
AN1166
USB Generic Function on an Embedded Device
INTRODUCTION
The Universal Serial Bus (USB) is a simple and
common interface for connecting peripheral devices to
a personal computer or other host. To harness its flexi-
bility and power with minimal effort, Microchip provides
the USB Generic Function firmware. The generic
driver provides a very simple interface for reading and
writing data exchanged with the USB host. Sample
code is provided that is easily customized for the
designer's application.

If the generic driver does not provide all of the function-
ality required by a particular application (see �USB
Generic Function API�), Microchip provides sample
implementations of other frequently-requested USB
device classes. These sample implementations are
built upon the Microchip PIC32 USB peripheral firm-
ware stack. If no sample is available that suits the
desired application, the designer can develop his or her
own function driver using the Microchip USB stack
(refer to Microchip Application Note AN1176, �USB
Device Stack for PIC32 Programmer�s Guide�).

This document describes the USB generic function on
an embedded device. It also acts as a programmer's
guide for developers who wish to provide a simple
read/write data interface to a host over the USB and it
describes how to incorporate the Microchip generic
function driver into the developer�s own application.

ASSUMPTIONS
1. Working knowledge of C programming

language
2. Some familiarity with the USB 2.0 protocol
3. Familiarity with Microchip MPLAB® IDE and

MPLAB® REAL ICE� in-circuit emulator

FEATURES
� Supports USB peripheral device applications
� Provides simple read/write interface for data

exchange with the host
� Handles standard USB device requests, as stated

in Chapter 9 of the �Universal Serial Bus
Specification, Revision 2.0�
(http://www.usb.org/developers/docs/)

� Simplifies definition of USB descriptors and
configuration information

� Event-driven system (interrupt-based or polled)

LIMITATIONS
� Uses a single endpoint
� Uses interrupt transfer protocol
� Theoretical max throughput: 64,000 bytes/sec., in

accordance with the USB 2.0 specification

SYSTEM HARDWARE
This application was developed for the following
hardware:

� PIC32 USB PIM (Processor Interface Module)
� Microchip Explorer 16 Development Board
� USB PICtail� Plus Daughter Board

Author: Bud Caldwell
Microchip Technology Inc.
© 2008 Microchip Technology Inc. DS01166A-page 1

http://www.usb.org/developers/docs/
http://www.usb.org/developers/docs/

AN1166
PIC32 MCU MEMORY RESOURCE
REQUIREMENTS
For complete program and data memory requirements,
refer to the release notes located in the installation
directory.

PIC MCU HARDWARE RESOURCE
REQUIREMENTS
The USB generic demo uses the following I/O pins:

PICtail Plus� Jumper Settings
The Microchip USB PICtail Plus Daughter Board
requires the following jumper settings:

INSTALLING SOURCE FILES
The Microchip generic function firmware source is
available for download from the Microchip web site
(see Appendix G: �Source Code for the USB
Generic Function on an Embedded Device�). The
source code is distributed in a single Windows® instal-
lation, as part of the PIC32 device install.

Perform the following steps to complete the installation:

1. Execute the installation file. A Windows installa-
tion wizard will guide you through the installation
process.

2. Before continuing with the installation, you must
accept the software license agreement by click-
ing I Accept.

3. After completion of the installation process, you
should see the �PIC32 USB Device Firmware�
group under the �Microchip PIC32 Solutions�
program group. The complete source code will
be copied in the chosen directory.

4. Refer to the release notes for the latest version-
specific features and limitations.

TABLE 1: PIC® MCU I/O PIN USAGE
I/O Pin Usage

D+ (IO) USB D+ differential data signal
D- (IO) USB D- differential data signal

VBUS (Input) USB power
VUSB (Input) Power input for the USB D+/D-

transceivers
AN4 (Input) Monitor Temperature Sensor via A/D

Converter
AN5 (Input) Monitor Potentiometer via A/D

Converter

TABLE 2: JUMPER SETTINGS
Jumper Setting

JP1 Open
JP2 Short
JP3 Open
DS01166A-page 2 © 2008 Microchip Technology Inc.

AN1166
SOURCE FILE ORGANIZATION
The Microchip USB generic device firmware consists of
several files that are organized in multiple directories.
Table 3 shows the directory structure.

TABLE 3: SOURCE FILES
File Directory Description

usb_device.c Microchip\USB USB Device layer (device abstrac-
tion and protocol handling, as in
Chapter 9 of the �Universal Serial
Bus Specification, Revision 2.0�)

usb_hal.c Microchip\USB USB Hardware Abstraction Layer
(HAL) interface support

usb_hal_core.c Microchip\USB USB controller functions, used by
HAL interface support

usb_device_local.h Microchip\USB Private definitions for USB device
layer

usb_hal_core.h Microchip\USB Private definitions for HAL control-
ler core

usb_hal_local.h Microchip\USB Private definitions for HAL

usb.h Microchip\Include\USB Overall USB header (includes all
other USB headers)

usb_ch9.h Microchip\Include\USB USB device framework definitions
(Chapter 9 of the �Universal Serial
Bus Specification, Revision 2.0�)

usb_common.h Microchip\Include\USB Common USB stack definitions

usb_device.h Microchip\Include\USB USB device layer interface
definition

usb_hal.h Microchip\Include\USB USB HAL interface definition

usb_device_generic.h Microchip\Include\USB Generic function driver API header

usb_func_generic.c Microchip\USB\generic_device_driver Generic function driver
implementation

usb_func_generic_local.h Microchip\USB\generic_device_driver Private definitions for generic
function driver

HardwareProfile.h usb_generic_device_demo Hardware configuration
parameters

local_typedefs.h usb_generic_device_demo Application specific data type
definitions

main.c usb_generic_device_demo Primary application source file

usb_config.h usb_generic_device_demo Application-specific USB
configuration options
(see Appendix A: �USB Firm-
ware Stack Configuration�)

usb_demo1_app.c usb_generic_device_demo Application-specific USB support

user.c usb_generic_device_demo �User� procedures/IO-processing
code

user.h usb_generic_device_demo �User� procedures/IO-processing
code definitions
© 2008 Microchip Technology Inc. DS01166A-page 3

AN1166
DEMO APPLICATION
The demo application consists of host-side PC (Per-
sonal Computer) software and device-side PIC32 firm-
ware. Together, the two demonstrate a simple way to
transfer data between a USB host and device. The PC
application provides a Graphical User Interface (GUI)
that allows the user to interact with the PIC32. The PC
application supports reading the current setting of a
potentiometer, reading temperature data, and control-
ling two LEDs on the Explorer 16 development board.
The PIC32 firmware demonstrates how to support
these services.

Programming the Demo Application
To program a target with the demo application, you
must have access to an MPLAB REAL ICE in-circuit
emulator. The following procedure assumes that you
will be using MPLAB IDE. If not, please refer to your
specific programmer�s instructions.

1. Connect MPLAB REAL ICE to the Explorer 16
development board or your target board.

2. Apply power to the target board.
3. Launch MPLAB IDE.
4. Select the PIC device of your choice (required

only if you are importing a hex file previously
built).

5. Enable MPLAB REAL ICE as a programmer.
6. If you want to use a previously built hex file,

import it into MPLAB.
7. If you are rebuilding the hex file, open the project

file and follow the build procedure to create the
application hex file.

8. The demo application contains necessary con-
figuration options required for the Explorer 16
board. If you are programming another type of
board, make sure that you select the appropriate
oscillator mode from the MPLAB IDE configura-
tion settings menu.

9. Select the �Program� menu option from the
MPLAB REAL ICE programmer menu to begin
programming the target.

10. After a few seconds, the message �Program-
ming successful� is displayed. If not, check the
board and MPLAB REAL ICE connections.
Refer to MPLAB REAL ICE online help for fur-
ther assistance.

11. Remove power from the board and disconnect
the MPLAB REAL ICE cable from the target
board.

12. Reapply power to the board and make sure that
the LCD reads �PIC32 Generic Demo�. If it does
not, check your programming steps and repeat,
if necessary.

Notes: The PIC32 generic driver demo uses the
existing PICDEM� FS USB Demo Tool
host PC application. Please refer to the
�PICDEM� FS USB Demonstration
Board User�s Guide� (DS51526) for details
on installing and using this application.

The PICDEM� Demo Tool has two
modes: Boot mode and Demo mode. The
PIC32 generic demo only uses Demo
mode. Only that mode of the Demo Tool
will be operational when using the tool with
the PIC32 custom driver firmware.
DS01166A-page 4 © 2008 Microchip Technology Inc.

AN1166

Using the Demo Application
Connect the PIC32 USB PIM and USB PICtail� Plus
Daughter Board to the Explorer 16 Development
Board. Open the project file in the MPLAB IDE, build
the firmware, and program it into the PIC32. Reset the
microcontroller and start the firmware running. Then,
attach the device connection to the host.

When the PIC32 is programmed and connected to the
host, it is available in the pull-down box labeled �Select
PICDEM FS USB Board� (see Figure 1).

Select the board and click Connect to start receiving
temperature and potentiometer data. Click on the �Tog-
gle LEDs� buttons to control the LEDs on the Explorer
board.

