
AN1164
USB CDC Class on an Embedded Device
INTRODUCTION
The Universal Serial Bus (USB) has made it very sim-
ple for end users to attach peripheral devices to a per-
sonal computer, all but eliminating the myriad of
different interconnects that used to be necessary. One
such interconnect that is becoming increasingly more
rare is the RS-232 serial COM port. In fact, many mod-
ern laptop computers no longer have one. This can
pose a challenge, for the developer needs a serial
communication channel from a peripheral to a host PC.

Fortunately, a device can use the USB Communication
Device Class (CDC) and allow the user to take advan-
tage of the simplicity of the USB while providing the
functionality of a COM port. The CDC is how communi-
cation devices interface to the USB. Intended for
devices such as MODEMS and network interfaces, a
subset of the CDC features can be used to emulate a
serial port providing a �virtual� UART.

The overall flexibility and power of the USB requires
managing protocols for device identification, configura-
tion, control and data transfer. The Microchip PIC32
CDC serial driver handles the USB so the developer
designing a device doesn�t have to.

This document describes the Microchip PIC32 USB
CDC serial driver and acts as a programmer�s guide for
developers wishing to adapt it to their own application.
The CDC serial driver provides a simple �UART-like�
firmware interface for transmitting and receiving data to
and from the host, hiding most of the USB details away
from the application. The sample code provided is eas-
ily customizable, reducing the amount of effort and
learning that might otherwise be necessary when add-
ing a USB interface to a device.

If the Microchip USB CDC serial driver does not pro-
vide the USB-related functionality required by the appli-
cation, Microchip provides sample implementations of
other frequently requested USB device classes. These
sample implementations are built upon the Microchip
PIC32 USB device firmware stack (see Appendix D:
�USB Firmware Stack Architecture�).

If no sample is available that suits the desired applica-
tion, the designer can develop his or her own vendor or
class-specific function driver using the Microchip USB
stack (refer to AN1176, �USB Device Stack for PIC32
Programmer�s Guide�) and still reduce the amount of
USB detail that the developer must deal with directly.

ASSUMPTIONS
1. Working knowledge of C programming

language
2. Some familiarity with the USB 2.0 protocol
3. Familiarity with Microchip MPLAB® IDE and

MPLAB® REAL ICE� in-circuit emulator

FEATURES
� Supports USB peripheral device applications
� Emulates a serial COM port on personal

computers (PCs) that support the CDC Abstract
Control Model

� Provides a simple firmware interface for data
transfer to/from the host

� Handles standard USB device requests, as stated
in Chapter 9 of the �Universal Serial Bus Specifi-
cation, Revision 2.0�
 (http://www.usb.org/developers/docs/)

� Handles CDC-specific requests
� Simplifies definition of USB descriptors and

configuration information
� Event-driven system (interrupt or polled)

LIMITATIONS
� Uses control and data endpoints
� Uses interrupt transfer protocol for status notifica-

tions
� Uses bulk transfer protocol for data transfer
� Theoretical max data throughput: 1,216,000

bytes/second

Author: Bud Caldwell
Microchip Technology Inc.

Note: Max data throughput figure assumes an
otherwise quiet bus and that each packet
transfers maximum-sized data payload of
64 bytes. (Refer to Section 5.8 of the �USB
2.0 Specification� for additional details on
bulk transfers.)
© 2008 Microchip Technology Inc. DS01164A-page 1

http://www.microchip.com
http://www.usb.org/developers/onthego
http://www.usb.org/developers/devclass_docs#draft
http://www.usb.org/developers/docs/

AN1164
SYSTEM HARDWARE
This application was developed for the following
hardware:

� PIC32 Family Microcontroller PIM (Processor
Interface Module), supporting USB

� Microchip Explorer 16 Development Board
� USB PICtail� Plus Daughter Board

PIC® MCU MEMORY RESOURCE
REQUIREMENTS
For complete program and data memory requirements,
refer to the release notes located in the installation
directory.

PIC MCU HARDWARE RESOURCE
REQUIREMENTS
The USB CDC serial demo uses the following I/O pins:

INSTALLING SOURCE FILES
The Microchip PIC32 USB CDC serial driver source is
available for download from the Microchip web site
(see Appendix G: �Source Code for the Microchip
USB CDC Serial Driver�). The source code is distrib-
uted in a single Windows® installation file. Perform the
following steps to complete the installation:

1. Execute the installation file. A Windows installa-
tion wizard will guide you through the installation
process.

2. Before continuing with the installation, you must
accept the software license agreement by
clicking I Accept.

3. After completion of the installation process, you
should see the �Microchip USB CDC Serial� pro-
gram group. The complete source code will be
copied in the chosen directory.

4. Refer to the release notes for the latest version-
specific features and limitations.

TABLE 1: PIC® MCU I/O PIN USAGE
I/O Pin Usage

D+ (IO) USB D+ differential data signal
D- (IO) USB D- differential data signal

VBUS (Input) Senses USB power (does not
operate bus-powered)

VUSB (Input) Power input for the USB D+/D-
transceivers

RD6 (Input) Monitors the state of switch 3 on the
Explorer 16 development board
DS01164A-page 2 © 2008 Microchip Technology Inc.

AN1164
SOURCE FILE ORGANIZATION
The CDC serial device USB stack contains the
following source and header files:

TABLE 2: SOURCE FILES
File Directory Description

usb_device.c Microchip\USB USB device layer (device abstraction and
�Universal Serial Bus Specification, Revision
2.0, Chapter 9� protocol handling)

usb_hal.c Microchip\USB USB Hardware Abstraction Layer (HAL)
interface support

usb_hal_core.c Microchip\USB USB controller functions, used by HAL
interface support

usb_device_local.h Microchip\USB Private definitions for USB device layer

usb_hal_core.h Microchip\USB Private definitions for HAL controller core

usb_hal_local.h Microchip\USB Private definitions for HAL

usb.h Microchip\Include\USB Overall USB header (includes all other USB
headers)

usb_ch9.h Microchip\Include\USB USB device framework (�Universal Serial Bus
Specification, Revision 2.0, Chapter 9�)
definitions

usb_common.h Microchip\Include\USB Common USB stack definitions

usb_device.h Microchip\Include\USB USB device layer interface definition

usb_hal.h Microchip\Include\USB USB HAL interface definition

usb_device_cdc_serial.h Microchip\Include\USB CDC serial function driver API header

usb_func_serial.c Microchip\USB\
 cdc_serial_device_driver

CDC serial function driver implementation

usb_func_serial_local.h Microchip\USB\
 cdc_serial_device_driver

Private definitions for CDC serial function
driver

HardwareProfile.h usb_cdc_serial_device_demo Hardware configuration parameters

io_cfg.h usb_cdc_serial_device_demo Macros supporting use of GPIO bits connected
to switches

main.c usb_cdc_serial_device_demo Primary application source file

usb_config.h usb_cdc_serial_device_demo Application-specific USB configuration options
(see�USB Firmware Stack Configuration�)

usb_app.c usb_cdc_serial_device_demo Application-specific USB support
© 2008 Microchip Technology Inc. DS01164A-page 3

AN1164
DEMO APPLICATION
The demo application shows how the PIC32 family
CDC serial function driver provides a �virtual UART� to
the PIC32 firmware application and emulates a serial
COM port on the host PC.

The firmware application provides two services:

� Data Echo Service
This service receives any data sent to it and
echoes it back to the host, demonstrating basic
two-way data transfer.

� Hello Message Service
This service sends a text string to the host when
SW3 is pressed on the Explorer 16 development
board.

To test these services, use any terminal emulator pro-
gram on the host PC. The installation process will reg-
ister the PIC32 USB CDC serial demo as a standard
serial COM port on the PC when it installs the source
files. Once the firmware is programmed into the PIC32
(see programming instructions, below), connect the
board to the host�s USB and follow the on-screen
instructions to install the default (OS-provided) driver.
The demo application will show up as a new COM port
(number assigned by the OS). Select this COM port
from within the terminal emulator application to test the
services.

Once connected to the PIC32, you can type into the ter-
minal emulator and see the text echoed back by the
demo application. You can also press switch (S3) to
see the hello message generated.

Programming the Demo Application
To program a target with the demo application, you
must have access to a REAL ICE in-circuit emulator
programmer. The following procedure assumes that
you will be using MPLAB IDE. If not, please refer to
your specific programmer�s instructions.

1. Connect MPLAB REAL ICE to the Explorer 16
board or your target board.

2. Apply power to the target board.
3. Launch MPLAB IDE.
4. Select the PIC device of your choice (required

only if you are importing a hex file previously
built).

5. Enable MPLAB REAL ICE as a programmer.
6. If you want to use a previously built hex file,

import the file into MPLAB.
7. If you are rebuilding the hex file, open the project

file and follow the build procedure to create the
application hex file.

The demo application contains necessary configura-
tion options required for the Explorer 16 development
board. If you are programming another type of board,
make sure that you select the appropriate oscillator
mode from the MPLAB IDE configuration settings
menu.

1. Select the Program menu option from the
MPLAB IDE programmer menu to begin
programming the target.

2. After a few seconds, you should see the mes-
sage �Programming successful�. If not, double
check your board and your MPLAB REAL ICE
connection. Refer to MPLAB IDE online help for
further assistance.

3. Remove power from the board and disconnect
the MPLAB REAL ICE cable from the target
board.

4. Reapply power to the board and make sure that
the LCD displays a message identifying the
CDC Demo. If not, double check your program-
ming steps and repeat, if necessary.

Note: Configure the terminal emulator to append
line-feeds to incoming end-of-line charac-
ters if it does not advance to the next line
when the �Return�/�Enter� key is pressed.
Also, ensure that the terminal emulator is
NOT configured for �local echo� of charac-
ters typed into it.
DS01164A-page 4 © 2008 Microchip Technology Inc.

AN1164

The Main Application
The application�s �main� function must call the
USBInitialize API once, before any other USB
activity takes place, to initialize the USB firmware
stack. Then, it must call the USBTasks API in a
�polling� loop (see Figure 1).

FIGURE 1: MAIN APPLICATION LOGIC

:

The USBInitialize routine, helped by the applica-
tion-specific USB support in the usb_app.c file, han-
dles everything necessary to initialize the USB
firmware stack. The USBTasks routine manages the
state of the USB firmware stack and performs the nec-
essary steps required by events that occur on the bus.

Note: Until USBInitialize is called, the USB
Interface module is disabled and the
PIC32 will not connect to the USB.

Note: The USBTasks routine may be used in a
polled, cooperative manner as demon-
strated. If so, nothing in the main loop
should block for more than a few micro-
seconds or events may be lost. Alterna-
tively, this routine may be called from the
Interrupt Service Routine (ISR) whenever
a USB interrupt occurs. If it is used this
way, the entire USB firmware stack (the
non-user API portion of the CDC serial
driver) operates in an interrupt context
(including the application�s event-handler
callback routine).

 // Initialize the USB stack.
 USBInitialize(0);

 // Main Processing Loop
 while(1)
 {
 // Check USB for events and
 // handle them appropriately.
 USBTasks();

 // Manage �Echo Data Service�

 // Manage �Hello Message Service�

 }
© 2008 Microchip Technology Inc. DS01164A-page 5

AN1164

THE DATA ECHO SERVICE
The Data Echo service provides an example of how to
read and write data across the USB as if it was a UART.
The code below maintains a simple state machine to
manage a global data buffer. Whenever data is sent by
the host, it is received into the buffer and echoed back
to the host.

FIGURE 2: DATA ECHO SERVICE

Note: The state variable gState starts out in the
BUFFER_EMPTY state.

 switch (gState)
 {
 case BUFFER_EMPTY: // Buffer is empty & available to receive data.

 // If the buffer is free, read any available data.
 if (USBUSARTRxIsReady())
 {
 gState = RECEIVING_DATA;
 USBUSARTRx(gBuffer, BUFFER_SIZE);
 }
 break;

 case RECEIVING_DATA: // App is waiting to receive data from USB.

 // Check to see if we have data yet.
 if ((gSize = USBUSARTRxGetLength()) > 0)
 {
 gState = DATA_AVAILABLE;
 // Intentional Fall Through! Avoids unnecessary loop iteration.
 }
 else
 {
 break;
 }

 case DATA_AVAILABLE: // Data has been received, app can act on the data.

 // If the transmitter is ready, echo the data back to the host.
 if (USBUSARTTxIsReady())
 {
 gState = SENDING_DATA;
 USBUSARTTx(gBuffer, gSize);
 }
 break;

 case SENDING_DATA: // App is waiting to finish sending data on USB.

