
AN1144
USB Human Interface Device Class on an Embedded Host
INTRODUCTION
With the introduction of Microchip’s microcontrollers with
the USB OTG peripheral, microcontroller applications
can easily support USB embedded host functionality.
Traditionally, the PC is used as a host in an USB network.
Now, with Microchip’s microcontroller with host capability,
the host can be implemented in an embedded system.
Some of the most common uses of this capability are to
interface to Human Interface Devices (HIDs).

USB HUMAN INTERFACE DEVICE
(HID) CLASS
Overview
The HID class primarily consists of devices that are
used to control any particular application.

Typical examples of HID class devices include:

• Keyboard and pointing devices
• Control switches, sliders and so on
• Joystick, steering and other gaming control inputs
• Point-of-sale bar code scanners and magnetic card

readers having an HID Keyboard Emulation mode

The HID class can be used for devices without human
interface, too; such applications just need to be able to
function within the limits of the HID class specifications.

Key Features of HID Class
• Data is exchanged between the host and the

device in the form of reports. The format of the
report is defined by the report descriptor defined
by the device based on device need.

• An HID interface uses Interrupt Transfer mode to
move the data.

• An HID interface must have at least one interrupt IN
endpoint for sending the input report. The HID
interface also has an optional interrupt OUT
endpoint. If the interrupt OUT endpoint is not
defined, the output report can be sent over the
control OUT endpoint. However, the application
must ensure that the transfers over the control
endpoint are not frequent.

• As an HID class uses Interrupt Transfer mode, a
maximum of 64 bytes can be transferred in a
single frame (i.e., 64 Kbyte/s per endpoint when
operating in Full-Speed mode).

The class, subclass and protocol designators for an HID
device are not contained in the bDeviceClass,
bDeviceSubClass and bDeviceProtocol fields of
the device descriptor. Instead, these fields are all set to
0x00 and the designators are specif ied in the
bInterfaceClass, bInterfaceSubClass and
bInterfaceProtocol f ields of the interface
descriptor. The most common configurations for HID
class devices are:

• bInterfaceClass –

 0x03 (HID Class)

• bInterfaceSubClass –

 0x00 (No Subclass)

 0x01 (Boot Interface Subclass)

 0x02-0xFF (Reserved)

• bInterfaceProtocol –

 0x00 (None)

 0x01 (Keyboard)

 0x02 (Mouse)

 0x03-0xFF (Reserved)

A host communicates with the HID class device using
either the control (default) pipe or an interrupt pipe.

The control pipe is used for:

• Sending and receiving the control transfer data.
• Transmitting and receiving reports if the interrupt

endpoint is not used by the device.

The interrupt pipe is used for:

• Transmitting and receiving reports to and from the
device.

• Transmitting fixed latency data to or from the
device.

The interrupt OUT pipe is optional. If a device declares
an interrupt OUT endpoint, then the output reports are
transmitted by the host to the device through the
interrupt OUT endpoint. If no interrupt OUT endpoint is
declared, then the output reports are transmitted to a
device through the control endpoint.

Author: Amardeep Gupta
Microchip Technology Inc.
© 2008 Microchip Technology Inc. DS01144A-page 1

AN1144
THE HID CLIENT DRIVER

Architecture of HID Client Driver
Applications do not interface directly with the USB HID
client driver. Instead, they use an application interface
layer which will interface with the client driver, which in
turn, will use the host layer. Figure 1 displays the USB
HID host application interface functions.

FIGURE 1: USB HID HOST ARCHITECTURE

The HID interface layer comprises the HID parser
interfaces and interface functions to send and receive
reports to and from the device. The report descriptor is
parsed and the data is stored in predefined structures.
The parser will populate these data structures with
information extracted from the report descriptor. The
application can use the functions defined in the interface
layer to understand the report descriptor.

Application Layer (Keypad, Joystick...)

HID Interface Layer

HID Parser/Client Layer

USB Embedded Host Layer

Note: For detailed information about the USB
host HID driver API and HID parser, refer
to the API documentation provided in the
Help directory.
DS01144A-page 2 © 2008 Microchip Technology Inc.

AN1144
USING THE HID CLIENT DRIVER
This section provides a brief overview of the installation
and configuration procedures. For detailed information
on installation and configuration, refer to AN1140,
“USB Embedded Host Stack” and AN1141, “USB
Embedded Host Stack Programmer’s Guide”.