The PICDEM Demo Tool application uses a device
driver to access the PIC32 over the USB and a sepa-
rate DLL to provide a simple API to access the device
driver. For additional details and example code, refer to
the source code and Readme files installed with the
PICDEM Demo Tool application.

FIGURE 1: SELECTING THE DEMO APPLICATION

Notes: Refer to the MPLAB IDE online help for
instructions on how to build and program
the firmware.

After the firmware is programmed into the
PIC32, and it is connected to the host the
first time, refer to the installation instruc-
tions for details on installing the USB
device driver on the PC

Note: The demo tool LED buttons are labeled for
the PICDEM FS USB demonstration
board, not the Explorer 16 development
board. So, the button labeled �LED D3�
actually controls the LED labeled �D9�,
and the button labeled �LED D4� actually
controls the LED labeled �D10� on the
Explorer 16 board.
© 2008 Microchip Technology Inc. DS01166A-page 5

AN1166

The Firmware
The generic demo firmware includes the following
features:

1. Managing the USB
2. IO Processing

MANAGING THE USB
The application�s main logic calls the USBInitialize
routine once, before any other USB activity takes
place, to initialize the USB firmware stack. Then, it calls
the USBTasks routine in a �polling� loop, as shown in
Example 1.

EXAMPLE 1: MAIN APPLICATION LOGIC

The USBInitialize routine, helped by the applica-
tion-specific USB support, handles everything neces-
sary to initialize the USB firmware stack. The
USBTasks routine manages the state of the USB firm-
ware stack and performs the necessary steps required
by events that occur on the bus.

IO PROCESSING
The two routines called from the main logic (see
Example 1) that have not yet been discussed are the
UserInit and ProcessIO routines. These two rou-
tines manage the IO to the non-USB portions of the
demo application, read commands from the PC
application, and write data back to the PC.

The UserInit routine initializes the PIC32 pins that
control the LEDs on the Explorer 16 board. It also starts
a timer that is used to control the sampling of the tem-
perature sensor and initializes the temperature logging
facility.

The process IO routine uses the ServiceRequests
helper routine to read and respond to requests from the
PC application and maintain the timing and acquisition
of temperature samples. To do this, it uses the �USB
Generic Function API� to read command packets
from the host, as shown below:

EXAMPLE 2: PROCESS IO ROUTINE

Note: Until USBInitialize is called, the USB
interface module is disabled and the
PIC32 will not connect to the USB.

Note: The USBTasks routine may also be called
from the Interrupt Service Routine (ISR)
whenever a USB interrupt occurs, instead
of in a polling loop. If it is used this way, the
entire USB firmware stack (the
non user API portion of the generic driver)
will operate in an interrupt context.

USBInitialize(0);
UserInit();
while(1)
{

USBTasks();
ProcessIO();

}

return 0;

if(USBGenRead((BYTE*)&dataPacket,sizeof(
dataPacket)))
{

// Handle commands

}

DS01166A-page 6 © 2008 Microchip Technology Inc.

AN1166

The first byte of data read from the host identifies a
command, as shown in Example 3. The rest of the
packet contains command-specific data used to exe-
cute the given command.

EXAMPLE 3: FIRST BYTE OF DATA PACKET FROM HOST

In each case, once the command has been completed,
a counter variable is updated to hold the count of data
bytes sent back to the host. The firmware application
then uses the USB Generic Function API to send the
data back to the host (as shown below).

EXAMPLE 4: SENDING DATA TO HOST

Using this method of command and response, the firm-
ware demo application supports the services required
by the PC application, demonstrating the ability to
transfer data between the PIC32 and the host PC using
the USB Generic Function API.

counter = 0;
switch(dataPacket._byte[0])
{

case READ_VERSION:
// Provide firmware version data
break;

case UPDATE_LED:
// Update LEDs as specified
break;

case SET_TEMP_REAL:
// Reset the temperature log;
break;

case RD_TEMP:
// Acquire a temperature sample.
break;

case SET_TEMP_LOGGING:
// Start temperature logging;
break;

case RD_TEMP_LOGGING:
// send the temperature log data to the host and reset it.
break;

case RD_POT:
// Read the potentiometer
break;

default:
break;

}

if(counter != 0)
{

if(!mUSBGenTxIsBusy())
USBGenWrite((BYTE*)

&dataPacket,counter);

}

© 2008 Microchip Technology Inc. DS01166A-page 7

AN1166

Application-Specific USB Support
Since the demo uses the Microchip USB device firm-
ware stack, it implements three application-specific
tables, listed below.

Application-specific tables:

1. USB Descriptor Table
2. Endpoint Configuration Table
3. Function-Driver Table

These tables, and the functions used by the USB stack
to access them, are defined in usb_demo1_app.c.

THE USB DESCRIPTOR TABLE
Every USB device must provide a set of data structures
called �descriptors� that give details to the host about
how to use it. Exactly how these descriptors are pro-
vided and what information they contain is defined in
Chapter 9 of the �Universal Serial Bus Specification,
Revision 2.0� and its class-specific supplements.
Please refer to these documents for complete details.
The demo application defines sample descriptors. Key
fields that may need to be changed for different appli-
cations are discussed later.

In general terms, the USB descriptors can be thought
of as belonging to one of three different groups: those
describing the overall device, those describing possible
device configurations, and those providing user-read-
able information. Each USB device has one, and only
one, descriptor in the first group � the device descriptor.
It identifies the type of device and gives the number of
possible configurations. Each configuration (the sec-
ond group) has its own set of descriptors, describing
the details of that configuration. User-readable informa-
tion is kept in the string descriptors, making up the third
group. String descriptors are optional, but helpful to the
end user. For additional information, see Figure 2, and
also, refer to Appendix E: �USB Descriptor Table�.

In order for the host to read to these descriptors, the
USB firmware stack must have access to them. To pro-
vide this access, the application defines a
USBDevGetDescriptor routine. This routine is
called by the lower-layers of the stack and passed a
value identifying the descriptor type. For string descrip-
tors, the routine is also passed a string index number
and language ID. In all cases, the routine must provide
a pointer to the requested descriptor and its size in
bytes. For details, see Appendix F: �Get Descriptor
Routine�.

FIGURE 2: DESCRIPTOR GROUPS

Device
Descriptor

String
Descriptor

Configuration
Descriptor

Interface
Descriptor

Data-In
Endpoint
Descriptor

Data-Out
Endpoint
Descriptor

Config
DS01166A-page 8 © 2008 Microchip Technology Inc.

AN1166

THE ENDPOINT CONFIGURATION TABLE
Software on the host PC communicates to functions on
USB devices through logical �interfaces� containing
one or more �endpoints�. Endpoints and interfaces are
identified by numbers, starting at zero. USB devices
can have one or more configurations of these end-
points and interfaces, identified by a number starting at
one. Which configuration is used is selected by the host
during a process called �enumeration�. However, the
generic function driver only has one configuration.

The endpoint configuration table in Example 5 identi-
fies which endpoints belong to which interface along
with the data transfer direction and protocol features for
each endpoint.

EXAMPLE 5: ENDPOINT
CONFIGURATION TABLE

This table configures endpoint one as bidirectional
(USB_EP_TRANSMIT | USB_EP_RECEIVE), supporting
handshaking (USB_EP_HANDSHAKE) as required by
the interrupt protocol. It also associates this endpoint
with the function driver at index zero in the function
table (see �The Function Driver Table�). To access
the configuration table, the application defines the
following routine.

EXAMPLE 6: GET ENDPOINT CONFIGURATION TABLE ROUTINE

This routine provides a pointer to the endpoint configu-
ration table as well as the number of entries it contains
to the USB firmware stack. It is identified to the stack by
the macro USB_DEV_GET_EP_CONFIG_TABLE_FUNC
(see �USB Stack Options�).

const EP_CONFIG gEpConfigTable[] =
{
 { // EP1 - In & Out
 EP_MAX_PKT_INTR_FS,
 USB_EP_TRANSMIT |
 USB_EP_RECEIVE |
 USB_EP_HANDSHAKE,
 USBGEN_EP_NUM,
 USBGEN_CONFIG_NUM,
 USBGEN_INTF_NUM,
 0,
 0
 }

};

const EP_CONFIG *USBDEVGetEpConfigurationTable (int *num_entries)
{
 // Provide the number of entries
 *num_entries = sizeof(gEpConfigTable)/sizeof(EP_CONFIG);

 // Provide the table pointer.
 return gEpConfigTable;

}

© 2008 Microchip Technology Inc. DS01166A-page 9

AN1166

THE FUNCTION DRIVER TABLE
The Microchip device firmware stack uses a table to
manage access to function drivers, as it is capable of
supporting multi-function devices. Each entry in the
table contains the information necessary to manage a
single function driver. Since the demo only implements
a single USB function, its table only contains one entry
as shown below.

EXAMPLE 7: FUNCTION DRIVER TABLE

This table provides pointers to the generic function
driver�s initialization and event-handling routines, as
well an initialization value identifying, in this case, the
endpoint used by the driver. This is all the information
that the USB firmware stack needs to manage the
generic driver and make sure it is aware of events that
occur on the bus.

To provide the USB firmware stack with access to this
table, the application defines the following routine.

EXAMPLE 8: FUNCTION DRIVER TABLE
ACCESS ROUTINE

This routine returns the pointer to the base of the func-
tion driver table. The size of the table is not needed
because the endpoint configuration table contains the
indices into the function driver table. As long as these
indices are correct, no access violation will occur.