 // If we're done transmitting, free up the buffer to receive new data.
 if (USBUSARTTxIsReady()) {
 gSize = 0;
 gState = BUFFER_EMPTY;
 }
 break;

 default:
 while(1); // Invalid state, hang the application.
 }
DS01164A-page 6 © 2008 Microchip Technology Inc.

AN1164

The first iteration of the state machine will start an �Rx�
transfer to receive any available data from the host. To
do this it calls the USBUSARTRx API routine, passing
the address and size of the data buffer. However,
before calling USBUSARTRx, it must call the
USBUSARTRxIsReady API routine to ensure that the
�virtual� UART is not currently busy receiving other
data. It certainly wouldn�t be busy on the first iteration
of the loop, but it is quite likely that it will be on subse-
quent iterations. When a new �Rx� transfer is started,
state machine transitions from the BUFFER_EMPTY
state to the RECEIVING_DATA state.

When in the RECEIVING_DATA state, the application
calls the USBUSARTRxGetLength API routine to
check to see how much (if any) data has been received.
This is important, since host is under no obligation to
provide exactly the amount of data requested (although
the firmware stack will not allow it to receive any more).
It stores this amount into the gSize variable. Once
data is received, the state machine transitions to the
DATA_AVAILABLE state (falling directly through to the
next �case� in the switch statement to avoid a poten-
tially unnecessary iteration of the loop).

Once data is available in the buffer, the state machine
calls the USBUSARTTxIsReady API routine to see if
the virtual UART is ready to transmit data. If so, it calls
the USBUSARTTx routine to start the transmission of
the amount identified by the USBUSARTRxGetLength
and transitions to the SENDING_DATA state.

In the SENDING_DATA state, the application checks to
see if the virtual UART is done transmitting data by call-
ing the USBUSARTTxIsReady routine. Once that rou-
tine returns TRUE, the state machine resets the size of
the data in the buffer and transitions back to the
BUFFER_EMPTY state, starting the process over again.
Using this method, the application continuously reads
data from the host and �echoes� it back.

THE HELLO MESSAGE SERVICE
The Hello Message service sends a text string to the
host whenever switch 3 is pressed on the Explorer 16
development board. This demonstrates the put-string
API provided by the Microchip PIC32 USB CDC serial
driver.

The following code snippet from the application-spe-
cific tasks section of the application�s main loop
provides this service.

FIGURE 3: HELLO MESSAGE SERVICE

The Switch3IsPressed routine returns TRUE when
SW3 on the Explorer 16 board is pressed.

SW3 is checked every time through the loop. If it is
pressed, the code checks to see if the virtual UART is
ready to transmit data by calling the routine. If it returns
TRUE, then it is safe to call the USBUSARTPuts routine
to PUT (transmit) a text string contained in the
gTestStr array through the �virtual� UART to the host.

Note: Once any quantity of data is reported by
the USBUSARTRxGetLength routine, the
CDC serial driver will not accept additional
data from the host until the USBUSARTRx
routine is called again.

Since this simple application is only
designed to be �half duplex�, either trans-
mitting or receiving (but, not both at the
same time), it will not call USBUSARTRx
again immediately. A more advanced
application could do so using a different
buffer, allowing the system to appear to
receive data at the same time it was trans-
mitting data, providing �full-duplex�
functionality.

Note: No debouncing of SW3 is performed, so it
may return TRUE multiple times for a
single button press.

Note: There is an analogous GET string API rou-
tine (USBUSARTGets) to receive a text
string, but it is not used in the demo
application.

 // Display message if button is pressed.
 if(Switch3IsPressed())
 {
 if(USBUSARTTxIsReady())
 {
 USBUSARTPuts(gTestStr);
 }
 }
© 2008 Microchip Technology Inc. DS01164A-page 7

AN1164

Application-Specific USB Support
Since the CDC serial demo uses the Microchip USB
peripheral device firmware stack, it defines three
application-specific tables, listed below.

Application-specific tables:

1. USB Descriptor Table
2. Endpoint Configuration Table
3. Function-Driver Table

These three tables and the functions used by the stack
to access them, are defined in the usb_app.c file.

THE USB DESCRIPTOR TABLE
Every USB device must provide a set of data structures
called �descriptors� that give details to the host about
how to use it. Exactly how these descriptors are pro-
vided and what information they contain is defined in
Chapter 9 of the �Universal Serial Bus Specification,
Revision 2.0� and its class-specific supplements.
Please refer to these documents for complete details.
The demo application defines sample descriptors and
this document discusses key fields that may need to be
changed for different applications (see �Modifying the
Application-Specific USB Support�).

In general terms, the USB descriptors can be thought
of as belonging to one of three different groups: those
describing the overall device, those describing possible
device configurations, and those providing user-read-
able information. Each USB device has one and only
one descriptor in the first group � the device descriptor.
It uniquely identifies the device and gives the number
of possible configurations. Each configuration (the sec-
ond group) has its own set of descriptors, describing
the details of that configuration. User-readable informa-
tion is kept in the string descriptors, making up the third
group. String descriptors are optional, but helpful to the
end user. (See Figure 4 and refer to Appendix E:
�USB Descriptor Table� for a complete definition.)

FIGURE 4: DESCRIPTOR GROUPS

In order for the host to read to these descriptors, the
USB firmware stack must have access to them. To pro-
vide this access, the application defines a
USBDevGetDescriptor routine. This routine
receives an ID value identifying the descriptor type.

In the configuration and string cases, the ID also con-
tains an index number identifying which instance of the
descriptor is being requested, along with a language ID
for string descriptors. It then provides the length of the
requested descriptor and a pointer to it. (See Appen-
dix F: �Get Descriptor Routine�.)

Data-Out
Endpoint
Descriptor

Device
Descriptor

String
Descriptor

Configuration
Descriptor

Notification

Notification
Endpoint
Descriptor

Data-In
Endpoint
Descriptor

Interface
Descriptor

CDC-Specific
Descriptors

Data
Interface

Descriptor

Config
DS01164A-page 8 © 2008 Microchip Technology Inc.

AN1164

THE ENDPOINT CONFIGURATION TABLE
Software on the host PC communicates to functions on
USB devices through logical �interfaces� containing
one or more �endpoints�. Endpoints and interfaces are
identified by numbers, starting at zero. USB devices
can have one or more configurations of these end-
points and interfaces, identified by a number starting at
one. Which configuration is used is selected by the host
during a process called �enumeration�. However, the
CDC serial driver only has one configuration.

The endpoint configuration table (below) identifies
which endpoints belong to which interface (for configu-
ration 1) along with the data transfer direction and
protocol features for each endpoint.

EXAMPLE 1: ENDPOINT CONFIGURATION TABLE

const EP_CONFIG gEpConfigTable[] =
{
 // EP2 Com Class Notification Endpoint
 {
 CDC_INT_EP_SIZE, // Maximum packet size for this endpoint
 USB_EP_TRANSMIT| // Configuration flags for this endpoint (see below)
 USB_EP_HANDSHAKE,
 CDC_CONFIG_NUM, // Configuration number
 CDC_INT_EP_NUM, // Endpoint number.
 0, // Interface number
 0, // Alternate interface setting (default=0)
 0 // Index in device function table (see below)
 },

 // EP3 Data Class Endpoints
 {
 CDC_BULK_OUT_EP_SIZE, // Maximum packet size for this endpoint
 USB_EP_RECEIVE | // Configuration flags for this endpoint (see below)
 USB_EP_TRANSMIT|
 USB_EP_HANDSHAKE,
 CDC_CONFIG_NUM, // Configuration number (start at 1)
 CDC_BULK_EP_NUM, // Endpoint number.
 1, // Interface number
 0, // Alternate interface setting (default=0)
 0 // Index in device function table (see below)
 }
};
© 2008 Microchip Technology Inc. DS01164A-page 9

AN1164

The endpoint configuration table identifies that the
CDC serial driver uses two different interfaces, each
with one endpoint. Interface 0 is the device manage-
ment interface. It provides the host with a mechanism
to control the device and to receive notification of
events. Interface 1 is the data interface. It provides the
data transfer mechanism for the �virtual� UART. End-
point 2 (CDC_INT_EP_NUM) belongs to Interface 0. It is
a USB �IN� endpoint, transmitting notifications to the
host. Control data is received on Endpoint 0 (the USB
control endpoint used for enumeration), making it a
shared endpoint with Interface 0. Endpoint 3
(CDC_BULK_EP_NUM) belongs to Interface 1. It is used
in both directions as an �IN� and �OUT� endpoint.
Virtual UART data is transmitted or received through
this endpoint. The table also associates both endpoints
with the function driver at index zero in the function
table (see �The Function Driver Table�).

To provide the USB firmware stack with access to the
configuration table, the application defines the follow-
ing routine.

EXAMPLE 2: STACK ACCESS ROUTINE

This routine provides a pointer to the endpoint configu-
ration table (as well as the number of entries it con-
tains) to the USB stack. It is identified to the stack by
the USB_DEV_GET_EP_CONFIG_TABLE_FUNC macro
(see �USB Stack Options�).

Note: In USB terminology, the device transmits
data �IN� to the host and receives data
�OUT� of the host.

inline const EP_CONFIG *USBDEVGetEpConfigurationTable (int *num_entries)
{
 // Provide the number of entries
 *num_entries = sizeof(gEpConfigTable)/sizeof(EP_CONFIG);

 // Provide the table pointer.
 return gEpConfigTable;

} // USBDEVGetEpConfigurationTable
DS01164A-page 10 © 2008 Microchip Technology Inc.

AN1164

THE FUNCTION DRIVER TABLE
The Microchip peripheral device FW stack uses a table
to manage access to function drivers, as it is capable of
supporting multi-function devices. Each entry in the
table contains the information necessary to manage a
single function driver. Since the serial demo only imple-
ments one USB function, its table only contains one
entry as shown below.

EXAMPLE 3: FUNCTION DRIVER TABLE

This table provides pointers to the serial function
driver�s initialization and event-handling routines, as
well an initialization value, which is reserved for the
CDC driver and is defined as a zero (0). This is all the
information that the USB firmware stack needs to man-
age the CDC serial driver and make sure it is aware of
events that occur on the bus.

To provide the USB firmware stack access to this table,
the application defines the following routine.

EXAMPLE 4: STACK ACCESS TO FUNCTION DRIVER TABLE

This routine returns the pointer to the base of the �get
function driver table� routine. The size of the table is not
needed because the endpoint configuration table con-
tains the indices into the function driver table. As long
as these indices are correct, no access violation will
occur.

const FUNC_DRV gDevFuncTable[] =
{
 {
 USBUARTInit,
 USBUARTEventHandler,
 0
 }
};

inline const FUNC_DRV *USBDEVGetFunctionDriverTable (void)
{
 // Index into array and provide interface pointer.
 return gDevFuncTable;

} // USBDEVGetFunctionDriverTable
© 2008 Microchip Technology Inc. DS01164A-page 11

AN1164

USB Stack Options
The Microchip PIC32 USB device firmware stack sup-
ports a number of configuration options. These options
are defined by the application in the usb_config.h
file. This section discusses several options that are
important to (or specific to) the CDC serial demo.
(Refer to Section 9 of the �USB Firmware Stack
Configuration� for details on all available options.)

IMPORTANT STACK OPTIONS

USB_DEV_HIGHEST_EP_NUMBER:

This option affects how much memory the USB
firmware stack allocates for tracking data trans-
fers and DMA purposes. The CDC serial func-
tion driver uses two endpoints (Endpoints 2 and
3, as shown in the Endpoint Configuration and
Descriptor tables, above), so it defines this
macro as 3.

USB_DEV_EP0_MAX_PACKET_SIZE:

This macro defines how much buffer space the
USB firmware stack allocates for Endpoint 0 and
must be defined as 8, 16, 32, or 64. The CDC
demo defines it as 8, to reduce RAM usage.

APPLICATION-SPECIFIC OPTIONS
As discussed in �Application-Specific USB Sup-
port�, the application must define three routines to pro-
vide access to the three application-specific tables
required by the USB firmware stack. These routines
are identified to the FW stack by three macros (below).

#define \
USB_DEV_GET_DESCRIPTOR_FUNC \
USBDEVGetDescriptor

#define \
USB_DEV_GET_EP_CONFIG_TABLE_FUNC \
USBDEVGetEpConfigurationTable

#define \
USB_DEV_GET_FUNCTION_DRIVER_TABLE_FUNC \
USBDEVGetFunctionDriverTable

Notice that the function names match those of the
access routines shown in �Application-Specific USB
Support�.