Installing the HID Client Driver
The HID client driver is installed as part of the complete
USB embedded host support package, available on the
Microchip web site (http://www.microchip.com/usb).

Configuring the USB HID Class
Use the configuration tool, USBConfig.exe, to
configure the HID client driver for an application. This
tool is installed in the .\Microchip\USB directory.

The following sections provide a brief description about
the configuration of USBConfig.exe.

Main Tab
To use the HID client driver for a USB embedded host,
the USB Embedded Host radio button in the Main tab
will be selected by default, as displayed in Figure 2.

FIGURE 2: USB CONFIGURATION – MAIN TAB
© 2008 Microchip Technology Inc. DS01144A-page 3

http://www.microchip.com/usb

AN1144

Host Tab
1. Click the Host tab to configure basic host

operation, as displayed in Figure 3.

FIGURE 3: USB CONFIGURATION – HOST TAB

The HID client driver requires support for control and
interrupt endpoints.

2. Under Transfer Types, select the Support Inter-
rupt Transfers check box and enter the required
NAKs in the text box. Even though Full-Speed
USB mode supports a 1 ms communication frame,
the fastest transfer in most HID applications is at a
rate of 10 ms. If the report from the device is
unavailable, the device NAK is the response
received by the host. As the Idle rate implemented
on the device can vary from 0.004 sec to
1.020 sec, users should configure the Number of
NAKs Allowed field in sync with the implementa-
tion on the device end. Unselect the Support Bulk
Transfers and Support Isochronous Transfers
if the application does not contain classes that
require bulk or isochronous endpoints.

3. Some devices also require longer than the USB
specification of 100 ms to initialize after
power-up; it is recommended to increase the
attach debounce interval.

4. Enter the name of the function in the main
source file that serves as the application level
event handler.

5. Select the Generate Transfer Events check box
to utilize transfer events (EVENT_TRANSFER)
from the USB host layer. Refer to the “Event
Generation” section for more information about
transfer events.
DS01144A-page 4 © 2008 Microchip Technology Inc.

AN1144

HID Tab
The USB HID client driver can either poll the USB host
driver for transfer status or respond to the USB host
driver transfer events.

1. Select the HID tab.
2. Select the HID Client is used in Host mode

check box to enable support for an HID
embedded host, as displayed in Figure 4.

FIGURE 4: USB CONFIGURATION – HID TAB

The HID report from the device can contain multiple
data fields of varied length in bits.

3. Enter the required value in the Maximum Data
Field Size (bits) text box. This value informs the
HID client driver of the maximum size of the data
field received from the device within a report.

4. Select the Default Interface radio button to use
the default application interface.

To customize the application interface, select the
Custom Interface radio button and provide the
initialization and event handler functions.

The user application has to collect the information
stored by the HID parser. The configuration tool
provides an edit box to enter the function to collect this
information. If the parser information is not required by
the user application, leave the check box unselected.

Note: Refer to AN1212 “Using USB Keyboard with
an Embedded Host” for implementation
details.
© 2008 Microchip Technology Inc. DS01144A-page 5

AN1144

Defining the Callback Handlers
The client driver requires two callback handlers in the
interface layer.

Initialization Event Handler – This is called after the
peripheral has been enumerated and initialized by the
host layer. The initialization handler should be of the
type defined by the typedef:
typedef BOOL (*USB_CLIENT_INIT) (BYTE
address, DWORD flags);

This function performs initialization specific to the
device. If initialization occurs with no error, this routine
should return TRUE; otherwise, this routine should
return FALSE. No transfers to the peripheral will be
allowed.

Event Handler – This is required to handle events that
occur during normal operation. This event handler
should be of the type defined by the typedef:
typedef BOOL (*USB_CLIENT_EVENT_HANDLER)
(BYTE address, USB_EVENT event, void*data,
DWORD size);

For example, the event, EVENT_DETACH, occurs when
a device has detached from the bus. In this case, the
interface layer will need to update its status by doing
operations, such as removal of the device from its list
of attached devices. See API documentation provided
in the Help directory for a complete list of events.

The client driver requires a list of the interface’s
required peripheral initialization and event handlers.
This l ist is def ined by the conf igurat ion tool ,
USBConfig.exe, provided with the stack.