USB Stack Options
The Microchip USB device firmware stack supports a
number of configuration options. These can be options
defined in the usb_config.h file to configure the
stack as desired. This section discusses several
options that are important to (or specific to) the generic
demo. See �USB Firmware Stack Configuration� for
details on all available options.

IMPORTANT STACK OPTIONS
The following is a list of options that are important to the
generic driver:

� USB_DEV_HIGHEST_EP_NUMBER

• USB_DEV_EP0_MAX_PACKET_SIZE

The options are described below:

USB_DEV_HIGHEST_EP_NUMBER:

This option affects how much memory the USB
firmware stack allocates for tracking data trans-
fers and DMA purposes. The generic function
driver uses one endpoint: endpoint one, as
shown in the Example 5, so it defines this macro
as 1.

USB_DEV_EP0_MAX_PACKET_SIZE:

This macro defines how much buffer space the
USB firmware stack allocates for endpoint zero
and must be defined as 8, 16, 32, or 64. The
generic demo defines it as 8, to reduce RAM
usage.

const FUNC_DRV gDevFuncTable[] =
{
 { // Generic Function Driver
 USBGenInitialize,
 USBGenEventHandler,
 USBGEN_EP_NUM
 }
};

inline const FUNC_DRV
*USBDEVGetFunctionDriverTable (void)
{
 return gDevFuncTable;

}

DS01166A-page 10 © 2008 Microchip Technology Inc.

AN1166

APPLICATION-SPECIFIC OPTIONS
As discussed in �Application-Specific USB Sup-
port�, the application must define three routines to pro-
vide access to the three application-specific tables
required by the USB firmware stack. These routines
are identified to the FW stack by three macros:

FIGURE 3: TABLE ACCESS ROUTINE MACROS

Notice that the function names (on the right) match
those of the access routines shown in �Application-
Specific USB Support�.

The following macros allow the application to define
several generic driver-specific options.

• USBGEN_CONFIG_NUM

• USBGEN_INTF_NUM

• USBGEN_EP_NUM

• USBGEN_EP_SIZE

The macros are described below:

USBGEN_CONFIG_NUM:

This macro identifies the configuration number
used for the generic function. Only one
configuration is available so this is defined as
one.

USBGEN_INTF_NUM:

This is macro identifies the USB interface num-
ber used by the generic driver. It is defined as
zero for this demo and can be left at that value
unless a more complex implementation requires
it to be changed.

USBGEN_EP_NUM:

This macro defines the USB endpoint number
used for the �interrupt� endpoint to transfer data
to and from the host. It is defined as one for this
demonstration, but can be changed to eliminate
conflicts if the application is modified.

USBGEN_EP_SIZE:

This macro defines the maximum packet size for
the Interrupt endpoint as well as the minimum
size of the buffer that must be available to
receive the data. It can be set to 8, 16, 32, or 64
as required by the application.

#define USB_DEV_GET_DESCRIPTOR_FUNC USBDEVGetDescriptor
#define USB_DEV_GET_EP_CONFIG_TABLE_FUNC USBDEVGetEpConfigurationTable
#define USB_DEV_GET_FUNCTION_DRIVER_TABLE_FUNC USBDEVGetFunctionDriverTable
© 2008 Microchip Technology Inc. DS01166A-page 11

AN1166
CUSTOMIZING THE USB
APPLICATION
In addition to demonstrating how to transfer data
across the USB, this application is intended to serve as
a starting point for USB peripheral device designs
using supported Microchip microcontrollers. This sec-
tion describes how to use the Microchip custom driver
to develop a new application.

At a high level, modifying the demo application is a
three-step process.

1. Modify the main application.
2. Modify the application-specific USB support.
3. Configure USB stack options.

Modifying the Main Application
Using MPLAB IDE, create a new application for the
supported microcontroller. (Refer to the MPLAB IDE
online help for instructions on how to create a project.)
Implement and test any non-USB application-specific
support desired. Then, using the provided demo appli-
cation as an example, add the required USB support.
Alternately, copy the demo application, create a new
project and application files as desired, and add any
non-USB code required.

In the main application be sure to call USBInitialize
to initialize the USB stack before calling any other USB
routines. Then, call USBTasks in a loop as shown in
the example application. It is vital that no code exe-
cuted within the main polling loop blocks or waits on
anything taking longer then a few microseconds. If so,
the USBTasks interface will not be called quickly
enough to service USB events as they occur. If block-
ing behavior is required (or if interrupt-driven behavior
is preferred), the USBTasks routine may be linked
directly to the USB device�s Interrupt Service Routine.
(Refer to the MPLAB IDE online help for details on how
to use interrupts.)

From within the application, call the USBGenRxIs-
Busy, USBGenGetRxLength, and USBGenRead API
routines as necessary to read data from the host. Call
USBGenTxIsBusy and USBGenWrite as necessary
to write data to the host. The usage of these routines is
demonstrated below and in the demo application.

EXAMPLE 9: READING DATA FROM
HOST

Note: If greater customization is required, the
developer can design and implement a
new USB function driver. However, doing
so is beyond the scope of this document.
Please refer to AN1176, �USB Device
Stack for PIC32 Programmer�s Guide� for
details.

Note: You should add the following include-file
search paths to your project's build
options.

.\

..\Microchip\Include

..\..\Microchip\Include

Then, from within any file needing to
access the USB and/or Generic Driver API
routines, add the following include
statements.

#include “usb/usb.h”
#include “usb/generic_device.h”

 if (!USBGenRxIsBusy())
 {
 // Get the previous read’s size
 PrevSize = USBGenGetRxLength();

 // Start the next read
 USBGenRead(&gData, sizeof(gData));
 }
DS01166A-page 12 © 2008 Microchip Technology Inc.

AN1166

If USBGenRxIsBusy returns FALSE, PrevSize will be
assigned the actual number of bytes received since the
last call to USBGenRead (if any) and a new read (Rx)
transfer will be started. After USBGenRead has been
called, USBGenRxIsBusy will return TRUE until the
transfer has completed.

EXAMPLE 10: WRITING DATA TO HOST

If USBGenTxIsBusy returns FALSE, this logic will start
a write (Tx) transfer. After calling USBGenWrite,
USBGenTxIsBusy will return TRUE until all of the data
has been transferred to the host. If necessary, the pro-
gram will need to keep track of the transfer size on its
own as there is no Tx equivalent to
USBGenGetRxLength.

Modifying the Application-Specific USB
Support
Very little modification of the application-specific USB
support is necessary to implement a new application
that uses the Microchip generic driver. The most impor-
tant changes are related to the descriptor table. Unless
additional USB-function behavior is added, no
additional descriptors should be needed.

MODIFYING THE USB DESCRIPTOR TABLE
As discussed in �Managing the USB�, every USB
device has one device descriptor, one or more sets of
descriptors describing possible configurations, and a
number of string descriptors. The data types used for
these descriptors are defined in the usb_ch9.h
header file.

This section discusses changes that need to be made
to these descriptors when modifying the application.

Note: USB data transfer direction terminology
can be a bit confusing. In USB terms, data
transfer is always relative to the host. So,
an IN transfer means data flows from the
device to the host and an OUT transfer
means data flows from the host to the
device. This document and the PIC32
firmware generally refer to data transfer
relative to the PIC32. So, data is transmit-
ted (Tx) by the PIC32 to the host and
received (Rx) from the host to the PIC32.

The following table summarizes.

 if (!USBGenTxIsBusy())
 {
 USBGenWrite(&gData[, sizeof(data));
 }

USB
Term

Firmware
Term Description

IN Transmit Data flows from the device to
the host.

OUT Receive Data flows from the host to
the device.
© 2008 Microchip Technology Inc. DS01166A-page 13

AN1166

Modifying the Device Descriptor
The device descriptor provides information that applies
to the overall device. This includes the device class,
vendor and product ID numbers, the number of config-
urations, and endpoint zero information.

The device descriptor is created for the USB firmware
stack using the following data type (as defined in
usb_ch9.h).

FIGURE 4: DEVICE DESCRIPTOR DATA
STRUCTURE

The following key fields may need to be changed when
designing a new device:

� bMaxPacketSize0

� idVendor

� idProduct

� bcdDevice

� String Indices
- iManufacturer
- iProduct
- iSerialNum

All of the other fields should remain the same, unless
very major changes are being made to the application
(such as adding additional configurations).

The following items describe the key fields:

bMaxPacketSize0:

If the size of the endpoint zero buffer is changed
(by changing the value of the
USB_DEV_EP0_MAX_PACKET_SIZE macro),
bMaxPacketSize0 must be changed, as well.

idVendor:

The Vendor ID (VID) value must be changed to
match the ID code allocated to your company by
the USB Implementor�s Forum (USB IF). If you
do not have a VID allocated by the USB IF, con-
tact your Microchip representative about the
possibility of using the Microchip vendor ID
(0x04D8) and leasing an unused Microchip
product ID.

idProduct:

The Product ID (PID) value must be changed to
match the PID allocated to the product being
developed. Each vendor is responsible for allo-
cating and tracking PIDs for products it pro-
duces. If you have leased a PID from Microchip,
this value must be placed here and the VID must
match the Microchip ID.

bcdDevice:

This value is a Binary Coded Decimal (BCD)
representation of the product revision number. It
should be changed to match the revision of the
product design.