In addition to the above routines, which provide access
to the data required by the USB firmware stack, the
CDC serial function driver defines a mechanism for the
application to receive notification serial-related USB
events (specifically changes to the line control settings
and reception of encapsulated command strings). To
do this, the application implements a routine that
matches the following function signature:

BOOL CdcDemoEventHandler (USB_EVENT
event, void *data, unsigned int size);

To allow the application to name the routine as desired,
the following macro identifies it to the USB firmware
stack.

#define \
CDC_APP_EVENT_HANDLING_FUNC \
DemoEventHandler

The following macros allow the application to define
several CDC serial driver-specific options.

CDC_CONFIG_NUM:

This macro identifies the configuration number
used for the CDC serial function. Only one con-
figuration is available so this is defined as one.

CDC_COMM_INTF_ID:

This macro identifies the USB Interface number
of the communication�s class interface. It is
defined as zero for this demo and can be left at
that value unless a more complex implementa-
tion requires it to be changed.
DS01164A-page 12 © 2008 Microchip Technology Inc.

AN1164

CDC_INT_EP_NUM:

This macro defines the USB endpoint number
used for the �Interrupt� endpoint, as part of the
Communication�s Class definition. It is defined
as two for this demonstration, but can be
changed to eliminate conflicts if the application
is modified.

CDC_INT_EP_SIZE:

This macro defines the size of the Interrupt end-
point�s buffer. It only needs to be large enough
to send a Communication�s Device Class (CDC)
notification, which 8-bytes.

CDC_DATA_INTF_ID:

This macro identifies the USB Interface number
of the data class interface used to transfer the
actual serial data. It is defined as one for this
demo and can be left at that value unless it
needs to be changed for a different implementa-
tion.

CDC_BULK_EP_NUM:

This macro defines the USB endpoint number
used for the �bulk� endpoint as part of the data
class interface. It is defined as three for this
demonstration, but can be changed to eliminate
conflicts if necessary.

CDC_BULK_OUT_EP_SIZE:

This macro defines the size of the bulk data end-
point�s receive (USB �OUT�) buffer. It is set at
the maximum size of 64 bytes to provide maxi-
mum potential throughput, but it can be changed
to any of 8, 16, 32, or 64 bytes if needed.

CDC_BULK_IN_EP_SIZE:

This macro defines the size of the bulk data end-
point�s transmit (USB �IN�) buffer. It is set at the
maximum size of 64 bytes to provide maximum
potential throughput, but it can be changed to
any of 8, 16, 32, or 64 bytes if needed.

The following macros define the default line coding set-
tings that the CDC serial driver reports in response to
the host�s GET_LINE_CODING request. Keep in mind
that, in a USB environment, communication occurs at
speeds defined by the USB protocol and most hosts
will set the line coding parameters as desired. None the
less, the default values reported can be changed by
changing the following macros.

// Bit Rate
CDC_DEFAULT_BPS 115200

// 1 stop bit
CDC_DEFAULT_FORMAT 0

// No parity
CDC_DEFAULT_PARITY 0

// 8-bits per word
CDC_DEFAULT_NUM_BITS 8
© 2008 Microchip Technology Inc. DS01164A-page 13

AN1164
CUSTOMIZING THE USB
APPLICATION
In addition to demonstrating how to transfer data
across the USB, this application is intended to serve as
a starting point for USB peripheral device designs
using supported Microchip microcontrollers. This sec-
tion describes how to use the Microchip PIC32 CDC
serial function driver to develop a custom application.
In general terms, customizing the demo application is a
three-step process.

1. Modify the main application.
2. Modify the application-specific USB support.
3. Configure USB stack options.

Modifying the Main Application
Using MPLAB IDE, create a new application for the
supported microcontroller. (Refer to the MPLAB IDE
online help for instructions on how to create a project.)
Implement and test any non-USB application-specific
support desired. Then, using the provided demo appli-
cation as an example (see �Demo Application�,
above) add the required USB support. Alternately, copy
the demo application, rename the project and applica-
tion files as desired, and add any non-USB code
required.

In the main application be sure to, call
USBInitialize to initialize the USB stack before
calling any other USB routines. Then, call USBTasks in
a loop as shown in the example application. It is vital
that no code executed within the main polling loop
blocks or waits on anything taking longer then a few
microseconds. If so, the USBTasks interface will not be
called quickly enough to service USB events as they
occur. If blocking behavior is required (or if interrupt-
driven behavior is preferred), the USBTasks routine
may be linked directly to the USB device�s Interrupt
Service Routine. (Refer to the MPLAB IDE online help
for details on how to use interrupts.)

From within the application, call the CDC serial driver�s
virtual UART API routines as necessary to read data
from or write data to the host. The usage of these rou-
tines is demonstrated by the demo application, dis-
cussed in �The Main Application� (above), and
described in detail in �USB CDC Serial Function API�
(below).

Note: If greater customization is required, the
developer can design and implement a
custom USB function driver. However,
doing so is beyond the scope of this docu-
ment. Please refer to AN1176, �USB
Device Stack for PIC32 Programmer�s
Guide� for details on implementing a func-
tion driver.
DS01164A-page 14 © 2008 Microchip Technology Inc.

AN1164

Modifying the Application-Specific USB
Support
Very little modification of the application-specific USB
support is necessary to implement a new application
that uses the serial function driver. The most important
changes are related to the descriptor table. Unless
additional USB-function behavior is added, no
additional descriptors should be needed.

MODIFYING THE USB DESCRIPTOR TABLE
As previously discussed, the every USB device has
one device descriptor, one or more sets of descriptors
describing possible configurations, and a number of
string descriptors. The data types used for these
descriptors are defined in the usb_ch9.h header file
for the standard descriptor types and in the
cdc_serial_device.h header file for the
CDC specific descriptor types.

This section will discuss changes that will need to be
made to these descriptors when modifying the
application.

Modifying the Device Descriptor
The device descriptor provides information that applies
to the overall device. This includes the device class,
vendor and product ID numbers, the number of config-
urations, and endpoint zero information.

The device descriptor is created for the USB firmware
stack using the following data type (defined in the
usb_ch9.h header file).

FIGURE 5: USB DEVICE DESCRIPTOR
STRUCTURE

Note: Refer to Chapter 9 of the �Universal Serial
Bus Specification, Revision 2.0� and the
�USB Class Definitions for Communica-
tion Devices� documents for additional
details on the descriptors used by this
application note.

typedef struct
{
 BYTE bLength;
 BYTE bDescriptorType;
 WORD bcdUSB;
 BYTE bDeviceClass;
 BYTE bDeviceSubClass;
 BYTE bDeviceProtocol;
 BYTE bMaxPacketSize0;
 WORD idVendor;
 WORD idProduct;
 WORD bcdDevice;
 BYTE iManufacturer;
 BYTE iProduct;
 BYTE iSerialNum;
 BYTE bNumConfigurations;

} USB_DEVICE_DESCRIPTOR;
© 2008 Microchip Technology Inc. DS01164A-page 15

AN1164

The following are key fields that may need to be
changed when designing a new CDC serial device.

bMaxPacketSize0:

If the size of the Endpoint zero buffer is
changed, this field must be changed as well.

idVendor:

The Vendor ID (VID) value must be changed to
match the ID code allocated to your company by
the USB Implementor�s Forum (USB IF). If you
do not have a VID allocated by the USB IF, con-
tact your Microchip representative about the
possibility of using the Microchip vendor ID
(0x04D8) and leasing an unused Microchip
product ID.

idProduct:

The Product ID (PID) value must be changed to
match the PID allocated to the product being
developed. Each vendor is responsible for allo-
cating and tracking PIDs for products it pro-
duces. If you have leased a PID from Microchip,
this value must be placed here and the VID must
match the Microchip ID.

bcdDevice:

This value is a Binary Coded Decimal (BCD)
representation of the product revision number. It
should be changed to match the revision of the
product design.

String Indices:

The iManufacturer, iProduct, and iSeri-
alNum fields contain indices into the string
descriptor table to string descriptors that
describe the manufacturer, product and serial
number in Unicode strings. Those string
descriptors will need to be changed to provide
appropriate descriptions for the product, but the
index numbers placed in the device descriptor
do not need to change unless the positions of
these descriptors in the table are changed.

All of the other fields should remain the same unless
very major changes are being made to the application
(such as adding additional configurations).

Modifying the Configuration Descriptor
The sample code implements a single configuration.
Thus, there is only one set of configuration-specific
descriptors, beginning with a single configuration
descriptor.

The configuration descriptor is defined using the follow-
ing data type:

FIGURE 6: CONFIGURATION
DESCRIPTOR STRUCTURE

There is only one field that is likely to need to be
changed in the configuration descriptor.

bMaxPower:

This field indicates the amount of current
required for the device to operate in this config-
uration. The value placed in the descriptor is
one-half of the desired current. So a value of 50
represents a maximum draw of 100 mA for this
configuration of the device to operate properly.
Each increment in this value indicates in incre-
ment of 2 mA in the maximum current draw.

Note: The example code initializes this field
using the
USB_DEV_EP0_MAX_PACKET_SIZE
macro so (if the example code is used) this
field will automatically change when the
macro is changed.

Notes: A USB device may request a maxi-
mum of 500 mA from the bus, but low-
power hosts (or hubs) may only be
able to supply a maximum of 100 mA
from the bus.

USB On The Go or embedded hosts
may be able to supply as little as 8
mA. If your device is intended to oper-
ate with such a host, be sure that it
only draws the amount of current sup-
ported by that host.

typedef struct
{
 BYTE bLength;
 BYTE bDescriptorType;
 WORD wTotalLength;
 BYTE bNumInterfaces;
 BYTE bConfigurationValue;
 BYTE iConfiguration;
 BYTE bmAttributes;
 BYTE bMaxPower;

} USB_CONFIGURATION_DESCRIPTOR;
DS01164A-page 16 © 2008 Microchip Technology Inc.

AN1164

Modifying the Communication Management
Interface Descriptor
The communication management interface descriptor
is a normal USB interface descriptor. It provides a num-
ber identifying the interface, the class information for
the interface, and the number of endpoints required for
the interface.

The interface descriptor is defined using the following
data type:

FIGURE 7: INTERFACE DESCRIPTOR
STRUCTURE

Normally, there will be no need to change any fields in
the interface descriptor. However, the two fields
discussed below may be of interest.

bInterfaceNumber:

No two USB interfaces may have the same
interface number unless an alternate interface
setting is used (and the CDC serial driver
doesn�t). However, if additional USB functional-
ity is integrated with this application, you may
need to change the interface number for the
CDC communication management interface (by
changing this value) to allow the host to uniquely
identify each interface in the device.

iInterface:

No sample string descriptor was provided (or
required) for this interface. If you desire to add
one, its index in the string descriptor table will
need to be placed in this location.

CDC Class-Specific Descriptors
The CDC-specific descriptors indicate to the host that
this device supports the CDC, Abstract Control Model
(ACM) with the line control feature and no call manage-
ment features. The only changes to these descriptors
that may be necessary are changes to the values that
indicate which interface numbers are used for the CDC
function. These changes are only necessary if changes
were made to the interface ID numbers for either the
communication management interface or the data
class interface. Any other changes may cause the host
to expect behavior that is not supported by the CDC
function driver and may induce errors.

The Union Functional Descriptor and the Call Manage-
ment Functional Descriptor are defined by the following
data types.

FIGURE 8: CDC-SPECIFIC
DESCRIPTOR STRUCTURE

bMasterIntf:

This number indicates to the host which inter-
face will be used as the master communication
interface, primarily used for device notifications.
It will need to be changed if the ID of the com-
munication management interface was
changed.

typedef struct
{
 BYTE bLength;
 BYTE bDescriptorType;
 BYTE bInterfaceNumber;
 BYTE bAlternateSetting;
 BYTE bNumEndpoints;
 BYTE bInterfaceClass;
 BYTE bInterfaceSubClass;
 BYTE bInterfaceProtocol;
 BYTE iInterface;

}USB_INTERFACE_DESCRIPTOR;

/* Union Functional Descriptor */
typedef struct _USB_CDC_UNION_FN_DSC
{
 BYTE bFNLength;
 BYTE bDscType;
 BYTE bDscSubType;
 BYTE bMasterIntf;
 BYTE bSlaveIntf0;
} USB_CDC_UNION_FN_DSC;

/* Call Management Functional Descriptor */
typedef struct _USB_CDC_CALL_MGT_FN_DSC
{
 BYTE bFNLength;
 BYTE bDscType;
 BYTE bDscSubType;
 BYTE bmCapabilities;
 BYTE bDataInterface;
} USB_CDC_CALL_MGT_FN_DSC;
© 2008 Microchip Technology Inc. DS01164A-page 17

AN1164

bSlaveIntf0:

The slave interface is the bulk transfer data
interface. If the ID of the data interface was
changed then this number will need to be
changed as well.

bDataInterface:

This value should be the same as the
bSlaveIntf0 value. It is duplicated in the call
management functional descriptor to indicate
that call management is embedded into the data
stream. However, no call management capabili-
ties are identified.

