Main Menu option tests for compliance to the European standard for blocking and desensitization. It measures the capability of a device to receive a signal without degradation due to unwanted signals at other frequencies.

The wanted signal’s degradation of its Packet Error Rate (PER) must be less than 1% or the Bit Error Rate (BER) less than 0.1%.

The test requires two MRF24J40 RF transceivers – each one running the MRF24J40 utility program. Prior to initiating the test, both transceivers must be configured for the same operating channel (see “Set Operating Channel” on page 7) and the same test-package size (see “Set Ping Pong Test Package Size” on page 10).

A signal generator also will be needed. The generator’s antenna should have at least 0 db gain.

To perform the test:

1. On Unit 1, select the Main Menu option (k) Ping Pong Test and select that menu’s option (a) Receive Ping Pong Test.

2. On Unit 2, activate the command and select the option (b) Start Ping Pong Test.

Unit 2 transmits the designated number of packets to Unit 1 (see right-hand dialog box in Figure 34). Unit 1 (the left dialog box) reports the number of received packets and transmits the specified number of packets to Unit 2.

The process continues until stopped.

3. While the packets are being exchanged, activate a signal generator and modify its frequency setting.

Use the signal generator to sweep a bandwidth large enough to create interference signals for the two transceivers.

4. Watch the two dialog boxes and record the number of lost packets.

5. To end the test and return to the Main Menu, press <Ctrl> + <z>.

If desired, this test can be repeated with the units at different distances – to determine the devices’ coverage.

FIGURE 34: PING PONG TEST

![Ping Pong Test Diagram]
DUMP VALUES OF TRANSCEIVER'S REGISTERS

This Main Menu option, shown in Figure 35, reads the transceiver's eight-bit register values – used for setting the MAC and baseband modes. For more information, see MRF24J40 Data Sheet (DS39776).

FIGURE 35: DUMP REGISTERS

After the command is executed, the first screen of registers appears. To view the next screen of register values, press any key.

After the last screen of registers appears, the Main Menu displays automatically.

REFERENCES

“Explorer 16 Development Board User’s Guide” (DS51589), Microchip Technology Inc.

“MPLAB® ICD 2 User’s Guide” (DS51331), Microchip Technology Inc.

“MRF24J40 Data Sheet” (DS39776), Microchip Technology Inc.

“PICDEM™ Z Demonstration Kit User’s Guide” (DS51524), Microchip Technology Inc.

“ZENA™ Wireless Network Analyzer User’s Guide” (DS51606), Microchip Technology Inc.
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOG, KEELOG logo, MPLAB, PIC, PICmicro, PICSTART, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PiCtail, PICŒ logo, REAL ICE, rFLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2009, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV

ISO/TS 16949:2002

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOG® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.
AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com

Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643

Dallas
Addison, TX
Tel: 972-818-7243
Fax: 972-818-2924

Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260

Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445

Toronto
Mississauga, Ontario, Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431

Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889

China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431

China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470

China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066

China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760

China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118

China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130

China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4080

India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632

India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513

Japan - Yokohama
Tel: 81-45-471-6166
Fax: 81-45-471-6122

Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302

Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-554-7934

Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859

Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068

Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069

Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-6578-300
Fax: 886-3-6578-370

Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803

Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820

© 2009 Microchip Technology Inc.