String Indices:

iManufacturer, iProduct, and iSerial-
Num contain indices into the string descriptor
table to string descriptors that describe the man-
ufacturer, product, and serial number in Unicode
strings. Those string descriptors will need to be
changed to provide appropriate descriptions for
the product, but the index numbers placed in the
device descriptor do not need to change unless
the positions of these descriptors in the table are
changed.

typedef struct
{
 BYTE bLength;
 BYTE bDescriptorType;
 WORD bcdUSB;
 BYTE bDeviceClass;
 BYTE bDeviceSubClass;
 BYTE bDeviceProtocol;
 BYTE bMaxPacketSize0;
 WORD idVendor;
 WORD idProduct;
 WORD bcdDevice;
 BYTE iManufacturer;
 BYTE iProduct;
 BYTE iSerialNum;
 BYTE bNumConfigurations;

} USB_DEVICE_DESCRIPTOR;

Note: In the example code, this field is ini-
tialized using the
USB_DEV_EP0_MAX_PACKET_SIZE
macro. So, if the example code is
used, this field will automatically
change when the macro is changed.
DS01166A-page 14 © 2008 Microchip Technology Inc.

AN1166

Modifying the Configuration Descriptor
The sample code implements a single configuration.
Thus, there is only one set of configuration-specific
descriptors, beginning with a single configuration
descriptor.

The configuration descriptor is defined using the
following data type:

FIGURE 5: CONFIGURATION
DESCRIPTOR
DATA STRUCTURE

bMaxPower is the only field that is likely to need chang-
ing in the configuration descriptor.

bMaxPower:

This field indicates the amount of current
required for the device to operate in this config-
uration. The value placed in the descriptor is
one-half of the desired current. So a value of 50
represents a maximum draw of 100 mA for this
configuration of the device to operate properly.
Each increment in this value indicates in incre-
ments of 2 mA in the maximum current draw.

Modifying the Interface Descriptor
The interface descriptor provides a number identifying
the interface, the class information for the interface,
and the number of endpoints required for the interface.

The interface descriptor is defined using the following
data type:

FIGURE 6: INTERFACE DESCRIPTOR
DATA STRUCTURE

Normally, there will be no need to change any fields in
the interface descriptor. However, the following two
fields may be of interest.

bInterfaceNumber

No two USB interfaces in a single device config-
uration may have the same interface number
unless an alternate interface setting is used
(which the custom driver does not). However, if
additional USB functionality is integrated with
this application, you may need to change the
interface by changing this value to allow the host
to uniquely identify each interface in the device.

iInterface

No sample string descriptor was provided (or
required) for this interface. If you desire to add
one, its string-descriptor index will need to be
placed in this location.

Notes: A USB device may request a maximum of
500 mA from the bus, but low power hosts
(or hubs) may only be able to supply a
maximum of 100 mA from the bus.

USB �On The Go� or embedded hosts may
be able to supply as little as 8 mA. If your
device is intended to operate with such a
host, be sure that it only draws the amount
of current supported by that host.

typedef struct
{
 BYTE bLength;
 BYTE bDescriptorType;
 WORD wTotalLength;
 BYTE bNumInterfaces;
 BYTE bConfigurationValue;
 BYTE iConfiguration;
 struct
 {
 BYTE reserved_zero: 5;
 BYTE remote_wakeup: 1;
 BYTE self_powered: 1;
 BYTE reserved_one: 1;
 }bmAttributes;
 BYTE bMaxPower;

} USB_CONFIGURATION_DESCRIPTOR;

typedef struct
{
 BYTE bLength;
 BYTE bDescriptorType;
 BYTE bInterfaceNumber;
 BYTE bAlternateSetting;
 BYTE bNumEndpoints;
 BYTE bInterfaceClass;
 BYTE bInterfaceSubClass;
 BYTE bInterfaceProtocol;
 BYTE iInterface;

} USB_INTERFACE_DESCRIPTOR;
© 2008 Microchip Technology Inc. DS01166A-page 15

AN1166

Modifying the Endpoint Descriptors
The generic driver uses a single endpoint to transmit
and receive data. This requires two endpoint descrip-
tors. The endpoint descriptors identify the type of trans-
fer (the generic driver uses interrupt transfers), the
direction and buffer sizes as well as the polling period.

Endpoint descriptors are defined by the following data
type:

FIGURE 7: ENDPOINT DESCRIPTORS
DATA STRUCTURE

The values identified in the following items are the ones
most likely to be changed. Changing others may cause
the endpoint to stop functioning.

bEndpointAddress:

This value identifies to which endpoint the
descriptor refers. This may be changed if there
is a conflict with any additional USB functions
integrated with this application. This value is
initialized using the USBGEN_EP_NUM macro. If
the endpoint number is changed by changing
the value of this macro, then the endpoint
descriptors will be changed automatically.

wMaxPacketSize:

This value identifies the size of the buffer that is
associated with the endpoint to the host. This
value could be 8, 16, 32, or 64 according to the
needs of the application. A smaller buffer would
consume less memory space on the device and
a larger buffer would provide greater data
throughput efficiency.

Modifying the String Descriptors
The string descriptor table provides human-readable
information in Unicode strings that help the host repre-
sent the device to the user. It also provides the device�s
serial number, represented as a string.

Strings may be supported in many different languages.
The first entry in the string descriptor table identifies the
list of languages supported. The example only supports
English (United States). Additional languages may be
supported by adding additional language IDs to the first
string descriptor.

In the example code, string descriptors are provided for
the vendor description, product description, and serial
number. Each of these should be changed to represent
the application being developed.

Note: The USB firmware stack does not allocate
buffers for the USB endpoints (other then
endpoint 0). Instead, it uses the applica-
tion-defined buffers for all transfers via
data endpoints.

typedef struct
{

BYTE bLength;
BYTE bDescriptorType;
BYTE bEndpointAddress;
BYTE bmAttributes;
WORD wMaxPacketSize;

 BYTE bInterval;

} USB_ENDPOINT_DESCRIPTOR;

Notes: Refer to �Universal Serial Bus (USB)
Language Identifiers (LangIDs)�, on the
Internet at http://www.usb.org/developers/
docs/USB_LANGIDs.pdf for the list of
available language IDs.

When adding additional languages, be
sure to increase the size of the first string
descriptor (string descriptor zero) by
increasing the value of the NUM_LANGS
macro.

Note: Although it is not required, every device
should have a unique serial number. If it
doesn't, you may not be able to connect
two of the same type of device into the
same host. Also, the host may require the
user to re-install the driver software every
time the device is connected to a different
USB port, rather then just once when the
device is first connected.
DS01166A-page 16 © 2008 Microchip Technology Inc.

AN1166

MODIFYING THE ENDPOINT
CONFIGURATION TABLE
The endpoint configuration table identifies direction
and protocol features for every endpoint used on the
USB device. The table also identifies which function
driver will service events that occur for each endpoint.
The only exception is that endpoint zero is configured
automatically by the USB stack and is not included in
the endpoint configuration table.

Each entry in the table consists of the following data
structure:

FIGURE 8: ENDPOINT
CONFIGURATION
DATA STRUCTURE

The EP_CONFIG structure and flags are defined in the
usb_device.h header file.

max_pkt_size:

This field defines how many bytes this endpoint
can transfer in a single packet.

flags:

This field provides the information used to con-
figure the behavior of the endpoint. The
following flags are defined.

Endpoint Configuration Flags:

USB_EP_TRANSMIT
Enable EP for transmitting data

USB_EP_RECEIVE
Enable EP for receiving data

USB_EP_HANDSHAKE
Non-isochronous endpoints use ACK/NACK

USB_EP_NO_INC
Use for DMA to another device FIFO

config, intf, and alt_intf:

These fields identify which device configuration,
interface and alternate interface setting uses the
configuration described in this structure.

ep_num:

This field identifies which endpoint the structure
describes.

function:

This field identifies which function driver uses
the endpoint identified in ep_num. It does this by
providing the index into the Supported-Function-
Drivers Table.

Normally, the endpoint configuration table will not need
to be modified. However, if additional USB functionality
is integrated with this application then additional entries
will need to be added, as described above.

typedef struct
_endpoint_configuration_data
{
 UINT16 max_pkt_size;
 UINT16 flags;
 BYTE config;
 BYTE ep_num;
 BYTE intf;
 BYTE alt_intf;
 BYTE function;
} EP_CONFIG, *PEP_CONFIG;

Warning: Some of the information contained in the
endpoint configuration table duplicates
information defined in the descriptor table.
This redundancy is required to eliminate
the additional code that would otherwise
need to parse the descriptor table to
retrieve the information. However, it does
place a burden on the programmer to
ensure the two tables are coherent.
© 2008 Microchip Technology Inc. DS01166A-page 17

AN1166

MODIFYING THE SUPPORTED FUNCTION
DRIVERS TABLE
A USB device may implement more then one class or
vendor-specific function. To support this, the Microchip
USB firmware stack uses the function driver table to
manage access to supported function drivers. Each
entry in the table contains the information necessary to
manage a single function driver. If an application (like
the generic demo) only implements a single USB func-
tion, the table will only contain one entry. The following
data structure defines an entry in the function driver
table.