Modifying the Notification Endpoint Descriptor
The notification endpoint descriptor identifies the type
of transfer supported by the endpoint, its direction,
buffer size and polling period. The descriptor may need
to be changed if there is some reason to change which
endpoint is used. The values identified below are the
ones most likely to be changed. Changing others may
cause the endpoint to stop functioning as required.

Endpoint descriptors are defined by the following data
type.

FIGURE 9: ENDPOINT DESCRIPTOR
STRUCTURE

bEndpointAddress:

This value identifies which endpoint is used for
notifications to the host. As mentioned above, it
may be changed if there is a conflict with any
additional USB functions integrated with this
application.

wMaxPacketSize:

This value indicates to the host what the size of
the buffer is that is associated with the notifica-
tion endpoint. This buffer only needs to be large
enough to send a CDC notification (8 bytes).
However, if some application has a need to send
larger notifications, then this value could be
increased to 16, 32, or 64.

bInterval:

This value determines the polling interval (in mil-
liseconds, from 1 to 255) for the notification end-
point. As an interrupt transfer endpoint, it is
regularly polled by the host for data. This polling
frequency could be modified to match the needs
of the application.

Note: The communication device class def-
inition allows for devices with multiple
data interfaces. Thus, this descriptor
can be expanded to include additional
slave interface ID values. However,
this implementation only uses slave
Interface zero (0).

Note: The communication management
and data interfaces are identified by
numbers defined by the
CDC_COMM_INTF_ID and
CDC_DATA_INTF_ID macros,
respectively. If any changes to these
interface ID numbers are made by
changing the values of these macros,
then the changes to the union func-
tional and call management func-
tional descriptors will happen
automatically.

Notes: The bEndpointAddress is initialized
using the CDC_INT_EP_NUM macro. If the
endpoint number is changed by changing
the value of this macro, then the
bEndpointAddress value in the notifi-
cation endpoint descriptor will be changed
automatically.

It is important that the direction and trans-
fer type do not change or the CDC function
driver will not work.

typedef struct
{
 BYTE bLength;
 BYTE bDescriptorType;
 BYTE bEndpointAddress;
 BYTE bmAttributes;
 WORD wMaxPacketSize;
 BYTE bInterval;
} USB_ENDPOINT_DESCRIPTOR;
DS01164A-page 18 © 2008 Microchip Technology Inc.

AN1164

Modifying the Data Interface Descriptor
The data interface descriptor provides the number
identifying the data interface, the class information, and
the number of endpoints.

Normally, there will be no need to change any fields in
the data interface descriptor. However, if additional
USB functionality is being integrated with the applica-
tion, the following fields may need to be changed.

bInterfaceNumber:

No two USB interfaces may have the same
interface number (unless one is an alternate set-
ting of the other). So, if additional USB function-
ality is integrated with this application, you may
need to change the interface number for the
data interface by changing this value to allow the
host to uniquely identify each interface in the
device.

iInterface:

No sample string descriptor was provided (or
required) for the data interface. If you desire to
add one, its index in the string descriptor table
will need to be placed this value.

Modifying the Data Endpoint Descriptor
The data endpoint is used in both directions to transmit
and receive data. Thus, it has two endpoint descriptors.
Like the notification endpoint descriptor, the data end-
point descriptors identify the type of transfer, direction,
and buffer size. Unlike the notification endpoint, the
data endpoints support the bulk transfer protocol. Thus,
there is no polling period (it is specified as zero).

The values identified below are the ones most likely to
be changed. Changing others may cause the endpoint
to stop functioning as required. Refer to Figure 8 for the
data type used to define the data endpoint descriptors.

bEndpointAddress:

This value identifies which endpoints are used
for data transfer to-and-from the host. This may
be changed if there is a conflict with any addi-
tional USB functions integrated with this applica-
tion. The bEndpointAddress values are
initialized using the CDC_BULK_EP_NUM macro.
If the endpoint numbers are changed by chang-
ing the value of this macro, then the
bEndpointAddress values in the data end-
point descriptors will be changed automatically.

wMaxPacketSize:

This value indicates to the host what the sizes of
the buffers are that are associated with the data
endpoints. These values could be 8, 16, 32, or
64, according to the needs of the application.
Smaller buffers would consume less memory
space on the device and larger buffers would
provide greater data throughput efficiency.

Note: Refer to Figure 7 for the data type used to
define this descriptor.

Note: It is important that the transfer type not be
changed or the CDC function driver will
not work.

Note: Since there is a separate descriptor
for each of the data endpoints (the
�transmit� or �IN� endpoint and the
�receive� or �OUT� endpoint), you
could potentially specify different end-
point numbers for transmit and
receive. However, this would be ill
advised as the host�s device driver
may assume that the same endpoint
number was used for �IN� transfers
and �OUT� transfers.

Note: The USB firmware stack does not
allocate buffers for the USB end-
points. Instead, it uses the applica-
tion-defined buffers for all transfers
via data endpoints.
© 2008 Microchip Technology Inc. DS01164A-page 19

AN1164

Modifying the String Descriptors
The string descriptor table provides human-readable
information in Unicode strings that help the host repre-
sent the device to the user. It also provides the device�s
serial number, which is represented as a string.

Strings may be supported in many different languages.
The first entry in the string descriptor table identifies the
list of languages supported. The example only supports
English (United States). Additional languages may be
supported by adding additional language ID�s to the
first descriptor.

In the example code, string descriptors are provided for
the vendor description, product description, and serial
number. Each of these should be changed to represent
the application being developed.

MODIFYING THE ENDPOINT
CONFIGURATION TABLE
The endpoint configuration table identifies direction
and protocol features for every endpoint used on the
USB device. The table also identifies which function
driver will service events that occur for each endpoint.
The only exception is that Endpoint zero is configured
automatically by the USB device stack and is not
included in the endpoint configuration table.

Normally, the endpoint configuration table will not need
to be modified. However, if additional USB functionality
is integrated with this application, then additional
entries will need to be added. The EP_CONFIG struc-
ture and flags are defined in the usb_device.h
header file. Each entry in the table consists of the fol-
lowing data structure:

FIGURE 10: ENDPOINT
CONFIGURATION
STRUCTURE

max_pkt_size:

This field defines how many bytes this endpoint
can transfer in a single packet.

flags:

This field provides the information used to con-
figure the behavior of the endpoint. The
following flags are defined:

- USB_EP_TRANSMIT � Enable endpoint
for transmitting data

- USB_EP_RECEIVE � Enable endpoint
for receiving data

- USB_EP_HANDSHAKE � Enable genera-
tion of handshaking (ACK/NAK) packets
(non-isochronous endpoints only)

- USB_EP_NO_INC � Used only for direct
DMA to another device's FIFO

ep_num:

This field identifies which endpoint the structure
describes.

Note: Refer to the USB IF Language Identifiers
document for the list of available language
IDs.

When adding additional languages, be
sure to increase the size of the first string
descriptor (string descriptor zero) by
increasing the value of the NUM_LANGS
macro.

Note: Every device should have a unique serial
number, or only one such device can be
attached to a given host at a time. Also,
the host system may require the user to
re-install the driver software every time the
device is connected to a different USB
port; rather then just once, when the
device is first connected.

typedef struct
_endpoint_configuration_data
{
 UINT16 max_pkt_size;
 UINT16 flags;
 BYTE config;
 BYTE ep_num;
 BYTE intf;
 BYTE alt_intf;
 BYTE function;

} EP_CONFIG, *PEP_CONFIG;
DS01164A-page 20 © 2008 Microchip Technology Inc.

AN1164

config, intf, and alt_intf:

These fields identify which device configuration,
interface and alternate interface setting uses the
configuration described in this structure.

function:

This field identifies which function driver uses
the endpoint identified in ep_num. It does this by
providing the index into the function driver table.

MODIFYING THE SUPPORTED FUNCTION
DRIVERS TABLE
A USB device may implement more then one class or
vendor-specific function. To support this, the Microchip
PIC32 USB FW stack uses the function driver table to
manage access to function drivers. Each entry in the
table contains the information necessary to manage a
single function driver. If a device (like the CDC serial
demo) only implements one USB function, the table will
only contain one entry.

The only reason to modify the function driver table is if
the application is modified to integrate another USB
function. Each new driver supported will require an
entry of its own in the table. Of course, the CDC func-
tion must have an entry as well (if it is used).

The following data structure defines an entry in the
function-driver table.

FIGURE 11: FUNCTION DRIVER TABLE
ENTRY

Initialize and flags:

The Initialize field holds a pointer to the function
driver�s initialization routine. The initialization
routine is called when the host chooses the
device configuration appropriate to the function
driver identified by the entry given in the table.
When called, the initialization routine is passed
the flags parameter (which is ignored by the
CDC driver).

EventHandler:

This field holds a pointer to the function driver�s
routine for handling class or vendor-specific
USB events.

Warning: Some of the information contained in the
endpoint configuration table duplicates
information defined in the descriptor table.
This redundancy is required to eliminate
the additional code that would otherwise
need to parse the descriptor table to
retrieve the information. However, it does
place a burden on the programmer to
ensure the two tables are coherent.

Note: For additional details, refer to Microchip
Application Note AN1176, �USB Device
Stack for PIC32 Programmer�s Guide�.

struct _function_driver_table_entry
{
 USBDEV_INIT_FUNCTION_DRIVER Initialize;
 USB_EVENT_HANDLER EventHandler;
 BYTE flags;
};
typedef struct _function_driver_table_entry
 FUNC_DRV, *PFUNC_DRV;
© 2008 Microchip Technology Inc. DS01164A-page 21

AN1164

Modifying the USB Stack Options
This section highlights several key configuration
options necessary to ensure proper operation of the
USB peripheral device stack. Refer to Appendix A:
�USB Firmware Stack Configuration� for full descrip-
tions of all available configuration options.

REQUIRED OPTIONS
The following options must be defined as described
below.

USB_SUPPORT_DEVICE:

To ensure that the USB stack is built so that it
behaves like a USB device, be sure this macro
is defined (no value required). Otherwise, the
behavior of the USB stack will not be appropri-
ate for a USB device application.

USB_DEV_EVENT_HANDLER:

This macro allows the user to replace the
�Device� layer of the USB firmware stack (see
Appendix D: �USB Firmware Stack Architec-
ture�). However, doing so is beyond the scope
of this document so the application should
ensure that this macro is defined as the name of
the device layer�s event-handling routine USB-
DEVHandleBusEvent.

MODIFYING OPTIONS EFFECTING RAM
USAGE
To ensure that the USB stack does not allocate any
more RAM then is required, be sure to define the
following macros carefully.

USB_DEV_HIGHEST_EP_NUMBER:

This macro indicates the highest endpoint number
used by the function. In the case of the CDC serial
driver, it is defined as three (3), since Endpoint 3 is
used for the data interface. This value may be changed
to integrate additional USB functionality that required
additional endpoints.

USB_DEV_SUPPORTS_ALT_INTERFACES:

This macro must be defined if the application supports
alternate settings for any of its USB interfaces. Since
the CDC serial driver does not use alternate interface
settings, this should not be changed unless this appli-
cation is integrated with another application that does
require alternate interface settings.

USB_DEV_EP0_MAX_PACKET_SIZE:

Endpoint zero can support buffer sizes of 8, 16, 32, or
64 bytes. The RAM for this buffer is allocated based
upon how the USB_DEV_EP0_MAX_PACKET_SIZE
macro is defined. For the CDC serial driver, this value
is defined as eight (8) bytes. A very small decrease in
the time necessary to enumerate the device could be
obtained by increasing this to one of the larger sizes at
the cost of additional RAM dedicated to the Endpoint
zero buffer.

Note: Increasing this number will increase the
amount of RAM used by the USB stack to
allocate additional entries in the BDT and
to track state data.

Note: The USB firmware stack only allocates
buffer space for Endpoint 0.
DS01164A-page 22 © 2008 Microchip Technology Inc.