EVENT GENERATION
The client driver can be configured to utilize transfer
events (EVENT_TRANSFER) from the USB host layer. In
addition, the client driver can be configured to generate
transfer events (EVENT_HID_TRANSFER) for the
interface layer. These two events can be configured
independently of each other, giving four possible
combinations.

Table 1 lists the available combinations.

TABLE 1: EVENT CONFIGURATIONS

If the USB embedded host transfer events are used:

• The application would require more program and
data memory, but the application processing will
be more efficient. The USB embedded host
transfer event configuration is transparent to the
interface layer.

• More program memory is required and the
interface layer that handles these events must be
structured properly. In general, the code
architecture required to utilize the transfer events
is more sophisticated. It may be more difficult for
C programming learners to design, develop,
debug and maintain.

The choice of whether or not to utilize the USB
embedded host HID transfer events can also depend
on the implementation of other layers in the application.

USB Host Layer USB Host HID Driver

Poll for transfer status Poll for HID transfer status
Poll for transfer status Generate HID transfer

events
Generate transfer

events
Poll for HID transfer status

Generate transfer
events

Generate HID transfer
events

Note 1: Although the USB embedded host uses
USB interrupts, transfer event generation
from the host driver layer to the client
driver is triggered by a polling
mechanism. This is to ensure that the
USB Interrupt Service Routine (ISR) com-
pletes in a timely fashion. For more
information on the host driver, refer to
AN1140, “USB Embedded Host Stack”
and AN1141, “USB Embedded Host
Stack Programmer’s Guide”.

2: Regardless of whether or not USB
embedded host HID transfer events are
used, the interface layer is required to
contain an event handler that processes
other system events.
DS01144A-page 6 © 2008 Microchip Technology Inc.

AN1144

CLIENT DRIVER INITIALIZATION
The USB configuration tool provides a macro,
USBInitialize(), to call all of the initialization
routines required by the USB embedded host layer and
the supported client drivers.

Normal Client Driver Operation
Normal background operation is performed by a single
function:

void USBHostHIDTasks(void);

This routine must be called on a regular basis to allow
device operation. The polling rate is not critical, since
most of the actual transfer of information is handled
through the USB interrupt. Since an application may
support multiple classes, this function does not call the
USBHostTasks() function, which also must be called on
a regular basis.

The USB conf igurat ion too l w i l l prov ide the
USBTasks() macro to call all of the background task
routines required by the USB host driver and the
supported client drivers.

Once the device is detected, the host layer enumerates
the device and calls back the HID client layer to initialize
the interfaces. The HID client layer then requests the
report descriptor. Each item in the report descriptor is
parsed, and only if it is found in proper format, the device
is listed; otherwise, an error is flagged and the device is
not attached.

The HID parser parses the report descriptor from the
device and fills in predefined data structures with the
data extracted from the report descriptor. The HID
parser extracts this information using a two-pass
compilation.

The HID host driver supports multiple interfaces on a
single device. There must be at least one report
descriptor in a device. Once the report descriptor is
validated by the driver, the data structures (see the
“HID Parser Details” section) are populated and the
EVENT_HID_RPT_DESC_PARSED event is triggered.

The user application must provide a function to collect
the parser information. The configuration tool has a
provision to enter the function name that would collect
the parser details. The application must create an
structure of type, HID_DATA_DETAILS. The informa-
tion required to fill this structure is present in the parsed
data. The application can use the functions provided in
the usb_client_hid_appl_interface.c file to fill
the details. If the application does not define the
function on the EVENT_HID_RPT_DESC_PARSED
event, this event will return TRUE.

The HID host driver will assume that the application is
aware of the report details and does not require the
parsed data. The parsed data is lost after the event and
is overwritten by the new report descriptor (in case of
multiple interfaces). This is done to reduce dynamic
RAM usage.

The usb_host_hid_appl_interface.c file defines
the following functions required by the application:

• USBHostHID_ApiGetReport() – This function
is used to receive the report from the device (see
Example 1).

• USBHostHID_ApiSendReport() – This
function is used to transmit the report (see
Example 2).

If an endpoint is not defined to send the output report to
the device, the Endpoint 0 (control transfer) will be
used. The rest of the application communication would
use the interrupt transfers. All of the report transfers
must be initiated by the application. Once the device is
enumerated, all the transfers must be scheduled by the
user ’s application using the interface functions
mentioned above.