FIGURE 9: FUNCTION DRIVER TABLE
STRUCTURE

Initialize & flags:

The Initialize field holds a pointer to the
function driver�s initialization routine. The initial-
ization routine is called when the host chooses
the device configuration appropriate to the func-
tion driver identified by the entry given in the
table. When called, the initialization routine is
passed the flags parameter.

EventHandler:

This field holds a pointer to the function driver�s
routine for handling class or vendor-specific
USB events.

The generic function driver uses the flags field to iden-
tify which endpoint it should use. (Note: This must be
the same endpoint reported in the descriptors.) The
other two fields are links that the lower-layer of the USB
firmware stack uses to call the generic function driver.

The function driver table may need modification if the
application integrates another USB function with the
generic driver function.

Modifying the USB Stack Options
This section highlights several key configuration
options necessary to ensure proper operation of the
USB device stack. Refer to Appendix A for full descrip-
tions of all available configuration options.

REQUIRED OPTIONS
The following options must be defined as described
below.

USB_SUPPORT_DEVICE:

To ensure that the USB stack is built for periph-
eral-device mode, be sure this macro is defined
(no value required). Otherwise, the behavior of
the USB stack will not be appropriate for a USB
peripheral device application.

USB_DEV_EVENT_HANDLER:

This macro allows the user to replace the
�Device� layer of the USB firmware stack (see
Appendix D: �USB Firmware Stack Architec-
ture�). However, doing so is beyond the scope
of this document so the application should
ensure that this macro is defined as the name of
the device layer�s event-handling routine,
USBDEVHandleBusEvent.

struct _function_driver_table_entry
{

USBDEV_INIT_FUNCTION_DRIVERInitialize;
USB_EVENT_HANDLER EventHandler;
BYTE flags;

};
DS01166A-page 18 © 2008 Microchip Technology Inc.

AN1166

MODIFYING OPTIONS EFFECTING RAM
USAGE
To ensure that the USB stack does not allocate any
more RAM then is required, define the following
macros carefully.

� USB_DEV_HIGHEST_EP_NUMBER

� USB_DEV_SUPPORTS_ALT_INTERFACES

� USB_DEV_EP0_MAX_PACKET_SIZE

The macros are described below:

USB_DEV_HIGHEST_EP_NUMBER:

This macro indicates the highest endpoint num-
ber used by the device. In the case of the cus-
tom driver, it is defined as one, since Endpoint 1
is the only endpoint used, beyond endpoint zero.
This value may be changed to integrate
additional USB functionality if needed.

USB_DEV_SUPPORTS_ALT_INTERFACES:

This macro must be defined if the application
supports alternate settings for any of its USB
interfaces. Since the custom driver does not use
alternate interface settings, this should not be
changed unless this application is integrated
with another application that does.

USB_DEV_EP0_MAX_PACKET_SIZE:

Endpoint zero can support buffer sizes of 8, 16,
32, or 64 bytes. The RAM for this buffer is allo-
cated based upon how the
USB_DEV_EP0_MAX_PACKET_SIZE macro is
defined. For the generic driver, this value is
defined as 8 bytes. A small decrease in the time
necessary to enumerate the device could be
obtained by increasing this to one of the larger
sizes at the cost of additional RAM dedicated to
the endpoint zero buffer.

MODIFYING APPLICATION-SPECIFIC USB
SUPPORT OPTIONS
To ensure that the USB stack can call the three appli-
cation-defined routines to access the descriptor, end-
point configuration, and function driver tables, the
following macros must be defined correctly:

• USB_DEV_GET_DESCRIPTOR_FUNC

• USB_DEV_GET_EP_CONFIG_TABLE_FUNC

• USB_DEV_GET_FUNCTION_DRIVER_TABLE_FUNC

Note: Increasing this number will increase
the amount of RAM used by the USB
stack to allocate additional BDT
entries and to track state data.

Note: The device layer (see Appendix D)
allocates buffer space for endpoint 0.
© 2008 Microchip Technology Inc. DS01166A-page 19

AN1166

The macros are described below:

USB_DEV_GET_DESCRIPTOR_FUNC:

This macro identifies the name of the application-specific get-descriptor routine to the USB stack. This is the
routine that provides the address and size of a requested descriptor.

EXAMPLE 11: IDENTIFYING THE �GET DESCRIPTION� FUNCTION

If the name of the get-descriptor routine is changed, then the definition of this macro must change to match the
new routine name.

USB_DEV_GET_EP_CONFIG_TABLE_FUNC

This macro identifies the name of the application-specific get-endpoint-configuration-table routine to the USB
stack. This is the routine that provides the address of the endpoint configuration table as well as the number of
entries it contains.

EXAMPLE 12: IDENTIFYING THE �GET ENDPOINT CONFIGURATION TABLE� FUNCTION

If the name of the get-endpoint-configuration-table routine is changed, then the definition of this macro must
change to match the new routine name.

USB_DEV_GET_FUNCTION_DRIVER_TABLE_FUNC

This macro identifies the name of the application-specific get-function-driver-table routine to the USB stack. This
is the routine that provides the address of the function driver table.

EXAMPLE 13: IDENTIFYING THE �GET FUNCTION DRIVER TABLE� FUNCTION

If the name of the get-function-driver-table routine is changed, then the definition of this macro must change to
match the new routine name.

Refer to the �Application-Specific USB Support�
and �USB Firmware Stack Configuration� sections
for additional information.

#define USB_DEV_GET_DESCRIPTOR_FUNC USBDEVGetDescriptor

#define USB_DEV_GET_EP_CONFIG_TABLE_FUNC USBDEVGetEpConfigurationTable

#define USB_DEV_GET_FUNCTION_DRIVER_TABLE_FUNC USBDEVGetFunctionDriverTable
DS01166A-page 20 © 2008 Microchip Technology Inc.

AN1166

MODIFYING GENERIC FUNCTION OPTIONS
The generic function driver has several options that
affect how it uses resources. These options may be
changed depending on the needs of the intended
application.

� USBGEN_CONFIG_NUM

� USBGEN_INTF_NUM

� USBGEN_EP_NUM

� USBGEN_EP_SIZE

The macros are described below:

USBGEN_CONFIG_NUM:

This macro defines the configuration ID value of
the generic function. Since the generic function
only supports a single configuration, this value
should not need to be changed unless the appli-
cation is integrated with additional USB
functionality with multiple configurations.

USBGEN_INTF_NUM:

This macro defines the interface ID value of the
custom/generic driver interface. Its value should
not change unless additional USB functionality
is integrated with the application.

USBGEN_EP_NUM:

This macro defines the number of the endpoint
used to send and receive data to and from the
host. Its value should not need to be changed,
unless this application is integrated with another
USB function and there are conflicts in the end-
points used.

USBGEN_EP_SIZE:

This macro defines the size (in bytes) of the end-
point buffer used for data transfer. Since it is
defined by the application it may be changed to
any legal size for interrupt endpoints: 8, 16, 32,
or 64.

MISCELLANEOUS OPTIONS
There are two additional options that may need to be
changed, depending on the application.

USB_DEV_SELF_POWERED:

Defining this macro informs the USB stack that
the device is self powered. If the device is
intended to be bus powered, this macro should
not be defined.

USB_DEV_SUPPORT_REMOTE_WAKEUP:

Defining this macro informs the USB stack that
the device supports remotely waking up the
host. If it does not, this macro should not be
defined.
© 2008 Microchip Technology Inc. DS01166A-page 21

AN1166
CONCLUSION
This document and the associated demo application
consisting of both PC software and PIC32 firmware
have demonstrated a simple �generic� method of com-
municating between a host PC and a USB peripheral
device.

Normally, managing the Universal Serial Bus requires
that a developer handle complex protocols for device
identification, control, and data transfer. However,
Microchip has taken care of the USB details and pro-
vided a simple generic function driver to make imple-
menting applications simple for developers who use
supported Microchip microcontrollers.

REFERENCES
� Microchip Application Note AN1176, �USB Device

Stack for PIC32 Programmer�s Guide�
www.microchip.com

� Microchip MPLAB® IDE
In-circuit development environment, available free
of charge, by license, from www.microchip.com/
mplabide

� �Universal Serial Bus Specification, Revision 2.0�
http://www.usb.org/developers/docs

� �OTG Supplement, Revision 1.3�
http://www.usb.org/developers/onthego

� �Universal Serial Bus (USB) Language Identifiers
(LangIDs)�
http://www.usb.org/developers/docs/
 usb_langids.pdf
DS01166A-page 22 © 2008 Microchip Technology Inc.

http://www.usb.org/developers/docs/
http://www.usb.org/developers/docs/

AN1166
APPENDIX A: USB FIRMWARE
STACK
CONFIGURATION

The USB device stack provides several configuration
options to customize it for an application. The configu-
ration options must be defined in the file
usb_config.h that must be implemented as part of
any USB application. Once any option is changed, the
stack must be built �clean� to rebuild all related binary
files.