AN1164

MODIFYING APPLICATION-SPECIFIC USB
SUPPORT OPTIONS
To ensure that the USB stack can call the three user-
defined routines to access the descriptor, endpoint
configuration, and function driver tables, the following
macros must be defined correctly.

� USB_DEV_GET_DESCRIPTOR_FUNC

� USB_DEV_GET_EP_CONFIG_TABLE_FUNC

� USB_DEV_GET_FUNCTION_DRIVER_TABLE_FUNC

If the names of any of the routines change, the corre-
sponding macro will need to be updated. The macros
are described below:

USB_DEV_GET_DESCRIPTOR_FUNC:

This macro identifies the name of the application-specific �get descriptor� routine (see �The USB Descriptor
Table�) to the USB stack. This is the routine that provides the address and size of a requested descriptor.

EXAMPLE 5: IDENTIFYING THE �GET DESCRIPTION� FUNCTION

If the name of the �get descriptor� routine is changed, then the definition of this macro must change to match the
new routine name.

USB_DEV_GET_EP_CONFIG_TABLE_FUNC:

This macro identifies the name of the application-specific �get endpoint configuration table� routine (see �The
Endpoint Configuration Table�) to the USB stack. This is the routine that provides the address of the endpoint
configuration table as well as the number of entries it contains.

EXAMPLE 6: IDENTIFYING THE �GET ENDPOINT CONFIGURATION TABLE� FUNCTION

If the name of the �get endpoint configuration table� routine is changed, then the definition of this macro must
change to match the new routine name.

USB_DEV_GET_FUNCTION_DRIVER_TABLE_FUNC:

This macro identifies the name of the application-specific �get function driver table� routine (see �The Function
Driver Table�) to the USB stack. This is the routine that provides the address of the function driver table.

EXAMPLE 7: IDENTIFYING THE �GET FUNCTION DRIVER TABLE� FUNCTION

If the name of the �get function driver table� routine is changed, then the definition of this macro must change to
match the new routine name.

#define USB_DEV_GET_DESCRIPTOR_FUNC USBDEVGetDescriptor

#define USB_DEV_GET_EP_CONFIG_TABLE_FUNC USBDEVGetEpConfigurationTable

#define USB_DEV_GET_FUNCTION_DRIVER_TABLE_FUNC USBDEVGetFunctionDriverTable
© 2008 Microchip Technology Inc. DS01164A-page 23

AN1164

MODIFYING CDC SERIAL FUNCTION
OPTIONS
The CDC serial function driver has several options that
affect how it uses resources. These options may be
changed depending on the needs of the intended
application.

� CDC_CONFIG_NUM

� CDC_COMM_INTF_ID

� CDC_INT_EP_NUM

� CDC_INT_EP_SIZE

� CDC_DATA_INTF_ID

� CDC_BULK_EP_NUM

� CDC_BULK_OUT_EP_SIZE

� CDC_BULK_IN_EP_SIZE

The macros are described below:

CDC_CONFIG_NUM:

This macro defines the configuration ID value of
the CDC serial function. Since the CDC driver
only supports a single configuration, this value
should not need to be changed unless this appli-
cation is integrated with additional USB
functionality with multiple configurations.

CDC_COMM_INTF_ID:

This macro defines the interface ID value of the
communication management interface. Its value
should not change unless additional USB func-
tionality is integrated with the application.

CDC_INT_EP_NUM:

This macro defines the endpoint number of the
notification endpoint used as part of the commu-
nication management interface. It could be
changed to optimize endpoint and memory
usage or if this application is integrated with
another USB function and there are conflicts in
the endpoints used.

CDC_INT_EP_SIZE:

This macro defines the size (in bytes) of the end-
point buffer used for CDC notifications. It should
not change unless there is a need for larger
notification data.

CDC_DATA_INTF_ID:

This macro defines the ID of the data interface.
Its value should not change unless additional
USB functionality is integrated with the applica-
tion.

CDC_BULK_EP_NUM:

This macro defines the endpoint number used
by the bulk data interface. It could be changed to
optimize endpoint and memory usage or to
resolve endpoint conflicts if this application is
integrated with other USB functionality.

CDC_BULK_OUT_EP_SIZE:

This macro defines the packet size of the USB
bulk data �OUT� endpoint. It affects the size of
data packets received from host. It is set at the
maximum of 64 bytes to maximize data through-
put. However, it could be reduced to 8, 16, or 32
in order to reduce RAM requirements for data
buffering.

CDC_BULK_IN_EP_SIZE:

This macro defines the packet size of the USB
bulk data �IN� endpoint. It affects the size of data
packets sent (transmitted) to the host. It is set at
the maximum of 64 bytes to maximize data
throughput. However, it could be reduced to 8,
16, or 32 in order to reduce RAM requirements
for data buffering.

Note: The USB firmware stack does not allo-
cate the buffer space for any endpoint
except Endpoint zero. Instead, it
dynamically switches the memory tar-
get of the USB transfer to the applica-
tion�s buffers whenever the read or
write API routines are called. This
means that changing these macros
(CDC_BULK_OUT_EP_SIZE and
CDC_BULK_IN_EP_SIZE) may not
directly affect the amount of RAM
used. It will change the packet sizes in
which data is transferred to or from the
host.
DS01164A-page 24 © 2008 Microchip Technology Inc.

AN1164

Default Line Coding
The following macros define the default line coding
parameters (as defined by the sample code, provided).

// Bit Rate
CDC_DEFAULT_BPS 115200

// 1 stop bit
CDC_DEFAULT_FORMAT 0

// No parity
CDC_DEFAULT_PARITY 0

// 8-bits per word
CDC_DEFAULT_NUM_BITS 8

These values will be reported to the host when
requested. However, the use of these parameters is
completely up to the application. They do not effect the
communication over USB. Also, the host will most likely
send new line coding parameters as part of
enumeration.

CDC_APP_EVENT_HANDLING_FUNC

This macro identifies the name of the application�s
event-handling routine. This routine is called by the
CDC serial driver asynchronously when the line coding
changes or when encapsulated communications com-
mands are received from the host. If the name of the
application�s event-handling routine is changed then
this macro definition must change to match it.

MISCELLANEOUS OPTIONS
There are two additional options that may need to be
changed, depending on the application.

USB_DEV_SELF_POWERED

Defining this macro informs the USB stack that
the device is self powered. If the device is
intended to be bus powered, this macro should
not be defined.

USB_DEV_SUPPORT_REMOTE_WAKEUP

Defining this macro informs the USB stack that
the device supports remotely waking up the
host. If it does not, this macro should not be
defined.
© 2008 Microchip Technology Inc. DS01164A-page 25

AN1164
CONCLUSION
This document has shown how to use the Microchip
PIC32 CDC serial function driver and USB firmware
stack to emulate a UART over the Universal Serial Bus
on supported Microchip microcontrollers.

Usually, implementing a USB device would require the
development of firmware to handle USB protocols for
device identification, control, and data transfer. The
CDC serial driver and USB firmware stack has taken
care of the details of the USB protocol so that the
device developer doesn�t have to. The sample code
provided only requires minor modifications to adapt it to
most applications that would otherwise use a traditional
UART. This allows the device designer to provide a
solution that lets the end user enjoy the benefits of the
USB with minimal effort.

REFERENCES
� Microchip Application Note AN1176, �USB Device

Stack for PIC32 Programmer�s Guide�
www.microchip.com

� Microchip MPLAB® IDE
In-circuit Development Environment, available
free of charge, by license, from www.micro-
chip.com/mplabide

� �Universal Serial Bus Specification, Revision 2.0�
http://www.usb.org/developers/docs

� �OTG Supplement, Revision 1.3�
http://www.usb.org/developers/onthego

� �Class Definitions for Communication Devices�
http://www.usb.org/developers/devclass_docs
DS01164A-page 26 © 2008 Microchip Technology Inc.

http://www.usb.org/developers/docs/
http://www.usb.org/developers/docs/

AN1164
APPENDIX A: USB FIRMWARE
STACK
CONFIGURATION

The peripheral stack provides several configuration
options to customize it for your application. The config-
uration options must be defined in the file
usb_config.h that must be implemented as part of
any USB application. Once any option is changed, the
stack must be built �clean� to rebuild all related binary
files.

USB_SUPPORT_DEVICE

USB_DEV_EVENT_HANDLER

USB_DEV_HIGHEST_EP_NUMBER

USB_DEV_EP0_MAX_PACKET_SIZ

USB_DEV_SUPPORTS_ALT_INTERFACES

USB_DEV_GET_DESCRIPTOR_FUNC

USB_DEV_GET_EP_CONFIG_TABLE_FUNC

USB_DEV_GET_FUNCTION_DRIVER_TABLE_FUNC

USB_DEV_SELF_POWERED

USB_DEV_SUPPORT_REMOTE_WAKEUP

USB_SAFE_MODE

CDC_CONFIG_NUM

CDC_COMM_INTF_ID

CDC_INT_EP_NUM

CDC_INT_EP_SIZE

CDC_DATA_INTF_ID

CDC_BULK_EP_NUM

CDC_BULK_OUT_EP_SIZE

CDC_BULK_IN_EP_SIZE

CDC_DEFAULT_BPS

CDC_DEFAULT_FORMAT

CDC_DEFAULT_PARITY

CDC_DEFAULT_NUM_BITS

CDC_APP_EVENT_HANDLING_FUNC

Note: Refer to AN1176, �USB Device Stack for
PIC32 Programmer�s Guide� for details on
the usage of the above configuration
options.
© 2008 Microchip Technology Inc. DS01164A-page 27

AN1164
CDC_CONFIG_NUM

Purpose: This macro defines the configuration ID number for the CDC serial driver.

Precondition: None

Valid Values: Device configuration numbers must begin at one (1).

Example: #define CDC_CONFIG_NUM 1

CDC_COMM_INTF_ID

Purpose: This macro defines the USB interface ID number for the CDC serial driver�s communication man-
agement interface.

Precondition: None

Valid Values: Interface ID numbers must begin at zero (0) and must not conflict with any other active interface
on the same device.

Example: #define CDC_COMM_INTF_ID 0

CDC_INT_EP_NUM

Purpose: This macro defines the USB endpoint number for the CDC serial driver�s interrupt endpoint used
for asynchronous notifications to the host.

Precondition: None

Valid Values: Endpoint numbers must be between one (Endpoint 0 is dedicated) and 15, inclusive, and must
not be used more then once in per direction.

Example: #define CDC_INT_EP_NUM 2

CDC_INT_EP_SIZE

Purpose: This macro defines the maximum packet size allowed for the CDC driver�s notification endpoint.
Normal use of this endpoint dictates it be defined as eight (8) bytes.

Precondition: None

Valid Values: This macro must be defined as 8, 16, 32, or 64.

Example: #define CDC_INT_EP_SIZE 8

CDC_DATA_INTF_ID

Purpose: This macro defines the USB interface ID number for the CDC serial driver�s data interface.

Precondition: None

Valid Values: Interface ID numbers must begin at zero, and must not conflict with any other active interface on
the same device.

Example: #define CDC_DATA_INTF_ID 1

Note: The following options are all defined by the application. Thus, the example for each is also the default as
defined by the demo application.

Note: The USB firmware stack allocates memory for every endpoint, starting from zero and
ending at the highest endpoint used (see USB_DEV_HIGHEST_EP_NUMBER). Allo-
cating unused endpoints in this range will cause unused memory to be allocated.
DS01164A-page 28 © 2008 Microchip Technology Inc.

AN1164

CDC_BULK_EP_NUM

Purpose: This macro defines the USB endpoint number for the CDC serial driver�s bulk endpoint used for
data transfer to-or-from the host.

Precondition: None

Valid Values: Endpoint numbers must be between one (Endpoint 0 is dedicated) and 15, inclusive, and must
not be used more then once in per direction..

Example: #define CDC_BULK_EP_NUM 3

CDC_BULK_OUT_EP_SIZE

Purpose: This macro defines the maximum packet size (in bytes) allowed for the CDC driver�s Data-Out
(receive) endpoint. Larger values will increase data throughput. Smaller values will reduce
throughput.

Precondition: None

Valid Values: This macro must be defined as 8, 16, 32, or 64.

Example: #define CDC_BULK_OUT_EP_SIZE 64

CDC_BULK_IN_EP_SIZE

Purpose: This macro defines the maximum packet size (in bytes) allowed for the CDC driver�s Data-In
(transmit) endpoint. Larger values will increase data throughput. Smaller values will reduce
throughput.

Precondition: None

Valid Values: This macro must be defined as 8, 16, 32, or 64.

Example: #define CDC_BULK_IN_EP_SIZE 64

CDC_DEFAULT_BPS

Purpose: This macro defines the default UART data rate (in bits per second) reported to the host.

