
AN1147
Interfacing 8051 MCUs with I2C™ Serial EEPROMs
INTRODUCTION
The 24XXX series serial EEPROMs from Microchip
Technology support a bidirectional, 2-wire bus and data
transmission protocol. The bus is controlled by the
microcontroller (master), which generates the Serial
Clock (SCL), controls the bus access and generates
the Start and Stop conditions, while the 24XXX serial
EEPROM works as slave. The 24XXX serial
EEPROMs are I2C™ compatible and have maximum
clock frequencies ranging from 100 kHz to 1 MHz.

The main features of the 24XXX serial EEPROMs are:

• 2-wire serial interface bus, I2C compatible
• EEPROM densities from 128 bits to 512 Kbits
• Bus speed from 100 kHz to 1 MHz
• Voltage range from 1.7V to 5.5V
• Low power operation
• Temperature range from -40°C to +125°C
• Over 1,000,000 erase/write cycles
• Up to 8 devices may be connected to same bus

This application note is part of a series that provide
source code to help the user implement the protocol
with minimal effort.

Figure 1 is the hardware schematic depicting the
interface between the Microchip 24XXX series of I2C
serial EEPROMs and NXP’s P89LPC952 8051-based
MCU. The schematic shows the connections
necessary between the MCU and the serial EEPROM
as tested, as well as the required pull-up resistors on
the clock line (SCL) and data line (SDA). Not illustrated
in this application note are the write-protect feature and
the cascading of multiple devices; thus, the WP pin and
address pins A0, A1 and A2 are tied to VSS (ground).
The test software was written assuming these
connections.

FIGURE 1: CIRCUIT FOR P89LPC952 MCU AND 24XXX SERIES I2C SERIAL EEPROM

Author: Alexandru Valeanu
Microchip Technology Inc.

7

8

6

5

1

2

3

4

A0

A1

A2

Vss

Vcc

WP

SCL

SDA

P1.2 T0/SCL
P1.3 INT0/SDA

Vcc

7
8

P89LPC952

24XX512

Note: A decoupling capacitor (typically 0.1 µF) should be used to filter noise on VCC.

4.7 kΩ
© 2008 Microchip Technology Inc. DS01147B-page 1

AN1147
FIRMWARE DESCRIPTION

Main Function
The purpose of the firmware is to show how to generate
specific I2C bus transactions using the bidirectional
SDA pin on the microcontroller. The focus is to provide
the designer with a strong understanding of communi-
cation with the 24XXX series serial EEPROMs, thus
allowing for more complex programs to be written in the
future. The firmware was written in the assembly
language of NXP’s P89LPC952 MCU using the Keil™
µVision3® IDE and was developed on the Keil MCB950
evaluation board.

The main code demonstrates two different methods of
accessing the I2C serial EEPROM: byte access and
page access. The byte method accesses single bytes,
where every data byte is preceded by three bytes of
address: device address, MSB address, and LSB
address. In the page access method, the MCU sends
the address of the first byte, and the I2C serial
EEPROM internally increments the address pointer for
the next data byte.

The code was tested using the 24XX512 serial
EEPROM. The EEPROM features 64K x 8 (512 Kbit) of
memory and a page write capability of up to 128 bytes
of data. Oscilloscope screen shots are shown in this
application note. All timings are based on the internal
RC oscillator of the MCU (7.373 MHz). If a faster clock
is used, the code must be modified to generate the
correct delays.

The bus speed in these examples is ~100 kHz.

I2C Functions
When an MCU accesses an I2C serial EEPROM, it is
always the master on the I2C bus and the I2C serial
EEPROM is the slave. The MCU controls all operations
on the bus. Each operation is started by the MCU
through a Start condition, followed by a control byte.
The control byte consists of the control code (first 4
bits), the device address (next 3 bits), and the read/
write (R/W) bit. The control code is always the same for
the serial EEPROM being accessed, while the device
address can range from ‘000’ to ‘111’, allowing up to
eight different devices on the same bus. The R/W bit
tells the serial EEPROM which operation to perform.

