
AN1141
USB Embedded Host Stack Programmer�s Guide
INTRODUCTION
The Universal Serial Bus (USB) provides a common
interface that greatly simplifies how an end user con-
nects many types of peripheral devices to a personal
computer (PC). Beyond just the PC, many embedded
systems can take advantage of the USB as a way to
connect to a wide variety of peripherals.

Unlike a PC, an embedded host is only required to sup-
port a predefined set of peripherals. Microchip provides
sample firmware that enables hosts, using supported
Microchip microcontrollers, to control some of the most
commonly requested types of USB peripheral devices
(see �References�).

For cases in which host firmware is not available to
control the type of device required, the Microchip USB
embedded host firmware stack provides an easy-to-
use framework that simplifies the development of
USB 2.0 compliant embedded hosts.

This application note describes how to implement a
�client� driver for a USB peripheral using the Microchip
host framework. Use of this framework simplifies imple-
mentation of firmware for an embedded host and
makes it much easier to control almost any type of
peripheral device desired.

ASSUMPTIONS
� Working knowledge of C programming language
� Familiarity with the USB 2.0 protocol
� Familiarity with the USB class or device to be

hosted.
� Familiarity with Microchip MPLAB® IDE

FEATURES
� Supports USB embedded host applications
� Handles device enumeration and configuration
� Supports multiple class or �client� drivers
� Support for hosting multi-function devices
� Support for root-port power control
� Provides a simple Application Program Interface

(API)
� Provides a simple Client Driver Interface (CDI)
� Uses a table-driven method to implement the

host�s Targeted Peripheral List (TPL)
� Support for control, interrupt, bulk, and

isochronous transfers.

LIMITATIONS
� Does not support hubs
� Supports a single USB root port
� Number of client drivers supported limited only by

available memory

SYSTEM HARDWARE
The USB firmware stack was developed for the
following hardware:

USB variants of the PIC24 and PIC32 families of
microcontrollers.

Author: Bud Caldwell
Microchip Technology Inc.
© 2008 Microchip Technology Inc. DS01141A-page 1

AN1141
PIC® MCU MEMORY RESOURCE
REQUIREMENTS
For complete program and data memory requirements,
refer to the release notes located in the source installa-
tion directory.

PIC® MCU HARDWARE RESOURCE
REQUIREMENTS
The Microchip USB embedded host stack firmware
uses the following I/O pins:

INSTALLING SOURCE FILES
The USB host firmware stack source is available as
part of Microchip�s complete USB Embedded Host
Support Package.

Perform the following steps to complete the installation:

1. Download the installation file from the Microchip
corporate web site: www.microchip.com/usb.

2. Execute the installation file. A Windows®

installation wizard will guide you through the
installation process.

3. Before continuing with the installation, you must
accept the software license agreement by
clicking I Accept.

4. After completion of the installation process, you
should see a new entry in the Microchip program
group. The complete source code will be copied
into the selected directory.

5. Refer to the release notes for a complete file
manifest, the latest version-specific features,
and limitations.

TABLE 1: HARDWARE RESOURCE
REQUIREMENTS

PIC® MCU I/O Pin Usage

D+ (IO) USB D+ differential data signal
D- (IO) USB D- differential data signal
VBUS (Input) Senses USB power (does not

operate bus powered)
VUSB (Input) Power input for the USB D+/D-

transceivers
VBUSON (Output) Enables or disables VBus

power supply
DS01141A-page 2 © 2008 Microchip Technology Inc.

AN1141
APPLICATIONS
This application note is a programmer�s guide. It
describes how to use the USB embedded host stack
firmware when a sample application is not available to
perform the desired task. However, several Microchip
sample applications are noted in �References�. These
applications are available for download from
www.microchip.com.

USB EMBEDDED HOST FIRMWARE
ARCHITECTURE
The USB embedded host firmware stack can be
thought of as consisting of 3 layers, as shown in
Figure 1.

FIGURE 1: USB EMBEDDED HOST
FIRMWARE STACK

Application Layer
The application layer is the firmware necessary to
implement the device�s desired behavior. It is customer
designed and implemented code, although it may be
based on Microchip supplied sample code. The appli-
cation layer communicates with a USB device through
one or more USB client drivers, and uses any other
firmware in the system, as necessary.

USB Client Driver
Each USB peripheral device implements a particular
function (printer, mouse, mass storage device, etc.).
Some devices may have multiple functions. A USB cli-
ent driver enables the embedded host�s application
firmware to control a single function of a USB periph-
eral device that is connected to the host. Multi-function
devices will usually be controlled by multiple client driv-
ers. The client driver should model the function in an
abstract way, so that the host application does not need
to comprehend the details of how the device works.

USB Host Layer
The host layer provides an abstraction of the USB,
supplying the following services:

� Performs device identification
� Performs device enumeration
� Manages client drivers
� Provides a simple interface to communicate with

a USB peripheral device

When first connected to the bus, the host layer will read
the descriptors (data structures defined by the USB 2.0
and its associated supplements) from the device to
determine what type of device it is and what function(s)
it supports. Then, it will check the TPL to see if the
device can be supported. If it can be, the host layer will
initialize the appropriate client driver (or drivers).

USB

Application

Client
Driver

USB
Client
Driver

USB
Client
Driver

USB Host Layer
© 2008 Microchip Technology Inc. DS01141A-page 3

AN1141

Client Driver Architecture
This section provides an overview of the client driver
architecture.