Precondition: None

Valid Values: This macro may be defined as any 32-bit number, the commonly accepted bit-rate values are:
110, 300, 1200, 2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600, 76800, 115200, 230400,
460800, and 921600.

Example: #define CDC_DEFAULT_BPS 115200

CDC_DEFAULT_FORMAT

Purpose: This macro defines the default UART character format reported to the host.

Precondition: None

Valid Values: 0 = 1 Stop bit per character

1 = 1.5 Stop bits character

2 = 2 Stop bits per character

Example : #define CDC_DEFAULT_FORMAT 0

Note: The USB Firmware stack allocates memory for every endpoint, starting from zero
and ending at the highest endpoint used (see USB_DEV_HIGHEST_EP_NUMBER).
Allocating unused endpoints in this range will cause unused memory to be allocated.
© 2008 Microchip Technology Inc. DS01164A-page 29

AN1164

CDC_DEFAULT_PARITY

Purpose: This macro defines the default UART parity type reported to the host.

Precondition: None

Valid Values: 0 = None

1 = Odd Parity

2 = Even Parity

3 = Mark Parity

4 = Space Parity

Example: #define CDC_DEFAULT_PARITY 0

CDC_DEFAULT_NUM_BITS

Purpose: This macro defines the default number of bits per UART word reported to the host.

Precondition: None

Valid Values: This may be defined as 5, 6, 7, 8, or 16 bits per word.

Example: #define CDC_DEFAULT_NUM_BITS 8

CDC_APP_EVENT_HANDLING_FUNC

Purpose: This macro identifies the name of the application�s event-handling routine to the CDC serial
function driver.

Precondition: This routine must be defined by the application.

Valid Values: The value of this macro must equate to the name of the application�s event-handling routine.

Example: #define CDC_APP_EVENT_HANDLING_FUNC CdcDemoEventHandler
DS01164A-page 30 © 2008 Microchip Technology Inc.

AN1164
APPENDIX B: USB CDC SERIAL
FUNCTION API

This section describes the CDC serial function driver
API. This API provides a means for the application to
transfer data on the USB as if it were using a UART.
Most of the USB details are hidden.

Table C-1 summarizes the CDC serial function driver
API.

.

Detailed descriptions of the API routines are presented
on the following pages.

TABLE B-1: USB GENERIC FUNCTION API SUMMARY
Operation Description

USBUSARTTxIsReady Determines if the driver is ready to send data on the USB.

USBUSARTTxIsBusy Determines if the driver is currently busy sending data.

USBUSARTRxIsReady Determines if the driver is ready to receive data from the USB.

USBUSARTRxIsBusy Determines if the driver is currently busy receiving data.

USBUSARTRxGetLength Provides the current number of bytes that have been received from the USB
and placed into the caller�s buffer.

USBUSARTTx Starts a transfer, sending data on the USB.

USBUSARTRx Starts a transfer, receiving data from the USB.

USBUSARTGets Gets a string of bytes from the USB (uses USBUSARTRx).

USBUSARTPuts Sends a string of bytes from the USB, including the NULL terminator (uses
USBUSARTTx).

USBUSARTGetLineCoding Provides the current line-coding information (bits-per-second, number of
Stop, parity, and data bits per word).

USBUSARTGetCmdStr Retrieves an encapsulated command string from host.

USBUSARTSendRespStr Sends a response to an encapsulated command to the host.

USBUSARTSendNotification Sends an asynchronous notification packet to the host.

CDC_APP_EVENT_HANDLING_FUNC This is a call-back routine, called by the CDC serial function driver when an
application-specific event occurs.
© 2008 Microchip Technology Inc. DS01164A-page 31

AN1164

USB CDC Serial Function API - USBUSARTTxIsReady

This routine determines if the CDC function driver is ready to send data on the USB.

Syntax
BOOL USBUSARTTxIsReady (void)

Parameters
None

Return Value
TRUE if the system is ready to transmit data on the USB

FALSE if not.

Preconditions
The system has been enumerated as a CDC serial emulation device on the USB and the CDC function driver has
been initialized.

Side Effects
None

Example
if (USBUSARTTxIsReady ())
{
 USBUSARTTx (&buffer, sizeof(buffer));
}

DS01164A-page 32 © 2008 Microchip Technology Inc.

AN1164

USB CDC Serial Function API - USBUSARTTxIsBusy

This routine determines if the CDC serial function driver is currently busy sending data on the USB.

Syntax
BOOL USBUSARTTxIsBusy (void)

Parameters
None

Return Value
TRUE if the system is busy transmitting data on the USB

FALSE if not

Preconditions
The system has been enumerated as a CDC serial emulation device on the USB and the CDC function driver has
been initialized.

Side Effects
None

Example
if (!USBUSARTTxIsBusy ())
{
 USBUSARTTx (&buffer, sizeof(buffer));
}

© 2008 Microchip Technology Inc. DS01164A-page 33

AN1164

USB CDC Serial Function API - USBUSARTRxIsReady

This routine determines if the CDC serial function driver is ready to receive data on the USB.

Syntax
BOOL USBUSARTRxIsReady (void)

Parameters
None

Return Value
TRUE if the system is ready to receive data from the USB

FALSE if not.

Preconditions
The system has been enumerated as a CDC serial emulation device on the USB and the CDC function driver has
been initialized.

Side Effects
None

Example
if (USBUSARTRxIsReady())
{
 USBUSARTRx(&buffer, sizeof(buffer));
}

DS01164A-page 34 © 2008 Microchip Technology Inc.

AN1164

USB CDC Serial Function API - USBUSARTRxIsBusy

This routine determines if the CDC serial function driver is currently busy receiving data on the USB.

Syntax
BOOL USBUSARTRxIsBusy (void)

Parameters
None

Return Value
TRUE if the system is busy receiving data on the USB

FALSE if not

Preconditions
The system has been enumerated as a CDC serial emulation device on the USB and the CDC function driver has
been initialized.

Side Effects
None

Example
if (!USBUSARTRxIsReady())
{
 USBUSARTRx(&buffer, sizeof(buffer));
}

© 2008 Microchip Technology Inc. DS01164A-page 35

AN1164

USB CDC Serial Function API - USBUSARTRxGetLength

This routine provides the current number of bytes that have been received from the USB and placed into the
caller�s buffer since the most recent call to USBUSARTRx.

Syntax
BYTE USBUSARTRxGetLength (void)

Parameters
None

Return Value
The current number of bytes available in the caller�s buffer

Preconditions
The system has been enumerated as a CDC serial emulation device on the USB and the CDC function driver has
been initialized.

Side Effects
None

Example
Size = USBUSARTRxGetLength();
DS01164A-page 36 © 2008 Microchip Technology Inc.

AN1164

USB CDC Serial Function API - USBUSARTTx

This routine starts a USB transfer to transmit data on the USB. It is non-blocking, so the transfer will have been
started but not completed. The caller will have to monitor USBUSARTTxIsReady or USBUSARTTxIsBusy to
determine when the transfer has completed.

Syntax
void USBUSARTTx (BYTE *pData, BYTE len)

Parameters
pData � Pointer to the starting location of the data to transmit

len � Length of the data, in bytes

Return Value
None

Preconditions
The system has been enumerated as a CDC serial emulation device on the USB and the CDC function driver has
been initialized.

USBUSARTTxIsReady must return TRUE (or USBUSARTTxIsBusy must return FALSE) before this routine is called
or unexpected behavior may result.

Side Effects
A transfer onto the USB of the given size and data has been started.

Example
if (USBUSARTTxIsReady ())
{
 USBUSARTTx (&buffer, sizeof(buffer));
}

© 2008 Microchip Technology Inc. DS01164A-page 37

AN1164

USB CDC Serial Function API - USBUSARTRx

This routine starts a USB transfer to receive data from the USB. It is non-blocking, so the transfer will have been
started but not completed. The caller will have to monitor USBUSARTRxIsReady or USBUSARTRxIsBusy to
determine when the transfer has completed.

Syntax
void USBUSARTRx(BYTE *pData, BYTE len)

Parameters
pData � Pointer to the buffer in which to receive data

len � Length of the buffer, in bytes

Return Value
None

Preconditions
The system has been enumerated as a CDC serial emulation device on the USB and the CDC function driver has
been initialized.

USBUSARTRxIsReady must return TRUE (or USBUSARTRxIsBusy must return FALSE) before this routine is called
or unexpected behavior may result.

Side Effects
A transfer from the USB of the given size and data has been started.

Example
if (USBUSARTRxIsReady ())
{
 USBUSARTRx (&buffer, sizeof(buffer));
}

DS01164A-page 38 © 2008 Microchip Technology Inc.

AN1164

USB CDC Serial Function API - USBUSARTPuts

This routine writes a string of data to the USB, including the null character. It is non-blocking, so the transfer will
have been started but not completed. The caller will have to monitor USBUSARTTxIsReady or
USBUSARTTxIsBusy to determine when the transfer has completed.

Syntax
void USBUSARTPuts (char *data)

Parameters
data � Pointer to a null-terminated string of data. If a null character is not found, 255 bytes of data will be trans-
ferred to the host.

Return Value
None

Preconditions
The system has been enumerated as a CDC serial emulation device on the USB and the CDC function driver has
been initialized.

USBUSARTTxIsReady must return TRUE (or USBUSARTTxIsBusy must return FALSE) before this routine is called
or unexpected behavior may result.

Side Effects
A transfer onto the USB of the given string has been started.

Example
if(USBUSARTTxIsReady())
{
 USBUSARTPuts(gTestStr);
}

© 2008 Microchip Technology Inc. DS01164A-page 39

AN1164

USB CDC Serial Function API - USBUSARTGets

This routine reads a string of data of the given length from the USB, not including the null character. It is non-
blocking, so the transfer will have been started but not completed. The caller will have to monitor
USBUSARTRxIsReady or USBUSARTRxIsBusy to determine when the transfer has completed.

Syntax
BYTE USBUSARTGets (char *buffer, BYTE len)

Parameters
buffer � Pointer to where bytes received are to be stored

len � The number of bytes expected

Return Value
The number of bytes sent.

Preconditions
The system has been enumerated as a CDC serial emulation device on the USB and the CDC function driver
has been initialized.

USBUSARTRxIsReady must return TRUE (or USBUSARTRxIsBusy must return FALSE) before this routine is
called or unexpected behavior may result.

Side Effects
A transfer from the USB of the given size and data has been started.

Example
if(USBUSARTRxIsReady())
{
 USBUSARTGets(&test_str, sizeof(test_str));
}

Note: No more then �len� bytes will be received.

Note: Since the transfer has not started yet when this routine returns, this value is always zero (0). The caller
should use the USBUSARTRxGetLength routine to get the number of bytes sent.
DS01164A-page 40 © 2008 Microchip Technology Inc.

AN1164

USB CDC Serial Function API - USBUSARTGetLineCoding

This routine provides the current line-coding (BPS, # Stop bits, parity, and data bits-per-word) information.

Syntax
BOOL USBUSARTGetLineCoding (LINE_CODING *pLCData)

Parameters
pLCData � Pointer to where bytes received are to be stored

The following structure is used to hold the line coding data:
typedef union _LINE_CODING
{
 struct
 {
 BYTE _byte[LINE_CODING_LENGTH];
 };
 struct
 {
 DWORD dwDTERate;
 BYTE bCharFormat;
 BYTE bParityType;
 BYTE bDataBits;
 };
} LINE_CODING;

The LINE_CODING_LENGTH macro is defined as 7. The dwDTERate field should contain the number of bits-per-
second. The bCharFormat field should be 0, 1, or 2 indicating 1, 1.5, or 2 stop bits. The bParityType field should
be 0, 1, 2, 3 or 4 indicating no, odd, even, mark, or space parity. Finally, bDataBits should be 5, 6, 7, 8, or 16
indicating how many bits in a data word.

Return Value
TRUE if successful

FALSE if the line-coding data was currently in the process of being updated

Preconditions
The system has been enumerated as a CDC serial emulation device on the USB and the CDC function driver has
been initialized.

Side Effects
None

Example
if (USBUSARTGetLineCoding (&line_coding) == FALSE) {
 // Handle Error
}

Note: If the line coding data is currently being updated by the host, this function will return FALSE and the
caller should retry it later.
© 2008 Microchip Technology Inc. DS01164A-page 41

AN1164

USB CDC Serial Function API - USBUSARTGetCmdStr

This routine gets an encapsulated command string from the host.