Note: For parser related information, refer to
“Device Class Definition for Human
Interface Devices (HID)”,
http://www.usb.org.

Note: The EVENT_HID_RPT_DESC_PARSED
event is triggered even if the user has not
enabled transfer events. Refer to AN1212,
“Using USB Keyboard with an Embedded
Host” for implementation details.

Note: Memory allocation for descriptor related
information is dynamic. Report descriptor
data structures consume almost
300 bytes per interface. The users should
reserve 1 Kbyte of heap while using the
HID host stack for their application.
© 2008 Microchip Technology Inc. DS01144A-page 7

http://www.usb.org
http://www.usb.org
http://www.usb.org

AN1144
HID PARSER DETAILS
The HID parser, during the first pass through the report
descriptor, counts various items to determine the sizes
of the various tables within the pre-parsed report and
the total memory that is required for the structure.

Once the memory has been allocated for the data
structures and its tables, a second pass through the
report descriptor is made to populate the tables. As
shown in Figure 5, the HID parser picks each item from

the raw report, categorizes it as either a global, main or
local item, and creates a new entry in the buffers,
“deviceReptInfo” and “itemListPtrs”. As each item is
parsed, it might result in a new table entry, an updated
table entry or an updated temporary variable.

FIGURE 5: HID PARSER

Parsing Main Items
Main Items processed are the Report Items Input,
Output and Feature, and the Collection Items Collec-
tion and EndCollection. With the exception of
EndCollection, parsing a main item always results in a
new table entry.

Parsing Local Items
Local items processed that result in new table entries
are Usage, Str ingIndex and DesignatorIndex.
UsageMinimum, UsageMaximum, StringMinimum,
St r ingMax imum, Des igna to rMin imum and
DesignatorMaximum work in pairs to generate new
table entries; set delimiters are not supported.

Parsing Global Items
Global Items update temporary variables, but in most
cases, do not directly affect table entries. An exception
is the ReportID that may result in a new table entry.

The USB_HID_ITEM_LIST structure contains the
pointers to arrays of item structures. Each collection
entry is listed and described in the following individual
tables.

Note: For parser related information, refer to
“Device Class Definition for Human Interface
Devices (HID)”, http://www.usb.org.

Global Items

Main Items

Local Items

Item

Device Report Info (deviceReptInfo)

Item List Pointers (itemListPtrs)

Collection List
Designator List
Global Stack
Report Item List
String List
Usage Item List
Collection Stack

Raw Report from Device

{
0x05, 0x01,
0x09, 0x02,
0xA1, 0x01,
…

…
…

{

Note: All the data types are defined in the
GenericTypedefs.h file.

Note: Refer to “Device Class Definition for Human Interface Devices (HID)” for more details on global, main and
local item details.
DS01144A-page 8 © 2008 Microchip Technology Inc.

http://www.usb.org
http://www.usb.org

AN1144

Collection Entry Structure (HID_COLLECTION)

Report Entry Structure (HID_REPORT)

TABLE 3: REPORT ENTRY STRUCTURE (HID_REPORT)

Report Item Entry Structure (HID_REPORTITEM)

TABLE 2: COLLECTION ENTRY STRUCTURE (HID_COLLECTION)
Data Type Data Field Description

DWORD data This is the data from the collection item in the report descriptor.
WORD usagePage This is the usage page in effect when the collection item was parsed.
BYTE firstUsageItem This is the index of the first usage item associated with this collection (all

associated usage items precede the collection item in the descriptor).
BYTE usageItems This is the number of associated usage items.
BYTE firstReportItem This is the index of the first report item (input/output/feature) contained within

this collection.
BYTE reportItems This is the number of report items in this collection.
BYTE parent This is the index of the parent collection.
BYTE children This is the number of child collections for this collection.
BYTE firstChild This is the index of the “first” child collection in a link list of collections. The next

child is indicated by the NextSibling in that child’s entry. Note that the children
appear in the linked list in backwards order relative to their order in the
descriptor.

BYTE NextSibling This is the index of the next sibling collection (or 0).

Data Type Data Field Description

WORD reportID This is the ID of this report (or 0 for the default).
WORD inputBits This is the number of input bits associated with this report ID.
WORD outputBits This is the number of output bits associated with this report ID.
WORD featureBits This is the number of feature bits associated with this report ID.