The following configuration options can be used to
customize the stack:

� USB_SUPPORT_DEVICE

� USB_DEV_EVENT_HANDLER

� USB_DEV_HIGHEST_EP_NUMBER

� USB_DEV_EP0_MAX_PACKET_SIZE

� USB_DEV_SUPPORTS_ALT_INTERFACES

� USB_DEV_GET_DESCRIPTOR_FUNC

� USB_DEV_GET_EP_CONFIG_TABLE_FUNC

� USB_DEV_GET_FUNCTION_DRIVER_TABLE_FUNC

� USB_DEV_SELF_POWERED

� USB_DEV_SUPPORT_REMOTE_WAKEUP

� USB_SAFE_MODE

� USBGEN_CONFIG_NUM

� USBGEN_INTF_NUM

� USBGEN_EP_NUM

� USBGEN_EP_SIZE
© 2008 Microchip Technology Inc. DS01166A-page 23

AN1166

USB_SUPPORT_DEVICE

Purpose: This macro determines that the application being implemented is for a USB peripheral device.

Precondition: None

Valid Values: This macro does not need to have a value assigned to it.
Defining it is sufficient to select the USB role of the application.

Default: Not defined

Example: #define USB_DEVICE_ONLY

USB_DEV_EVENT_HANDLER

Purpose: This macro defines the name of the bus-event-handling routine for the peripheral device support
layer of the USB peripheral FW stack. The device support layer handles all standard requests
(see Chapter 9 of the �Universal Serial Bus Specification, Revision 2.0�) requests. The macro
should always be defined as shown in the example unless the user wishes to handle standard
device requests directly.

Precondition: None

Valid Values: This macro needs to be equal to the name of a routine capable of handling all USB device
requests.

Default: USBDevHandleBusEvent

Example: #define USB_DEV_EVENT_HANDLER USBDEVHandleBusEvent

USB_DEV_HIGHEST_EP_NUMBER

Purpose: This macro determines the highest endpoint number to be used by the application.

Precondition: None

Valid Values: Valid values are any integer between 1 and 15, inclusive.

Default: 15

Example: #define USB_DEV_HIGHEST_EP_NUMBER 15

USB_DEV_EP0_MAX_PACKET_SIZE

Purpose: This macro defines the maximum packet size allowed for endpoint 0.

Precondition: None

Valid Values: This macro must be defined as 8, 16, 32, or 64.

Default: 8

Example: #define USB_DEV_EP0_MAX_PACKET_SIZE 8

Note: The USB device SW stack will use additional RAM on a per-endpoint basis to
manage data transfer.

Note: The USB device SW stack will use additional RAM equal to the value of this macro.
DS01166A-page 24 © 2008 Microchip Technology Inc.

AN1166

USB_DEV_SUPPORTS_ALT_INTERFACES

Purpose: When this macro is defined, the USB device FW stack includes support for alternate interfaces
within a single configuration.

Precondition: None

Valid Values: This macro does not need to have a value assigned to it. Defining it is sufficient to enable support
for alternate interfaces.

Default: Not defined

Example: #define USB_DEV_SUPPORTS_ALT_INTERFACES

USB_DEV_GET_DESCRIPTOR_FUNC

Purpose: This macro defines the name of the routine that provides the descriptors to the USB FW stack.
This routine must be implemented by the application. The signature of the function must match
that defined by the USB_DEV_GET_DESCRIPTOR_FUNC prototype in the USB device.h
header.

Precondition: None

Valid Values: This macro must be defined to equal the name of the application�s �get descriptor� routine to
support USB peripheral device operation.

Default: Not defined

Example: #define USB_DEV_GET_DESCRIPTOR_FUNC USBDEVGetDescriptor

USB_DEV_GET_EP_CONFIG_TABLE_FUNC

Purpose: This macro defines the name of the routine that provides a pointer to the endpoint configuration
table used to configure endpoints as desired.

Precondition: None

Valid Value: This macro must be defined to equal the name of the application�s �get endpoint configuration
table� routine to support USB peripheral device operation.

Default: Not defined

Example: #define USB_DEV_GET_EP_CONFIG_TABLE_FUNC \
 USBDEVGetEpConfigurationTable

USB_DEV_GET_FUNCTION_DRIVER_TABLE_FUNC

Purpose: This macro defines the name of the routine that provides the pointer to the function driver table.

Precondition: None

Valid Values: This macro must be defined to equal the name of the application�s �get function driver table�
routine to support USB peripheral device operation.

Default: Not defined

Example: #define USB_DEV_GET_FUNCTION_DRIVER_TABLE_FUNC \
 USBDEVGetFunctionDriverTable

Note: The USB device SW stack will use additional RAM and Flash to manage alternate
interfaces when this macro is defined.
© 2008 Microchip Technology Inc. DS01166A-page 25

AN1166

USB_DEV_SELF_POWERED

Purpose: This macro should be defined if the system acts as a self powered USB peripheral device.

Precondition: None

Valid Values: This macro does not need to have a value assigned to it. Defining it is sufficient to enable support
for self powered devices in the USB peripheral SW stack.

Default: Not defined

Example: #define USB_DEV_SELF_POWERED

USB_DEV_SUPPORT_REMOTE_WAKEUP

Purpose: This macro should be defined if the system is to support remotely waking up a host.

Precondition: None

Valid Values: This macro does not need to have a value assigned to it. Defining it is sufficient to enable support
for remote wake-up.

Default: Not defined

Example: #define USB_DEV_SUPPORT_REMOTE_WAKEUP

USB_SAFE_MODE

Purpose: Define this macro to enable parameter and bounds checking throughout the USB SW stack.

Precondition: None

Valid Values: This macro does not need to have a value assigned to it; defining it is sufficient to enable safe
mode.

Default: Not defined

Example: #define USB_SAFE_MODE

USBGEN_CONFIG_NUM

Purpose: This macro defines the configuration ID number for the generic driver. By default, the driver only
supports a single configuration.

Precondition: None

Valid Values: Device configuration numbers must begin at �1�.

Default: None � must be defined by the application.

Example: #define USBGEN_CONFIG_NUM 1

USBGEN_INTF_NUM

Purpose: This macro defines the USB Interface ID number for the generic driver�s communication
management interface.

Precondition: None

Valid Values: Interface ID numbers must begin at �0� and must not conflict with any other active interface in the
same configuration.

Default: None � must be defined by the application.

Example: #define USBGEN_INTF_NUM 0

Note: Must match the information provided in the descriptors.

Note: This feature can be removed for efficiency by not defining this label once careful test-
ing and debugging have been done.
DS01166A-page 26 © 2008 Microchip Technology Inc.

AN1166

USBGEN_EP_NUM

Purpose: This macro defines the USB endpoint number for the generic driver�s interrupt endpoint used for
data transfer to and from the host.

Precondition: None

Valid Values: Endpoint numbers must be between 1 (Endpoint 0 is dedicated) and 15, inclusive, and must not
be used more then once in each direction.

Default: None � must be defined by the application.

Example: #define USBGEN_EP_NUM 1

USBGEN_EP_SIZE

Purpose: This macro defines the maximum packet size allowed for the custom driver�s interrupt endpoint.
It is also used by the demo application to define the buffer size.

Precondition: None

Valid Values: This macro must be defined as 8, 16, 32, or 64.

Default: None � must be defined by the application.

Example: #define USBGEN_EP_SIZE 64

Note: The USB Firmware stack allocates memory for tracking every endpoint, starting from
�0� and ending at the highest endpoint used (see
�USB_DEV_HIGHEST_EP_NUMBER:�). Allocating unused endpoints in this range
will cause unused memory to be allocated.
© 2008 Microchip Technology Inc. DS01166A-page 27

AN1166
APPENDIX B: USB GENERIC
FUNCTION API

This section describes the generic function driver API.
The API provides a means for the application to trans-
fer data on the USB as if it were a �generic� device with
read/write capability. USB details are hidden from the
application.

Table B-1 summarizes the generic function driver API .

Detailed descriptions of the API routines are presented
on the following pages.

TABLE B-1: USB GENERIC FUNCTION API SUMMARY
Operation Description

USBGenRxIsBusy Checks to see if the system is currently busy receiving data over the USB from the host
USBGenTxIsBusy Checks to see if the system is currently busy transmitting data over the USB to the host
USBGenGetRxLength Provides the number of bytes received from the most recent transfer from the host
USBGenWrite Prepares to send data to the host over the USB
USBGenRead Prepares to receive data from the host over the USB
DS01166A-page 28 © 2008 Microchip Technology Inc.

AN1166

USB Generic-Function API - USBGenRxIsBusy

This routine determines if the USB interface is currently busy receiving data from the host.

Syntax
BOOL USBGenRxIsBusy (void)

Parameters
None

Return Value
TRUE if the USB interface is currently busy receiving data

FALSE if it is available to receive new data

Precondition
USBInitialize must have been called and returned a success indication and the device must have been
successfully enumerated by the host as a Microchip generic USB device.

Side Effects
None

Example
if (!USBGenRxIsBusy())
{
 USBGenRead(&buffer, sizeof(buffer));
}

© 2008 Microchip Technology Inc. DS01166A-page 29

AN1166

USB Generic-Function API - USBGenTxIsBusy

This routine determines if the USB interface is currently busy transmitting data to the host.