To access an I2C serial EEPROM at the start, the MCU
writes the device address and the byte address to the
I2C serial EEPROM; thus, each access cycle starts
with a Write condition. For read operations, after the
above sequence, the MCU switches from Transmitter
mode to Receiver mode and the serial EEPROM from
Receiver to Transmitter mode through a Restart
condition.

BYTE WRITE OPERATION
Figure 2 depicts the necessary components that
comprise the byte write operation. Each MCU’s action
is acknowledged (ACK) by the I2C serial EEPROM on
the 9th bit of the clock by pulling down the SDA data
line; consequently, every byte transfer lasts for 9 clock
transitions.

FIGURE 2: BYTE WRITE

Bus Activity
MCU

SDA Line

Bus Activity

S
T
A
R
T

MSB Address
Byte

LSB Address
Byte Data Byte

S
T
O
P

A
C
K

A
C
K

A
C
K

A
C
K

S 1 0 1 0 0A
2

A
1

A
0 P

Control Byte/
Device Address
DS01147B-page 2 © 2008 Microchip Technology Inc.

AN1147

BYTE READ OPERATION
Figure 3 depicts the necessary components that
comprise the byte read operation. The second Start
condition instructs the I2C serial EEPROM to place
data on the I2C bus.

The SDA line must remain stable while the SCL clock
line is high. Any change of the SDA line while the SCL
line is high is interpreted by the I2C serial EEPROM as
a Start or Stop condition.

FIGURE 3: BYTE READ

PAGE WRITE OPERATION
Figure 4 depicts the necessary components that
comprise the page write operation. The only difference
between the page write operation and the byte write
operation (Figure 2) is that the MCU, instead of
sending 1 byte, sends ‘n’ bytes of data, up to the
maximum page size of the I2C serial EEPROM.

FIGURE 4: PAGE WRITE

SEQUENTIAL READ OPERATION
Figure 5 depicts the necessary components that
comprise the sequential read operation. The last read
byte is not acknowledged (NACK) by the MCU. This
terminates the Sequential Read operation.

FIGURE 5: SEQUENTIAL READ

Bus Activity
MCU

SDA Line

Bus Activity
A
C
K

N
A
C
K

A
C
K

A
C
K

A
C
K

S
T
O
P

S
T
A
R
T

Data Byte

S
T
A
R
T

S 1 0 1 0 A A A 02 1 0 S 1 0 1 0 A A A 12 1 0 P

MSB Address
Byte

LSB Address
Byte

Control Byte/
Device Address

Control Byte/
Device Address

Bus Activity
MCU

SDA Line

Bus Activity

S
T
A
R
T

Data Byte 0

S
T
O
P

A
C
K

A
C
K

A
C
K

A
C
K

Data Byte 127

A
C
K

S 1 0 1 0 0A
2

A
1

A
0 P

MSB Address
Byte

LSB Address
Byte

Control Byte/
Device Address

Bus Activity
MCU

SDA Line

Bus Activity

Device Address Data (n) Data (n + 1) Data (n + 2) Data (n + x)

A
C
K

A
C
K

A
C
K

A
C
K

S
T
O
P

P

N
A
C
K

© 2008 Microchip Technology Inc. DS01147B-page 3

AN1147
INITIALIZATION
The initialization function consists of initializing the
SDA and SCL pins, setting them to the correct state,
and configuring the pins.

After initialization, the MCU does the following:

• Writes the 16-byte string ABCDEFGHIJKLMNOP in
the I2C serial EEPROM (addresses = [00h-0Fh]).

• Reads back these addresses in the I2C serial
EEPROM.

• Compares the read string with the written string.
• Displays the hex values of the 16 read-back

characters on the eight LEDs on the Keil
evaluation board at a rate of 1 chr/sec.

• Sends the read characters to the UART in order to
verify the operation.

START DATA TRANSFER
The MCU generates a Start condition on the I2C bus to
initiate data transfer.