TABLE 4: REPORT ITEM ENTRY STRUCTURE (HID_REPORTITEM)
Data Type Data Field Description

HIDReportTypeEnum reportType This is the report type (input/output/feature) for this item.
HID_GLOBALS globals This structure contains the global items pertaining to current report.
BYTE startBit This is the Start bit of the report item in the report.
BYTE parent This is the index of the parent collection.
DWORD dataModes This is the data byte of the report item, indicating data modes such as

Variable, Array and Relative.
BYTE firstUsageItem This is the index of the first usage item associated with this report

item (all associated usage items precede the report item in the
descriptor).

BYTE usageItem This is the number of associated usage items.
BYTE firstStringItem This is the index of the first string item associated with this report item

(all associated string items precede the report item in the descriptor).
BYTE stringItems This is the number of associated string items.
BYTE firstDesignatorItem This is the index of the first string item associated with this report item

(all associated designator items precede the report item in the
descriptor).

BYTE designatorItems Number of associated designator items.
© 2008 Microchip Technology Inc. DS01144A-page 9

AN1144

Usage Item Entry Structure (HID_USAGEITEM)

TABLE 5: USAGE ITEM ENTRY STRUCTURE (HID_USAGEITEM)

String Item Entry Structure (HID_STRINGITEM)

TABLE 6: STRING ITEM ENTRY STRUCTURE (HID_STRINGITEM)

Designator Item Entry Structure (HID_DESIGITEM)

TABLE 7: DESIGNATOR ITEM ENTRY STRUCTURE (HID_DESIGITEM)

The application can import these data structures by
including the usb_host_hid_appl_interface.h
file.

The parser populates these data structures by extracting
the information from the report descriptor. The user appli-
cation can use the USBHostHID_ApiFindBit()and

USBHostHID_ApiFindValue()functions to extract
information or can traverse through the data structures
itself to get the relevant information, as done in the demo
code for keyboard.

Data Details Structure (HID_DATA_DETAILS)

TABLE 8: DATA DETAILS STRUCTURE (HID_DATA_DETAILS)

Data Type Data Field Description

BOOL isRange This indicates whether the item is a usage or a range of usages.
WORD usagePage This is the usage page for the item.
WORD usage This is the usage for a single usage.
WORD usageMinimum This is the minimum for a range of usage.
WORD usageMaximum This is the maximum for a range of usage.

Data Type Data Field Description

BOOL isRange This indicates whether the item is a string index or a range of string indices.
WORD index This indicates a single index.
WORD minimum This is the minimum for a range of usage.
WORD maximum This is the maximum for a range of usage.

Data Type Data Field Description

BOOL isRange This indicates whether the item is a designator index or a range of string designators.
WORD index This is for a single index.
WORD minimum This is the minimum for a range of usage.
WORD maximum This is the maximum for a range of usage.

Data Type Data Field Description

BYTE reportLength Expected length of the parent report.
BYTE reportID First byte of the parent report.
BYTE bitOffset Bit offset within the report.
BYTE bitLength Length of the data in bits.
BYTE count Remaining message after this data.
BYTE signExtend Sign-extend the data.
DS01144A-page 10 © 2008 Microchip Technology Inc.

AN1144

The user app l i ca t ion mus t popu la te the
HID_DATA_DETAILS data structure using the parsed
information before querying for data from the input
report received from the device (as done in the key-
board demo code). This is passed as an argument to
the USBHostHID_ApiImportData() function.

Report Information Data Structure (USB_HID_DEVICE_RPT_INFO)

TABLE 9: REPORT INFORMATION DATA STRUCTURE (USB_HID_DEVICE_RPT_INFO)
Data Type Data Field Description