Syntax
BOOL USBGenTxIsBusy (void)

Parameters
None

Return Value
TRUE if the USB interface is currently busy transmitting data

FALSE if it is available to send new data

Precondition
USBInitialize must have been called and returned a success indication and the device must have been
successfully enumerated by the host as a Microchip generic USB device.

Side Effects
None

Example
if (!USBGenTxIsBusy())
{
 USBGenWrite(&gData[gTail], size);
}

DS01166A-page 30 © 2008 Microchip Technology Inc.

AN1166

USB Generic-Function API - USBGenGetRxLength

This routine identifies how much data has been received from the host.

Syntax
BYTE USBGenGetRxLength (void)

Parameters
None

Return Value
Returns the number of bytes copied to the caller�s buffer by the most recent call to USBGenRead

Precondition
USBInitialize must have been called and returned a success indication and the device must have been
successfully enumerated by the host as a Microchip generic USB device.

Side Effects
None

Example
USBGenRead(&buffer, sizeof(buffer));
while (!USBGenRxIsBusy())
 ; // Wait for read to finish
count = USBGenGetRxLength(); // Get the actual number of bytes read.
© 2008 Microchip Technology Inc. DS01166A-page 31

AN1166

USB Generic-Function API – USBGenWrite

This routine starts a new transmission of data to the host over the USB.

Syntax
void USBGenWrite (BYTE *buffer, BYTE len)

Parameters
buffer � Pointer to the starting location of the data bytes

len � Length of the caller�s buffer in bytes

Return Value
None

Precondition
USBInitialize must have been called and returned a success indication and the device must have been suc-
cessfully enumerated by the host as a Microchip generic USB device. Also, USBGenTxIsBusy() must return
FALSE before this routine is called or unexpected behavior may result.

Side Effects
A transmission onto the USB of the given size and data has been started.

Example
if (!USBGenTxIsBusy())
{
 USBGenWrite(&buffer, sizeof(buffer));
}

DS01166A-page 32 © 2008 Microchip Technology Inc.

AN1166

USB Generic-Function API – USBGenRead

This routine prepares to receive data over the USB from the host into the caller�s buffer.

Syntax
BYTE USBGenRead (BYTE *buffer, BYTE len)

Parameters
buffer � Pointer to the starting location of the buffer to receive the data

len � Length of the caller�s buffer in bytes

Return Value
The number of bytes that have been currently received from the host.

Precondition
USBInitialize must have been called and returned a success indication and the device must have been
successfully enumerated by the host as a Microchip generic USB device.

Side Effects
The USB interface has been prepared to receive data from the host into the caller�s buffer. (See the note under
�Return Value�, above.)

Example
if (!USBGenRxIsBusy())
{
 USBGenRead(&buffer, sizeof(buffer));
}

Note: This will always be zero when the Rx transfer has just been started. After that, if a transfer is in
progress, calling this routine will return the number of bytes currently available in the caller�s buffer.
© 2008 Microchip Technology Inc. DS01166A-page 33

AN1166
APPENDIX C: USB GENERIC
FUNCTION DRIVER
INTERFACE

This section describes the routines that make up the
interface between the generic function driver and the
lower-level USB device firmware stack. This interface
consists of two routines, one to initialize the function
driver and the other to handle generic-driver-specific
events.

Neither of these two routines should ever be called
directly by the application. They are called by the lower-
level USB firmware stack at the appropriate time. Point-
ers to these routines are placed in the function driver
table (see �Application-Specific USB Support�) to
identify them to the lower-level USB stack. This
mechanism allows support for multi-function devices.

.

TABLE C-1: USB GENERIC FUNCTION DRIVER INTERFACE SUMMARY
Operation Description

USBGenInitialize Initializes the generic driver
USBGenEventHandler Identifies and handles bus events
DS01166A-page 34 © 2008 Microchip Technology Inc.

AN1166

USB Generic Function Driver Interface - USBGenInitialize

This routine is called by the lower-level USB firmware stack. It is called when the system has been configured as
a Microchip custom device by the host. Its purpose is to initialize and activate the generic function driver.

Syntax
BOOL USBGenInitialize (unsigned long flags)

Parameters
flags � Initialization Flags, bits 3-0 identify the endpoint used. All other bits are reserved and should be given as

zero.

Return Value
TRUE if successful

FALSE if not

Precondition
None

Side Effects
The Microchip generic function driver has been initialized and is ready to handle events.

Example
const FUNC_DRV gDevFuncTable[] =
{
 { // Generic Function Driver
 USBGenInitialize, // Init routine
 USBGenEventHandler, // Event routine
 USBGEN_EP_NUM // Endpoint Number (bottom 4 bits)
 }
};
© 2008 Microchip Technology Inc. DS01166A-page 35

AN1166

USB Generic Function Driver Interface – USBGenEventHandler

This routine is called by the lower-level USB firmware stack to notify the generic function driver of events that occur
on the USB. Its purpose is to handle these events as necessary to support the generic driver API.

Syntax
BOOL USBGenEventHandler (USB_EVENT event, void *data, unsigned int size)

Parameters
event � Event ID

data � Pointer to event-specific data

size � Size (in bytes) of the event-specific data, if any

Return Value
TRUE if the event was handled

FALSE if not (or if additional processing is required)

Precondition
The system has been enumerated as a Microchip generic device on the USB and the generic driver has been
initialized.

Side Effects
The side effects vary greatly depending on the event. In general, the event has been handled appropriately.

Example

const FUNC_DRV gDevFuncTable[] =
{
 { // Generic Function Driver
 USBGenInitialize, // Init routine
 USBGenEventHandler, // Event routine
 USBGEN_EP_NUM // Endpoint Number (bottom 4 bits)
 }
};

Note: Events are defined by the lower-level USB firmware stack and handled by the generic function driver.

Note: Refer to AN1176, �USB Device Stack for PIC32 Programmer�s Guide� for a complete list of possible
USB device-layer events and descriptions of their associated data.
DS01166A-page 36 © 2008 Microchip Technology Inc.

AN1166
APPENDIX D: USB FIRMWARE
STACK
ARCHITECTURE

For a description of the PIC32 USB Device Firmware
Stack's architecture, refer to AN1176, �USB Device
Stack for PIC32 Programmer�s Guide�.
© 2008 Microchip Technology Inc. DS01166A-page 37

AN1166
APPENDIX E: USB DESCRIPTOR TABLE
The generic demo application defines its descriptor table, as shown in the �Application-Specific USB Support� and
the �Customizing the USB Application� sections, with the values shown in the following tables:

TABLE E-1: DEVICE DESCRIPTOR
Field Description Size (Bytes) Value (Hex)

bLength Size of this descriptor 1 12
bDescriptorType USB_DESCRIPTOR_TYPE_DEVICE 1 01
bcdUSB USB spec version, in BCD 2 0200
bDeviceClass Device class code 1 00
bDeviceSubClass Device sub-class code 1 00
bDeviceProtocol Device protocol 1 00
bMaxPacketSize0 EP0, max packet size 1 08
idVendor Vendor ID (VID) 2 04d8
idProduct Product ID (PID) 2 000C
bcdDevice Device release number, in BCD 2 0000
iManufacturer Manufacturer name string index 1 01
iProduct Product description string index 1 02
iSerialNum Product serial number string index 1 03
bNumConfigurations Number of supported configurations 1 01

TABLE E-2: CONFIGURATION DESCRIPTOR
Field Description Size (Bytes) Value (Hex)

bLength Size of this descriptor 1 09
bDescriptorType USB_DESCRIPTOR_TYPE_CONFIGURATION 1 02
wTotalLength Total size of all descriptors in this configuration 2 0020
bNumInterfaces Number of interfaces in this configuration 1 01
bConfigurationValue ID value of this configuration 1 01
iConfiguration Index of string descriptor describing this configuration 1 00
bmAttributes Bitmap of attributes of this configuration 1 80
bMaxPower 1/2 Maximum current (in mA) 1 32

TABLE E-3: INTERFACE DESCRIPTOR
Field Description Size (Bytes) Value (Hex)

bLength Size of this descriptor 1 09
bDescriptorType USB_DESCRIPTOR_TYPE_INTERFACE 1 04
bInterfaceNumber Interface ID number 1 00
bAlternateSetting ID number of alternate interface setting 1 00
bNumEndpoints Number of endpoints in this interface 1 02
bInterfaceClass USB interface class ID 1 00
bInterfaceSubClass USB interface sub-class ID 1 00
bInterfaceProtocol USB interface protocol ID 1 00
iInterface Interface description string index 1 00
DS01166A-page 38 © 2008 Microchip Technology Inc.