Figure 6 shows a typical scope plot from the beginning
of a write operation. Any memory access begins with a
Start condition. This is followed by the I2C serial
EEPROM (slave) address (A0h). Because the R/W bit
is set to ‘0’, the next operation of the bus is a write.

FIGURE 6: I2C START BIT AND SLAVE ADDRESS

Bus Activity
MCU

SDA Line

Bus Activity

S
T
A
R
T

Device Address

A
C
K

S 1 0 1 0 00 0 0

Bus Activity
MCU

SDA Line

Bus Activity

S
T
A
R
T

A
C
K

S 1 0 1 0 00 0 0

Control Byte/
Device Address
DS01147B-page 4 © 2008 Microchip Technology Inc.

AN1147
STOP DATA TRANSFER
The stop data transfer function generates the Stop
condition on the I2C bus.

Figure 7 shows a typical scope plot of a byte write
operation followed by a Stop condition. Every operation
on the I2C bus ends with a Stop condition.

FIGURE 7: BYTE WRITE AND STOP CONDITION

Bus Activity
MCU

SDA Line

Bus Activity

Data Byte

S
T
O
P

A
C
K

A
C
K

P

© 2008 Microchip Technology Inc. DS01147B-page 5

AN1147
NACK_MCU: NO ACKNOWLEDGE
FROM MCU
The nack_mcu function is used at the end of a byte
read sequence, but before the Stop condition, to
indicate the last read byte. An Acknowledge or a No
Acknowledge from the receiver to the transmitter is
performed on the 9th bit of the clock.

Figure 8 shows a typical scope plot depicting the No
Acknowledge condition from the MCU at the end of a
byte read sequence.

FIGURE 8: BYTE READ, NACK_MCU AND STOP CONDITION

Bus Activity
MCU

SDA Line

Bus Activity
N
A
C
K

S
T
O
P

Data
Byte

P

DS01147B-page 6 © 2008 Microchip Technology Inc.

AN1147
ACK_MCU: ACKNOWLEDGE FROM
MCU
The ack_mcu function is used to acknowledge a byte
or continue an operation. Only the last read byte will be
not acknowledged (nack_mcu) by the MCU.

An MCU's acknowledgement is defined as a ‘0’ on the
9th bit of the clock, as shown in Figure 9.

FIGURE 9: SEQUENTIAL READ AND ACK_MCU

WRITE 8 BITS
The 8-bits write data function does all of the following:

• Sends data bytes or address bytes from the MCU
to the I2C serial EEPROM.

• Shifts from parallel format to the serial I2C format.
• Receives an acknowledge from the I2C serial

EEPROM on the 9th bit of the clock.

The MCU sets the data line on the falling edge of the
clock, and the I2C serial EEPROM latches this in on the
rising edge of the clock.

In Figure 6 a spike labeled “bus release” can be seen
between the 9th clock pulse and the next clock pulse.
The spike is the sign that both devices – the MCU and
the I2C serial EEPROM – released the open-drain SDA
line in order to be able to continue the communication.

Bus Activity
MCU

SDA Line

Bus Activity

Data (n) Data (n + 1) Data (n + 2) Data (n + x)

N
A
C
K

A
C
K

A
C
K

A
C
K

S
T
O
P

P

© 2008 Microchip Technology Inc. DS01147B-page 7

AN1147
READ 8 BITS OF DATA
This read function is used in both byte read and
sequential read operations. The structure of the byte
read operation is shown in Figure 3. The structure of
the sequential read operation is shown in Figure 5.

During the read operation, the SDA pin must be
programmed as input in order to receive the serial data
from the I2C serial EEPROM. At the end of the function,
the SDA must again be programmed as open-drain in
order to generate the NACK and Stop.

For sequential read operations, the MCU
acknowledges all but the last byte.

WRITE DATA BYTES
The structure of this byte write operation is shown in
Figure 2.

The body of the function is a sequence of LCALL
instructions preceded by loads of the EEPROM data
buffer.