WORD reportPollingRate Rate at which the device should be polled for this report.
BOOL haveDesignatorMax Flag indicates if the Designator MAX is present in the report.
BOOL haveDesignatorMin Flag indicates if the Designator MIN is present in the report.
BOOL haveStringMax Flag indicates if the String MAX is present in the report.
BOOL haveStringMin Flag indicates if the String MIN is present in the report.
BOOL haveUsageMax Flag indicates if the Usage MAX is present in the report.
BOOL haveUsageMin Flag indicates if the Usage MIN is present in the report.
WORD designatorMaximum Designator MAX value.
WORD designatorMinimum Designator MIN value.
WORD designatorRanges Range of Usage page.
WORD designators Total Number of Designators.
WORD rangeUsagePage Range of Usage page.
WORD stringMaximum String MAX value.
WORD stringMinimum String MIN value.
WORD stringRanges Range of String value.
WORD usageMaximum MAX usage value.
WORD usageMinimum MIN usage value.
WORD usageRanges Range of Usages.
BYTE collectionNesting Level of collection nesting.
BYTE collection Number of collections.
BYTE designatorItems Number of designator items.
BYTE firstUsageItem First Usage Item.
BYTE firstDesignatorItem First Designator Item.
BYTE firstStringItem First String item.
BYTE globalsNesting Levels of nesting of globals in a report descriptor.
BYTE maxCollectionNesting MAX collection of nesting within a report descriptor.
BYTE maxGlobalNesting MAX globals nesting within a report descriptor.
BYTE parent Current value of parent within a collection.
BYTE reportItems Total number of report items.
BYTE reports Total number of reports.
BYTE sibling Next level of collection nesting.
BYTE stringItems Total number of String Items.
BYTE strings Total number of Strings.
BYTE usageItems Total number of Usage Items.
BYTE usages Total number of Usages.
BYTE interfaceNumber Interface number for the current report.
HID_GLOBALS globals List of globals for the current report. Refer to Table 8 for details of data

structure.
© 2008 Microchip Technology Inc. DS01144A-page 11

AN1144

Item List Data Structure (USB_HID_ITEM_LIST)

TABLE 10: ITEM LIST DATA STRUCTURE (USB_HID_ITEM_LIST)
Data Type Data Field Description

HID_COLLECTION* collectionList Array of structures storing collection details.
HID_DESIGITEM* designatorItemList Array of structures storing designator items.
HID_GLOBALS* globalsStack Array of structures global details.
HID_REPORTITEM* reportItemList Array of report items.
HID_REPORT* reportList Array of report list.
HID_STRINGITEM* stringItemList Array of string Items.
HID_USAGEITEM* usageItemList Array of usage Items.
BYTE* collectionStack Array stores parent index for the collection.
DS01144A-page 12 © 2008 Microchip Technology Inc.

AN1144
PERFORMING A TRANSFER
Normal communication with the device can be initiated
after the device is enumerated and the application is
aware of the report format. The HID client is now ready
to receive the transfer requests from the application.

The application will require the following interface
functions to schedule the transfers:

• BOOL USBHostHID_ApiDeviceDetect
(void);

This function allows regular monitoring of the status of
the device. This function returns TRUE if the HID client
is ready to accept the transfer request.

• BYTE USBHostHID_ApiGetReport(WORD
reportid, BYTE interfaceNum, BYTE
size,BYTE* data);

This function is called by the application to receive the
input report from the device. Input parameters to this
function are known to the application during enumera-
tion as described in the earlier section. This function
returns USB_SUCCESS if the transfer request is
successful.

See the “Normal Client Driver Operation” section.

• BYTE USBHostHID_ApiSendReport(WORD
reportid, BYTE interfaceNum, BYTE
size,BYTE* data);

This function is called by the application to send the
output report to the device. The input parameters to this
function are known to the application during enumera-
tion as described in the earlier section. This function
returns USB_SUCCESS if the transfer request is
successful.

See the “Normal Client Driver Operation” section.

• BOOL
USBHostHID_ApiTransferIsComplete
(BYTE* errorCodeDriver, BYTE*
byteCount);

This function indicates whether the last transfer is
complete. If the function returns TRUE, the returned
byte count and error code are valid.

• BOOL USBHostHID_ApiImportData(BYTE
*report, WORD reportLength,
HID_USER_DATA_SIZE *buffer,
HID_DATA_DETAILS *pDataDetails);

This function can be used by the application to extract
data from the input reports. On receiving the input report
from the device, the application can call this function with
the required inputs, HID_DATA_DETAILS.