Syntax
BOOL USBUSARTGetCmdStr (char *buffer, BYTE len)

Parameters
buffer � Pointer to where bytes received are to be stored

len � The number of bytes expected

Return Value
TRUE if successful

FALSE if not

Preconditions
The system has been enumerated as a CDC serial emulation device on the USB and the CDC function driver has
been initialized.

The application has received an EVENT_CDC_CMD event notification in response to the host sending a
SEND_ENCAPSULATED_COMMAND request.

Side Effects
The next len bytes read from EP0 will be read into the memory located at the address in �buffer�.

Example
 switch (event) {
 case EVENT_CDC_CMD:
 return USBUSARTGetCmdStr (command, sizeof(command));
 //� Handle other events as needed.

Note: This routine should only be called when an EVENT_CDC_CMD event notification has been received or
the caller may interfere with normal control-request processing.
DS01164A-page 42 © 2008 Microchip Technology Inc.

AN1164

USB CDC Serial Function API - USBUSARTSendRespStr

This routine writes a string of data to the host in response to a GET_ENCAPSULATED_RESPONSE request.

Syntax
BOOL USBUSARTSendRespStr (char *data)

Parameters
data � Pointer to a null-terminated string of response data

Return Value
TRUE if successful

FALSE if not

Preconditions
The system has been enumerated as a CDC serial emulation device on the USB and the CDC function driver has
been initialized.

The application must have received an EVENT_CDC_RESP event in response to the host sending a
GET_ENCAPSULATED_RESPONSE request.

Side Effects
A transfer of the response data will be started using the USB control endpoint.

Example
 switch (event) {
 case EVENT_CDC_RESP:
 return USBUSARTSendRespStr (&response_string);
 //� Handle other events as needed.

Note: This routine should only be called once per GET_ENCAPSULATED_RESPONSE request.
© 2008 Microchip Technology Inc. DS01164A-page 43

AN1164

USB CDC Serial Function API - USBUSARTSendNotification

This routine sends a notification packet to the host through the notification endpoint.

Syntax
BOOL USBUSARTSendNotification (CDC_NOTIFICATION *notification)

Parameters
notification � Pointer to the notification data to send to the host

The �CDC_NOTIFICATION� data type is defined as follows:

typedef SETUP_PKT CDC_NOTIFICATION;

The �SETUP_PKT� data type is defined in the usb_ch9.h file as follows:
typedef struct SetupPkt
{
 union // offset description

 { // ------ --------------------------
 BYTE bmRequestType; // 0 Bit-map of request type
 struct
 {
 BYTE recipient: 5; // Recipient of the request
 BYTE type: 2; // Type of request
 BYTE direction: 1; // Direction of data X-fer

 };
 }requestInfo;

 BYTE bRequest; // 1 Request type
 UINT16 wValue; // 2 Depends on bRequest
 UINT16 wIndex; // 4 Depends on bRequest
 UINT16 wLength; // 6 Depends on bRequest

} SETUP_PKT, *PSETUP_PKT;

This structure is used to send application or class-specific notifications to the host. It can be statically initialized
using the following macro.

CDC_INIT_NOTIFICATION(n,v,i,l)

Where: n = Notification number (above)

v = wValue (notification-specific)

i = wIndex (notification-specific)

l = wLength (notification-specific) Length of data to follow, if any.

Return Value
TRUE if able to start the transfer

FALSE if not

Preconditions
The system has been enumerated as a CDC serial emulation device on the USB and the CDC function driver has
been initialized.

Side Effects
A transfer of the response data will be started using the USB control endpoint.

Example
if (USBUSARTSendNotification(¬ification) == FALSE) {

// Handle failure
}

DS01164A-page 44 © 2008 Microchip Technology Inc.

AN1164

USB CDC Serial Function API - CDC_APP_EVENT_HANDLING_FUNC

This routine is implemented by the application. It is called by the CDC serial function driver to allow the application
to handle CDC-specific events as they occur.

Syntax
BOOL CDC_APP_EVENT_HANDLING_FUNC (USB_EVENT event, void *data, int size)

Parameters
event � CDC-specific event ID

data � Pointer to event-specific data

size � Size (in bytes) of the event-specific data, if any

The following CDC-Specific events are defined.

EVENT_CDC_LINE_CTRL

This event indicates that a change in the line-
control status occurred. It has no associated
data. When this event occurs, the application
may call USBUSARTGetLineCoding to iden-
tify the new line-control settings and take any
appropriate action.

EVENT_CDC_CMD

This event indicates that an encapsulated
command is about to be sent from the host.
The data parameter points to a 16-bit value
(size = 2) that identifies the size of the
expected command (in bytes). When this
event occurs, the application should call
USBUSARTGetCmdStr (using a buffer of the
given size) to receive the protocol-specific
command.

EVENT_CDC_CMD_RCVD

This event indicates that an encapsulated
command has been received. The data
parameter points to a 32-bit (size = 4) value
that identifies the actual size of the command
received. (Note this should equal the value
given with the EVENT_CDC_CMD event, even
though the data size is different.) This event is
used to indicate to the application that the
USBUSARTGetCmdStr request has com-
pleted and the command has been received.

EVENT_CDC_RESP

This event indicates that an encapsulated
response has been requested by the host.
The data parameter points to a 16-bit (size
= 2) value that identifies the expected size of
the response. When this event occurs, the
application may call
USBUSARTSendRespStr to send a
protocol-specific response string.

Return Value
The application should return TRUE to indicate that the event was handled and FALSE to indicate that it was not
handled.

Preconditions
The system has been enumerated as a CDC serial emulation device on the USB and the CDC function driver has
been initialized.

Side Effects
Side effects will depend on how the application implements the routine.

Example
PUBLIC BOOL CdcDemoEventHandler (USB_EVENT event, void *data, int size)
{
 UINT16 cmd_size;
 LINE_CODING line_coding;

Note: The demo application names this routine CdcDemoEventHandler. It is identified to the CDC serial
driver by defining the CDC_APP_EVENT_HANDLING_FUNC macro to equal this function name.
© 2008 Microchip Technology Inc. DS01164A-page 45

AN1164

 // Handle specific events.
 switch (event)
 {
 // The host has changed the line-control status.
 case EVENT_CDC_LINE_CTRL:

 // Read the new line coding.
 //
 // (This demo doesn�t do anything with the new line
 // coding, but it could after reading it, if desired.)
 return USBUSARTGetLineCoding (&line_coding);

 // The host is about to send an encapsulated command.
 case EVENT_CDC_CMD:

 // Read the command string.
 if (size == sizeof(UINT16) && data != NULL)
 {
 cmd_size = (UINT16)min(sizeof(gCommand), size);
 return USBUSARTGetCmdStr (gCommand, cmd_size);
 }
 break;

 } // switch (event)

 // Event not handled.
 return FALSE;

} // CdcDemoEventHandler
DS01164A-page 46 © 2008 Microchip Technology Inc.

AN1164
APPENDIX C: USB CDC SERIAL
FUNCTION DRIVER
INTERFACE

This section describes the routines that make up the
interface between the CDC serial function driver and
the lower-level USB device firmware stack. This inter-
face consists of two routines, one to initialize the func-
tion driver and another to handle CDC class-specific
events.

Neither of these two routines should ever be called
directly by the application. They are called by the lower-
level USB firmware stack at the appropriate time. Point-
ers to these routines are placed in the function driver
table (see �The Function Driver Table�) to identify
them to the lower-level USB stack. This mechanism
allows support for multi-function devices.

.

TABLE C-1: USB CDC SERIAL FUNCTION DRIVER INTERFACE SUMMARY
Operation Description

USBUARTInit Initializes the CDC serial driver
USBHandleEvents Identifies and handles bus events
© 2008 Microchip Technology Inc. DS01164A-page 47

AN1164

USB CDC Serial Function Driver Interface - USBUARTInit

This routine is called by the lower-level USB firmware stack. It is called when the system has been configured as
a USB CDC device by the host. Its purpose is to initialize and activate the CDC serial function driver.

Syntax
BOOL USBUARTInit (unsigned long flags)

Parameters
flags - Initialization Flags (reserved)

Return Value
TRUE if successful

FALSE if not

Preconditions
None

Side Effects
The USB CDC function driver has been initialized and is ready to handle CDC-specific events.

Example
const FUNC_DRV gDevFuncTable[] =
{
 // USB CDC Serial Emulation Function Driver
 {
 USBUARTInit, // Init routine
 USBUARTEventHandler, // Event routine
 0 // Init flags
 }
};
DS01164A-page 48 © 2008 Microchip Technology Inc.

AN1164

USB CDC Serial Function Driver Interface - USBUARTEventHandler

This routine is called by the lower-level USB firmware stack to notify the CDC serial function driver of events that occur
on the USB. Its purpose is to handle these events as necessary to support the CDC serial driver API.

Syntax
BOOL USBUARTEventHandler (USB_EVENT event, void *data, unsigned int size)

Parameters
event � Event ID

data � Pointer to event-specific data

size � Size (in bytes) of the event-specific data, if any

Return Value
TRUE if the event was handled

FALSE if not (or if additional processing is required).

Preconditions
The system has been enumerated as a CDC serial emulation device on the USB and the CDC function driver has
been initialized.

Side Effects
The side effects vary greatly depending on the event. In general, the CDC-specific event has been handled or
passed to the application for handling.

Example
const FUNC_DRV gDevFuncTable[] =
{
 // USB CDC Serial Emulation Function Driver
 {
 USBUARTInit, // Init routine
 USBUARTEventHandler, // Event routine
 0 // Init flags
 }
};

Note: Events are defined by the lower-level USB firmware stack and handled by the CDC serial function
driver. Refer to the application�s event-handling routine (see �CDC_APP_EVENT_HANDLING_FUNC�)
for events that may be propagated to the application.
© 2008 Microchip Technology Inc. DS01164A-page 49

AN1164
APPENDIX D: USB FIRMWARE
STACK
ARCHITECTURE

For a description of the PIC32 USB Device Firmware
Stack's architecture, refer to AN1176, �USB Device
Stack for PIC32 Programmer�s Guide�.
DS01164A-page 50 © 2008 Microchip Technology Inc.

AN1164
APPENDIX E: USB DESCRIPTOR
TABLE

The CDC serial demo application defines the
USB_DESC_TABLE data type in usb_app.c and uses
that data type to define its descriptor table, as shown
below.

TABLE E-1: DEVICE DESCRIPTOR
Field Description Size (Bytes) Value (Hex)

bLength Size of this descriptor 1 12
bDescriptorType Type, always USB_DESCRIPTOR_DEVIC 1 1
bcdUSB USB spec version, in BCD 2 0200
bDeviceClass Device class code 1 2
bDeviceSubClass Device sub-class code 1 0
bDeviceProtocol Device protocol 1 0
bMaxPacketSize0 EP0, max packet size 1 8
idVendor Vendor ID (VID) 2 04d8
idProduct Product ID (PID) 2 000A
bcdDevice Device release num, in BCD 2 0000
iManufacturer Manufacturer name string index 1 1
iProduct Product description string index 1 2
iSerialNum Product serial number string index 1 3
bNumConfigurations Number of supported configurations 1 1

TABLE E-2: CONFIGURATION DESCRIPTOR
Field Description Size (Bytes) Value (Hex)

bLength Size of this descriptor 1 09
bDescriptorType Type, USB_DESCRIPTOR_CONFIGURATION 1 02
wTotalLength Total size of all descriptors in this configuration 2 0043
bNumInterfaces Number of interfaces in this configuration 1 02
bConfigurationValue ID value of this configuration 1 01
iConfiguration Index of string descriptor describing this configuration 1 00
bmAttributes Bitmap of attributes of this configuration 1 80
bMaxPower 1/2 Maximum current (in mA) 1 32

TABLE E-3: INTERFACE DESCRIPTOR
Field Description Size (Bytes) Value (Hex)

bLength Size of this descriptor 1 09
bDescriptorType Type, USB_DESCRIPTOR_INTERFACE 1 04
bInterfaceNumber Interface ID number 1 00
bAlternateSetting ID number of alternate interface setting 1 00
bNumEndpoints Number of endpoints in this interface 1 01
bInterfaceClass USB interface class ID 1 02
bInterfaceSubClass USB interface sub-class ID 1 02
bInterfaceProtocol USB interface protocol ID 1 01
iInterface Interface description string index 1 00
© 2008 Microchip Technology Inc. DS01164A-page 51

AN1164

TABLE E-4: CDC HEADER FUNCTIONAL DESCRIPTOR

Field Description Size (Bytes) Value (Hex)

bFunctionLength Size of this descriptor 1 05
bDescriptorType Type, CS_INTERFACE 1 24
bDescriptorSubtype Header functional descriptor subtype 1 00
bcdCDC BCD Release version of the CDC specification 2 0110