The start data transfer sequence is described in detail
in the section entitled “Start Data Transfer” and in
Figure 6. The stop data transfer sequence is described
in detail in the section entitled “Stop Data Transfer”
and in Figure 7. Figure 10 depicts the MSB address
byte (00h) and the LSB address byte (00h).

FIGURE 10: WRITE MSB AND LSB ADDRESS BYTES

Bus Activity
MCU

SDA Line

Bus Activity

MSB Address
Byte

LSB Address
Byte

A
C
K

A
C
K

A
C
K

DS01147B-page 8 © 2008 Microchip Technology Inc.

AN1147
READ DATA BYTE
The read data byte function reads a data byte from the
I2C serial EEPROM (slave). The structure of the byte
read operation is shown in Figure 3.

After the first Start condition, the MCU sends the device
address, the MSB address byte, then the LSB address
byte to the I2C serial EEPROM. Each of these bytes is
acknowledged by the EEPROM.

Once the MCU has sent the address to the I2C serial
EEPROM, it generates a Start condition (Repeated
Start), which switches the I2C serial EEPROM from
Receiver to Transmitter mode and the MCU from
Transmitter to Receiver mode. Before the read, the
MCU must send a new device address for a read.

The MCU must generate the necessary NACK or ACK
conditions to terminate or continue the bus operation.

All the necessary scope plots have been presented in
the previous paragraphs except the Repeated Start
and the I2C serial EEPROM address read sequence,
which is shown in Figure 11.

FIGURE 11: REPEATED START AND I2C SERIAL EEPROM (SLAVE) ADDRESS READ

Bus Activity
MCU

SDA Line

Bus Activity

S

S
T
A
R
T

A
C
K

1 10 0 10 0 0

Control Byte/
Device Address
© 2008 Microchip Technology Inc. DS01147B-page 9

AN1147
WRITE A STRING (PAGE WRITE)
In this application note, the length of the string is
16 bytes and the physical page size for the 24XX512 is
128 bytes. The length of the written string must be
shorter than the physical page size. If the page write
operation overwrites the physical page boundary, the
internal address counter rolls over and overwrites the
first bytes of the current page.

The structure of the page write operation is shown in
Figure 4.

The sequence must send the address of the first byte
to be written. The address is automatically incremented
at every byte write by the internal logic of the I2C serial
EEPROM. Each received byte is acknowledged by the
EEPROM.

All sequences have been described in the preceding
paragraphs and related figures except for the structure
of the page write operation, which is shown in
Figure 12. The scope plot depicts the write of the first
two consecutive bytes.

FIGURE 12: PAGE WRITE (FIRST 2 BYTES)

READ A STRING (SEQUENTIAL
READ)
In contrast to the page write operation described in the
previous paragraph, there is no maximum length for
sequential read. After 64 Kbytes have been read, the
internal address counter rolls over to the beginning of
the array.

To indicate the end of the read, the MCU sends a NACK
before the Stop condition. All other previously read
bytes are acknowledged by the MCU.

The structure of the sequential read operation is shown
in Figure 5. Figure 9 shows a typical scope plot
depicting this operation.

Bus Activity
MCU

SDA Line

Bus Activity

Data (n) Data (n + 1)

A
C
K

A
C
K

DS01147B-page 10 © 2008 Microchip Technology Inc.

AN1147
BYTE WRITE VERSUS PAGE WRITE
At first glance, the page write method appears superior
to the byte write method: it’s simpler and faster.
However, a careful analysis shows that the byte write
method has a major advantage over page write owing
to the roll-over phenomenon (see Note).

As a consequence of the roll-over phenomenon, appli-
cations that write long strings to the I2C serial
EEPROM risk overlapping the page boundary in the
middle of a string. In such instances, the firmware
should use byte write to avoid this condition. The disad-
vantage of doing this is the slower speed involved in
writing the entire string: every byte write cycle time is
approximately 5 ms.

The following summarizes the differences between the
byte write and page write methods.