EXAMPLE 1: HID DATA TRANSFER FROM THE DEVICE TO THE HOST

EXAMPLE 2: HID DATA TRANSFER FROM THE HOST TO THE DEVICE

error = USBHostHID_ApiGetReport (reportid, interfaceNum, size, &data);
if (!error)
{
while (!USBHostHID_ApiTransferIsComplete (&error, &count))
{
USBTasks();

}
}

error = USBHostHID_ApiSendReport (reportid, interfaceNum, size, &data);
if (!error)
{
while (!USBHostHID_ApiTransferIsComplete (&error, &count))
{
USBTasks();

}
}

© 2008 Microchip Technology Inc. DS01144A-page 13

AN1144
CONCLUSION
The USB Embedded Host HID class provides a simple
interface to popular USB Human Interface devices.
Embedded applications can now easily take advantage
of this flexible HID host in numerous applications
involving external inputs to user applications.

RESOURCES
• AN1140 “USB Embedded Host Stack”

(http://www.microchip.com/usb)
• AN1141 “USB Embedded Host Stack

Programmer’s Guide”
(http://www.microchip.com/usb)

• Universal Serial Bus web site (http://www.usb.org)
• Microchip Technology Inc. web site

(http://www.microchip.com/usb)
DS01144A-page 14 © 2008 Microchip Technology Inc.

http://www.microchip.com
http://www.microchip.com
http://www.usb.org
http://www.microchip.com
http://www.microchip.com
http://www.microchip.com
http://www.usb.org
http://www.microchip.com
http://www.microchip.com/usb
http://www.microchip.com/usb

Note the following details of the code protection feature on Microchip devices:
• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.
© 2008 Microchip Technology Inc.
Trademarks

The Microchip name and logo, the Microchip logo, Accuron,
dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro,
PICSTART, rfPIC and SmartShunt are registered trademarks
of Microchip Technology Incorporated in the U.S.A. and other
countries.

FilterLab, Linear Active Thermistor, MXDEV, MXLAB,
SEEVAL, SmartSensor and The Embedded Control Solutions
Company are registered trademarks of Microchip Technology
Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard,
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,
ECONOMONITOR, FanSense, In-Circuit Serial
Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB
Certified logo, MPLIB, MPLINK, mTouch, PICkit, PICDEM,
PICDEM.net, PICtail, PIC32 logo, PowerCal, PowerInfo,
PowerMate, PowerTool, REAL ICE, rfLAB, Select Mode, Total
Endurance, UNI/O, WiperLock and ZENA are trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2008, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

 Printed on recycled paper.
DS01144A-page 15

Microchip received ISO/TS-16949:2002 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

DS01144A-page 16 © 2008 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260
Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445
Toronto
Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431
China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130
China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256
China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-4182-8400
Fax: 91-80-4182-8422
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513
Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122
Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934
Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859
Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850
Taiwan - Hsin Chu
Tel: 886-3-572-9526
Fax: 886-3-572-6459
Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803
Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820

Worldwide Sales and Service

01/02/08

	Introduction
	USB Human Interface Device (HID) Class
	Overview
	Key Features of HID Class

	The HID Client Driver
	Architecture of HID Client Driver
	FIGURE 1: USB HID Host Architecture

	Using the HID Client Driver
	Installing the HID Client Driver
	Configuring the USB HID Class
	FIGURE 2: USB Configuration – Main Tab
	FIGURE 3: USB Configuration – Host Tab
	FIGURE 4: USB Configuration – HID Tab

	Defining the Callback Handlers

	Event Generation
	TABLE 1: Event Configurations

	Client Driver Initialization
	Normal Client Driver Operation

	HID Parser Details
	FIGURE 5: HID Parser
	Parsing Main Items
	Parsing Local Items
	Parsing Global Items
	TABLE 2: Collection Entry Structure (HID_COLLECTION)
	TABLE 3: Report Entry Structure (HID_REPORT)
	TABLE 4: Report Item Entry Structure (HID_REPORTITEM)
	TABLE 5: Usage Item Entry Structure (HID_USAGEITEM)
	TABLE 6: String Item Entry Structure (HID_STRINGITEM)
	TABLE 7: Designator Item Entry Structure (HID_DESIGITEM)
	TABLE 8: Data Details Structure (HID_DATA_DETAILS)
	TABLE 9: Report Information Data Structure (USB_HID_DEVICE_RPT_INFO)
	TABLE 10: Item List Data Structure (USB_HID_ITEM_LISt)

	Performing a Transfer
	EXAMPLE 1: HID Data Transfer from the Device to the Host
	EXAMPLE 2: HID Data Transfer from the Host to the Device

	Conclusion
	Resources
	Worldwide Sales and Service