TABLE E-5: CDC ABSTRACT CONTROL MODEL FUNCTIONAL DESCRIPTOR
Field Description Size (Bytes) Value (Hex)

bFunctionLength Size of this descriptor 1 04
bDescriptorType Type, CS_INTERFACE 1 24
bDescriptorSubtype Abstract Control Model functional descriptor subtype 1 2
bmCapabilities Device supports set/get line coding and notification 1 02

TABLE E-6: CDC UNION FUNCTIONAL DESCRIPTOR
Field Description Size (Bytes) Value (Hex)

bFunctionLength Size of this descriptor 1 05
bDescriptorType Type, CS_INTERFACE 1 24
bDescriptorSubtype Union functional descriptor 1 06
bmMasterInterface Interface number of the master CDC controlling inter-

face
1 00

bSlaveInterface0 Interface number of the first slave interface 01

TABLE E-7: CDC CALL MANAGEMENT FUNCTIONAL DESCRIPTOR
Field Description Size (Bytes) Value (Hex)

bFunctionLength Size of this descriptor 1 05
bDescriptorType Type, CS_INTERFACE 1 24
bDescriptorSubtype Abstract Control Model functional descriptor subtype 1 01
bmCapabilities Device handles call management itself 1 00
bDataInterface Interface number of data class interface optionally

used for call management
01

TABLE E-8: NOTIFICATION (IN) ENDPOINT DESCRIPTOR
Field Description Size (Bytes) Value (Hex)

bLength Size of this descriptor 1 07
bDescriptorType Type, USB_DESCRIPTOR_ENDPOINT 1 05
bEndpointAddress Address and direction of the endpoint 1 82
bmAttributes Interrupt transfer endpoint 1 03
wMaxPacketSize Largest packet this EP can handle 2 0008
bInterval Polling period (in mS) 1 02
DS01164A-page 52 © 2008 Microchip Technology Inc.

AN1164

TABLE E-9: DATA CLASS INTERFACE DESCRIPTOR

Field Description Size (Bytes) Value (Hex)

bLength Size of this descriptor 1 09
bDescriptorType Type, USB_DESCRIPTOR_INTERFACE 1 04
bInterfaceNumber Interface ID number 1 01
bAlternateSetting ID number of alternate Interface setting 1 00
bNumEndpoints Number of endpoints in this interface 1 02
bInterfaceClass USB interface class ID 1 0A
bInterfaceSubClass USB interface sub-class ID 1 00
bInterfaceProtocol USB interface protocol ID 1 00
iInterface Interface description string index 1 00

TABLE E-10: DATA (OUT) ENDPOINT DESCRIPTOR
Field Description Size (Bytes) Value (Hex)

bLength Size of this descriptor 1 07
bDescriptorType Type, USB_DESCRIPTOR_ENDPOINT 1 05
bEndpointAddress Address and direction of the endpoint 1 03
bmAttributes Bulk transfer endpoint 1 02
wMaxPacketSize Largest packet this EP can handle 2 0040
bInterval Not Polled 1 00

TABLE E-11: DATA (IN) ENDPOINT DESCRIPTOR
Field Description Size (Bytes) Value (Hex)

bLength Size of this descriptor 1 07
bDescriptorType Type, USB_DESCRIPTOR_ENDPOINT 1 05
bEndpointAddress Address and direction of the endpoint 1 83
bmAttributes Bulk transfer endpoint 1 02
wMaxPacketSize Largest packet this EP can handle 2 0040
bInterval Not Polled 1 00

TABLE E-12: LANGUAGE ID STRING (0) DESCRIPTOR
Field Description Size (Bytes) Value (Hex)

bLength Size of this descriptor 1 04
bDescriptorType Type, USB_DESCRIPTOR_STRING 1 03
wLangID Language ID code 2 0409

TABLE E-13: VENDOR DESCRIPTION STRING (1) DESCRIPTOR
Field Description Size (Bytes) Value (Hex/String)

bLength Size of this descriptor 1 34
bDescriptorType Type, USB_DESCRIPTOR_STRING 1 03
bString Serial number string 50 Microchip Technology Inc.
© 2008 Microchip Technology Inc. DS01164A-page 53

AN1164

TABLE E-14: DEVICE DESCRIPTION STRING (2) DESCRIPTOR

Field Description Size (Bytes) Value (Hex/String)

bLength Size of this descriptor 1 34
bDescriptorType Type, USB_DESCRIPTOR_STRING 1 03
wLangID Language ID code 50 �CDC RS-232 Emulation Demo�

TABLE E-15: SERIAL NUMBER STRING (3) DESCRIPTOR
Field Description Size (Bytes) Value (Hex/String)

bLength Size of this descriptor 1 16
bDescriptorType Type, USB_DESCRIPTOR_STRING 1 03
bString Serial number string 20 �0000000000�
DS01164A-page 54 © 2008 Microchip Technology Inc.

AN1164
APPENDIX F: GET DESCRIPTOR ROUTINE
The following �get descriptor� routine (and helpers) provide access to the descriptors (which are application-specific)
from the lower-level USB stack.
static inline const void *GetConfigurationDescriptor(BYTE config, unsigned int *length)
{
 switch (config)
 {
 case 0: // Configuration 1
 *length = sizeof(gDescTable.cdc_config_descs);
 return &gDescTable.cdc_config_descs;

 default:
 return NULL;
 }

} // GetConfigurationDescriptor

static inline const void *GetStringDescriptor(PDESC_ID desc, unsigned int *length)
{
 // Check language ID
 if (desc->index > 0 && desc->lang_id != LANG_1_ID) {
 return NULL;
 }

 switch(desc->index)
 {
 case 0: // String 0
 *length = sizeof(gDescTable.string_0)+sizeof(gDescTable.langid);
 return &gDescTable.string_0;

 case 1: // String 1
 *length = sizeof(gDescTable.string_1)+sizeof(gDescTable.string_1_data);
 return &gDescTable.string_1;

 case 2: // String 2
 *length = sizeof(gDescTable.string_2)+sizeof(gDescTable.string_2_data);
 return &gDescTable.string_2;

 case 3: // String 3
 *length = sizeof(gDescTable.string_3)+sizeof(gDescTable.string_3_data);
 return &gDescTable.string_3;

 default:
 return NULL;
 }

} // GetStringDescriptor

const void *USBDEVGetDescriptor (PDESC_ID desc, unsigned int *length)
{
 switch (desc->type)
 {
 case USB_DSC_DEVICE: // Device Descriptor
 *length = sizeof(gDescTable.dev_desc);
 return &gDescTable.dev_desc;

 case USB_DSC_CONFIG: // Configuration Descriptor
 return GetConfigurationDescriptor(desc->index, length);

 case USB_DSC_STRING: // String Descriptor
 return GetStringDescriptor(desc, length);
© 2008 Microchip Technology Inc. DS01164A-page 55

AN1164

 // Fail all un-supported descriptor requests:

 default:
 return NULL;
 }

} // USBDEVGetDescriptor

The helper routines are �inline� functions. They are used to make the code more readable without incurring the overhead
of a function call.

USBDEVGetDescriptor is identified to the USB firmware stack by the USB_DEV_GET_DESCRIPTOR_FUNC macro
(see �USB Stack Options�).
DS01164A-page 56 © 2008 Microchip Technology Inc.

AN1164

Software License Agreement
The software supplied herewith by Microchip Technology Incorporated (the �Company�) is intended and supplied to you, the
Company�s customer, for use solely and exclusively with products manufactured by the Company.
The software is owned by the Company and/or its supplier, and is protected under applicable copyright laws. All rights are reserved.
Any use in violation of the foregoing restrictions may subject the user to criminal sanctions under applicable laws, as well as to civil
liability for the breach of the terms and conditions of this license.
THIS SOFTWARE IS PROVIDED IN AN �AS IS� CONDITION. NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATU-
TORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
APPENDIX G: SOURCE CODE FOR
THE MICROCHIP USB
CDC SERIAL DRIVER

The complete source code for the Microchip PIC32
USB CDC serial driver is offered under a no-cost
license agreement. It is available for download as a sin-
gle archive file from the Microchip corporate web site,
at:

www.microchip.com.
After downloading the archive, always check the
release notes for the current revision level and a history
of changes to the software.
DS01164A-page 57 © 2008 Microchip Technology Inc.

AN1164
REVISION HISTORY

Rev. A Document (02/2008)
This is the initial released version of this document.
DS01164A-page 58 © 2008 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:
� Microchip products meet the specification contained in their particular Microchip Data Sheet.

� Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

� There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip�s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

� Microchip is willing to work with the customer who is concerned about the integrity of their code.

� Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as �unbreakable.�

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip�s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer�s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.
© 2008 Microchip Technology Inc.
Trademarks

The Microchip name and logo, the Microchip logo, Accuron,
dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro,
PICSTART, PRO MATE, rfPIC and SmartShunt are registered
trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

FilterLab, Linear Active Thermistor, MXDEV, MXLAB,
SEEVAL, SmartSensor and The Embedded Control Solutions
Company are registered trademarks of Microchip Technology
Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard,
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,
ECONOMONITOR, FanSense, In-Circuit Serial
Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB
Certified logo, MPLIB, MPLINK, mTouch, PICkit, PICDEM,
PICDEM.net, PICtail, PIC32 logo, PowerCal, PowerInfo,
PowerMate, PowerTool, REAL ICE, rfLAB, Select Mode, Total
Endurance, UNI/O, WiperLock and ZENA are trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2008, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

 Printed on recycled paper.
DS01164A-page 59

Microchip received ISO/TS-16949:2002 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company�s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip�s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

DS01164A-page 60 © 2008 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260
Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445
Toronto
Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431
China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130
China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256
China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-4182-8400
Fax: 91-80-4182-8422
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513
Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122
Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934
Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859
Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850
Taiwan - Hsin Chu
Tel: 886-3-572-9526
Fax: 886-3-572-6459
Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803
Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820

WORLDWIDE SALES AND SERVICE

01/02/08

	USB CDC Class on an Embedded Device
	Introduction
	Assumptions
	Features
	Limitations
	System Hardware
	PIC® MCU Memory Resource Requirements
	PIC MCU Hardware Resource Requirements
	TABLE 1: PIC® MCU I/O Pin Usage

	Installing Source Files
	Source File Organization
	TABLE 2: Source Files

	Demo Application
	FIGURE 1: Main Application Logic
	FIGURE 2: Data Echo Service
	FIGURE 3: Hello Message Service
	FIGURE 4: Descriptor Groups
	EXAMPLE 1: Endpoint Configuration Table
	EXAMPLE 2: Stack Access Routine
	EXAMPLE 3: Function Driver Table
	EXAMPLE 4: Stack Access to Function Driver Table

	Customizing the USB Application
	FIGURE 5: USB Device Descriptor Structure
	FIGURE 6: Configuration Descriptor Structure
	FIGURE 7: Interface Descriptor Structure
	FIGURE 8: CDC-Specific Descriptor Structure
	FIGURE 9: Endpoint Descriptor Structure
	FIGURE 10: Endpoint Configuration Structure
	FIGURE 11: Function Driver Table Entry
	EXAMPLE 5: Identifying the “Get Description” Function
	EXAMPLE 6: Identifying the “Get Endpoint Configuration Table” Function
	EXAMPLE 7: Identifying the “Get Function Driver Table” Function

	Conclusion
	References
	Appendix A: USB Firmware Stack Configuration
	Appendix B: USB CDC Serial Function API
	Appendix C: USB CDC Serial Function Driver Interface
	Appendix D: USB Firmware Stack Architecture
	Appendix E: USB Descriptor Table
	Appendix F: Get Descriptor Routine
	Appendix G: Source Code for the Microchip USB CDC Serial Driver
	Revision History
	Worldwide Sales and Service

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.2
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /3Of9Barcode
 /AbadiMT-CondensedLight
 /AdobePiStd
 /Angelina
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /Batang
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BrushScriptMT
 /CalistoMT
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /Map-Symbols
 /MatisseITC-Regular
 /MICROCHIP
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MonotypeCorsiva
 /MonotypeSorts
 /MS-Mincho
 /MSOutlook
 /MT-Extra
 /MVBoli
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Regular
 /NewsGothicMT
 /NewsGothicMT-Bold
 /NewsGothicMT-Italic
 /OCRAExtended
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /PMingLiU
 /Raavi
 /Shruti
 /SimSun
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Westminster
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