AN1166

TABLE E-4: DATA (OUT) ENDPOINT DESCRIPTOR

Field Description Size (Bytes) Value (Hex)

bLength Size of this descriptor 1 07
bDescriptorType USB_DESCRIPTOR_TYPE_INTERFACE 1 05
bEndpointAddress Address and direction of the endpoint 1 01
bmAttributes Interrupt transfer endpoint 1 03
wMaxPacketSize Largest packet this EP can handle 2 0040
bInterval Polling period (in mS) 1 20

TABLE E-5: INTERRUPT (IN) ENDPOINT DESCRIPTOR
Field Description Size (Bytes) Value (Hex)

bLength Size of this descriptor 1 07
bDescriptorType USB_DESCRIPTOR_TYPE_ENDPOINT 1 05
bEndpointAddress Address and direction of the endpoint 1 81
bmAttributes Interrupt transfer endpoint 1 03
wMaxPacketSize Largest packet this EP can handle 2 0040
bInterval Polling period (in mS) 1 20

TABLE E-6: LANGUAGE ID STRING (0) DESCRIPTOR
Field Description Size (Bytes) Value (Hex)

bLength Size of this descriptor 1 04
bDescriptorType USB_DESCRIPTOR_TYPE_STRING 1 03
wLangID Language ID code 2 0409

TABLE E-7: VENDOR DESCRIPTION STRING (1) DESCRIPTOR
Field Description Size (Bytes) Value (Hex/String)

bLength Size of this descriptor 1 34
bDescriptorType USB_DESCRIPTOR_TYPE_STRING 1 03
bString Serial number string 50 Microchip Technology Inc.

TABLE E-8: DEVICE DESCRIPTION STRING (2) DESCRIPTOR
Field Description Size (Bytes) Value (Hex/String)

bLength Size of this descriptor 1 34
bDescriptorType USB_DESCRIPTOR_TYPE_STRING 1 03
wLangID Language ID code 54 PIC32 PICDEM Demo Emulation

TABLE E-9: SERIAL NUMBER STRING (3) DESCRIPTOR
Field Description Size (Bytes) Value (Hex/String)

bLength Size of this descriptor 1 16
bDescriptorType USB_DESCRIPTOR_TYPE_STRING 1 03
bString Serial number string 20 0000000000
© 2008 Microchip Technology Inc. DS01166A-page 39

AN1166
APPENDIX F: GET DESCRIPTOR ROUTINE
The following �get descriptor� routine (and helpers) provides access to the descriptors (which are application specific)
to the lower-level USB stack.
static inline const void *GetConfigurationDescriptor(BYTE config, unsigned int *length)
{
 switch (config)
 {
 case 0: // Configuration 1 (default)
 *length = sizeof(config1);
 return &config1;

 default:
 return NULL;
 }

} // GetConfigurationDescriptor

static inline const void *GetStringDescriptor(PDESC_ID desc, unsigned int *length)
{
 // Check language ID
 if (desc->lang_id != LANG_1_ID) {
 return NULL;
 }

 // Get requested string
 switch(desc->index)
 {
 case 0: // String 0
 *length = sizeof(string0);
 return &string0;

 case 1: // String 1
 *length = sizeof(string1);
 return &string1;

 case 2: // String 2
 *length = sizeof(string2);
 return &string2;

 case 3: // String 3
 *length = sizeof(string3);
 return &string3;

 default:
 return NULL;
 }

} // GetStringDescriptor

const void *USBDEVGetDescriptor (PDESC_ID desc, unsigned int *length)
{
 switch (desc->type)
 {
 case USB_DESCRIPTOR_TYPE_DEVICE: // Device Descriptor
 *length = sizeof(dev_desc);
 return &dev_desc;

 case USB_DESCRIPTOR_TYPE_CONFIGURATION: // Configuration Descriptor
 return GetConfigurationDescriptor(desc->index, length);

 case USB_DESCRIPTOR_TYPE_STRING: // String Descriptor
 return GetStringDescriptor(desc, length);
DS01166A-page 40 © 2008 Microchip Technology Inc.

AN1166

 // Fail all un-supported descriptor requests:

 default:
 return NULL;
 }

} // USBDEVGetDescriptor

The helper routines are �inline� functions used to make the code more readable without incurring the overhead of a
function call.

USBDEVGetDescriptor is identified to the USB firmware stack by the USB_DEV_GET_DESCRIPTOR_FUNC macro
(see Appendix A: �USB Firmware Stack Configuration�).
© 2008 Microchip Technology Inc. DS01166A-page 41

AN1166

Software License Agreement
The software supplied herewith by Microchip Technology Incorporated (the �Company�) is intended and supplied to you, the
Company�s customer, for use solely and exclusively with products manufactured by the Company.
The software is owned by the Company and/or its supplier, and is protected under applicable copyright laws. All rights are reserved.
Any use in violation of the foregoing restrictions may subject the user to criminal sanctions under applicable laws, as well as to civil
liability for the breach of the terms and conditions of this license.
THIS SOFTWARE IS PROVIDED IN AN �AS IS� CONDITION. NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATU-
TORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
APPENDIX G: SOURCE CODE FOR
THE USB GENERIC
FUNCTION ON AN
EMBEDDED DEVICE

The complete source code for the Microchip USB
custom driver is offered under a no-cost license agree-
ment. It is available for download as a single archive file
from the Microchip corporate web site, at:

www.microchip.com.
After downloading the archive, check the release notes
for the current revision level and a history of changes to
the software.
DS01166A-page 42 © 2008 Microchip Technology Inc.

AN1166
REVISION HISTORY

Rev. A Document (02/2008)
This is the initial released version of this document.
© 2008 Microchip Technology Inc. DS01166A-page 43

AN1166

NOTES:
DS01166A-page 44 © 2008 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:
� Microchip products meet the specification contained in their particular Microchip Data Sheet.

� Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

� There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip�s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

� Microchip is willing to work with the customer who is concerned about the integrity of their code.

� Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as �unbreakable.�

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip�s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer�s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.
© 2008 Microchip Technology Inc.
Trademarks

The Microchip name and logo, the Microchip logo, Accuron,
dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro,
PICSTART, PRO MATE, rfPIC and SmartShunt are registered
trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

FilterLab, Linear Active Thermistor, MXDEV, MXLAB,
SEEVAL, SmartSensor and The Embedded Control Solutions
Company are registered trademarks of Microchip Technology
Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard,
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,
ECONOMONITOR, FanSense, In-Circuit Serial
Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB
Certified logo, MPLIB, MPLINK, mTouch, PICkit, PICDEM,
PICDEM.net, PICtail, PIC32 logo, PowerCal, PowerInfo,
PowerMate, PowerTool, REAL ICE, rfLAB, Select Mode, Total
Endurance, UNI/O, WiperLock and ZENA are trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2008, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

 Printed on recycled paper.
DS01166A-page 45

Microchip received ISO/TS-16949:2002 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company�s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip�s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

DS01166A-page 46 © 2008 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260
Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445
Toronto
Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431
China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130
China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256
China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-4182-8400
Fax: 91-80-4182-8422
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513
Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122
Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934
Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859
Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850
Taiwan - Hsin Chu
Tel: 886-3-572-9526
Fax: 886-3-572-6459
Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803
Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820

WORLDWIDE SALES AND SERVICE

01/02/08

	USB Generic Function on an Embedded Device
	Introduction
	Assumptions
	Features
	Limitations
	System Hardware
	PIC32 MCU Memory Resource Requirements
	PIC MCU Hardware Resource Requirements
	TABLE 1: PIC® MCU I/O Pin Usage
	TABLE 2: Jumper Settings

	Installing Source Files
	Source File Organization
	TABLE 3: Source Files

	Demo Application
	FIGURE 1: Selecting the Demo Application
	EXAMPLE 1: Main Application Logic
	EXAMPLE 2: Process IO Routine
	EXAMPLE 3: First Byte of Data Packet from Host
	EXAMPLE 4: Sending Data to Host
	FIGURE 2: Descriptor Groups
	EXAMPLE 5: Endpoint Configuration Table
	EXAMPLE 6: Get Endpoint Configuration Table Routine
	EXAMPLE 7: Function Driver Table
	EXAMPLE 8: Function Driver Table Access Routine
	FIGURE 3: Table Access Routine Macros

	Customizing the USB Application
	EXAMPLE 9: Reading Data from Host
	EXAMPLE 10: Writing Data to Host
	FIGURE 4: Device Descriptor Data Structure
	FIGURE 5: Configuration Descriptor Data Structure
	FIGURE 6: Interface Descriptor Data Structure
	FIGURE 7: Endpoint Descriptors Data Structure
	FIGURE 8: Endpoint Configuration Data Structure
	FIGURE 9: Function Driver Table Structure
	EXAMPLE 11: Identifying the “Get Description” Function
	EXAMPLE 12: Identifying the “Get Endpoint Configuration Table” Function
	EXAMPLE 13: Identifying the “Get Function Driver Table” Function

	Conclusion
	References
	Appendix A: USB Firmware Stack Configuration
	Appendix B: USB Generic Function API
	Appendix C: USB Generic Function Driver Interface
	Appendix D: USB Firmware Stack Architecture
	Appendix E: USB Descriptor Table
	Appendix F: Get Descriptor Routine
	Appendix G: Source Code for the USB Generic Function on an Embedded Device
	Revision History
	Worldwide Sales and Service

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.2
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /3Of9Barcode
 /AbadiMT-CondensedLight
 /AdobePiStd
 /Angelina
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /Batang
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BrushScriptMT
 /CalistoMT
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /Map-Symbols
 /MatisseITC-Regular
 /MICROCHIP
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MonotypeCorsiva
 /MonotypeSorts
 /MS-Mincho
 /MSOutlook
 /MT-Extra
 /MVBoli
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Regular
 /NewsGothicMT
 /NewsGothicMT-Bold
 /NewsGothicMT-Italic
 /OCRAExtended
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /PMingLiU
 /Raavi
 /Shruti
 /SimSun
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Westminster
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