Byte Write
• Is slower – It needs a 5 ms write cycle time for

each byte.
• Is more general – It may write a string of any

length.

Page Write
• Is faster – It needs only one write cycle time for

the whole page.
• Care must be taken to observe page boundaries

during page writes.

CONCLUSION
This application note offers designers a set of I2C
functions for reading and writing to an I2C serial
EEPROM. All routines were written in the assembly
language for an 8051-based MCU.

The code was developed on the Keil MCB950
evaluation board using the schematic shown in
Figure 1. It was tested using the NXP P89LPC952
MCU and debugged using the Keil µVision3 IDE.

Note: Page write operations are limited to writing
bytes within a single physical page,
regardless of the number of bytes actually
being written. Physical page boundaries
start at addresses that are integer
multiples of the page buffer size (or page
size), and they end at addresses that are
integer multiples of [page size-1]. If a
Page Write command attempts to write
across a physical page boundary, the
result is that the data wraps around to the
beginning of the current page (overwriting
data previously stored there) instead of
being written to the next page as might be
expected. It is therefore necessary for the
application software to prevent page write
operations that would attempt to cross a
page boundary.
© 2008 Microchip Technology Inc. DS01147B-page 11

AN1147

NOTES:
DS01147B-page 12 © 2008 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:
• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.
© 2008 Microchip Technology Inc.
Trademarks

The Microchip name and logo, the Microchip logo, Accuron,
dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro,
PICSTART, PRO MATE, rfPIC and SmartShunt are registered
trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

FilterLab, Linear Active Thermistor, MXDEV, MXLAB,
SEEVAL, SmartSensor and The Embedded Control Solutions
Company are registered trademarks of Microchip Technology
Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard,
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,
ECONOMONITOR, FanSense, In-Circuit Serial
Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB
Certified logo, MPLIB, MPLINK, mTouch, PICkit, PICDEM,
PICDEM.net, PICtail, PIC32 logo, PowerCal, PowerInfo,
PowerMate, PowerTool, REAL ICE, rfLAB, Select Mode, Total
Endurance, UNI/O, WiperLock and ZENA are trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2008, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

 Printed on recycled paper.
DS01147B-page 13

Microchip received ISO/TS-16949:2002 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

DS01147B-page 14 © 2008 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260
Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445
Toronto
Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431
China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130
China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256
China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-4182-8400
Fax: 91-80-4182-8422
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513
Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122
Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934
Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859
Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850
Taiwan - Hsin Chu
Tel: 886-3-572-9526
Fax: 886-3-572-6459
Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803
Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820

WORLDWIDE SALES AND SERVICE

01/02/08

	Introduction
	FIGURE 1: Circuit for P89LPC952 MCU and 24XXX Series I2C Serial EEPROM

	Firmware Description
	Main Function
	I2C Functions
	Byte Write Operation
	FIGURE 2: Byte Write
	Byte Read Operation
	FIGURE 3: Byte Read
	Page Write Operation
	FIGURE 4: Page Write
	Sequential Read Operation
	FIGURE 5: Sequential Read

	Initialization
	Start Data Transfer
	FIGURE 6: I2C Start Bit and Slave Address

	Stop Data Transfer
	FIGURE 7: Byte Write and Stop Condition

	nack_mcu: No Acknowledge from MCU
	FIGURE 8: Byte Read, NACK_MCU and Stop Condition

	ack_mcu: Acknowledge from MCU
	FIGURE 9: Sequential Read and ACK_MCU

	Write 8 Bits
	Read 8 Bits of Data
	Write Data Bytes
	FIGURE 10: Write MSB and LSB Address Bytes

	Read Data Byte
	FIGURE 11: Repeated Start and I2C Serial EEPROM (Slave) Address Read

	Write a String (Page Write)
	FIGURE 12: Page Write (First 2 Bytes)

	Read a String (Sequential Read)
	Byte Write Versus Page Write
	Byte Write
	Page Write

	Conclusion
	Worldwide Sales and Service