CLIENT DRIVER API
A client driver provides a set of functions, data struc-
tures, and definitions that allow the application to con-
trol the device. This interface is the API (Application
Program Interface). The exact design of the client
driver�s API is specific to the peripheral (or class of
peripherals) to be controlled, and is determined by the
driver�s designer.

FIGURE 2: CALLING CLIENT DRIVER
API ROUTINES

As shown in Figure 2, the application usually contains
a main loop (arrow #1) that controls the overall state of
the firmware stack .

From within this loop, it must call a USB tasks routine
to maintain the state of the host layer (arrow #2). There
is also an Interrupt Service Routine (ISR) contained
within the host layer that services interrupts as they
occur on the bus.

The ISR communicates with the host layer�s state
machine. To communicate with the USB device, the
application would call one or more of the client�s API
routines (arrow #3).

In response, the client driver will most likely call into the
host layer to start the tasks necessary to implement the
request (arrow #4).

After the client driver API routine returns, the applica-
tion must continue to call the USB tasks routine (arrow
#2) to allow the task to complete.

ISR

1

4

Application

Client Driver

Host Layer

2

3

DS01141A-page 4 © 2008 Microchip Technology Inc.

AN1141

CLIENT DRIVER'S INTERFACE TO THE HOST
LAYER
In addition to calling host-layer interface routines (see
�Host Layer API and Client Driver Interface�); the
client driver must provide two �callback� functions to
interface with the host layer.

The first function is required to initialize the client driver.
The host layer will call it when a device of the appropri-
ate type has been connected and configured.

The host layer will call the other routine when events
occur on the USB about which the client driver may
need to know. A code identifying the event, along with
any additional data required, will be passed into the
�event handling� routine.

These two �callback� functions, along with the other
functions and definitions provided by the host layer,
make up the CDI by which client drivers access the
USB and communicate with their associated devices.

CLIENT DRIVER STATE MACHINE
A client driver will normally include some form of state
machine to manage the device.

This state machine can be maintained in either of the
following ways:

� Event-driven
� Polled

To support a fully event-driven implementation, the
application must enable transfer events and define an
event handling routine (refer to the
USB_HOST_APP_EVENT_HANDLER and
USB_ENABLE_TRANSFER_EVENT configuration
options). Sections �Event-Driven Client Drivers� and
�Polling-Based Client Drivers� describe these two
methods in more detail. Sections �The Client Driver�s
Event-Handling Routine� through �Implementing a
Polled Client Driver� describe how to implement each
method. The main differences between the two meth-
ods are the direction and order in which the calls are
performed and in how the tasks are split up.

As mentioned above, the application will normally con-
tain a main loop that controls the over-all state of the
firmware stack from which it will call a USB tasks rou-
tine that maintains the state of the host layer. This is the
same in both the polled and event-driven cases. Also in
both cases, the ISR, contained within the host layer,
services interrupts as they occur on the bus and
communicates with the host layer�s state machine.

To start some activity, the application will normally call
one or more of the client driver�s API routines as
described in �Client Driver API�. To complete this
activity, the state machine must be maintained using
either the polled or event-driven methods.
© 2008 Microchip Technology Inc. DS01141A-page 5

AN1141

EVENT-DRIVEN CLIENT DRIVERS
When using the event-driven method, the state
machine of the client driver is managed by the client
driver�s event-handling routine so actions that require
some time to complete can continue while the
application is busy doing other things.

FIGURE 3: EVENT DRIVEN CLIENT
DRIVER

In Figure 3, the application�s main loop (arrow #1) must
regularly call the host layer�s USB tasks routine (arrow
#2).

When some activity has completed on the USB, the
host layer will call the client driver�s event-handling call-
back routine to notify it of the event (arrow #3). It will
also provide any data necessary to correctly interpret
the event.

If necessary (and supported), the client driver can then
call the applications optional event-handling routine to
notify the application (arrow #4).

Client-specific events (passed to the application or to
another driver layer for multi-layered clients) may or
may not correspond one-to-one with USB events that
are passed to the client driver by the host layer. In some
cases the host layer may pass many events to the cli-
ent driver before the client driver passes a single event
to the application, if it does so at all. In other cases a
call to a client driver�s API routine may immediately
result in a call back to the application�s event-handling
routine. The exact usage is up to the client driver�s
designer and the needs of the USB peripheral to be
controlled.

The key feature of an event-driven client driver is that
transitions from one state to another occur in response
to an event on the USB and are managed by the client
driver�s event-handling routine. This results in tasks
being split up between events, so that each event will
start the next portion of some activity that will result in
another event or the completion of the activity. It also
results in calls occurring back up the stack, from the
lower layers toward the application in response to a call
to the USB tasks routine.

ISR

1

2

3

4

Application

Client Driver

Host Layer
DS01141A-page 6 © 2008 Microchip Technology Inc.

AN1141

POLLING-BASED CLIENT DRIVERS
When using the polled method, the client driver�s state
machine is maintained by the driver�s own tasks routine
that should be considered part of the client driver�s API.

FIGURE 4: POLLING-BASED CLIENT
DRIVER

As shown in Figure 4, the application�s main loop
(arrow #1) must regularly call both the host layer�s
tasks routine (arrow #2) and the client driver�s tasks
routine (arrow #3).

The client�s tasks routine will manage transitions in the
driver�s state machine by calling host layer (CDI) rou-
tines to check the status of the bus (arrow #4). As
actions complete, the client driver�s tasks routine will
update state data to reflect events on the USB.

The application must then call one of the driver�s API
routines (arrow #5) to check on the status of whatever
activity on which it is waiting to find out when actions
have been completed.

The key feature of this method is that calls are directed
down the stack. Actions can be started by API routines,
when called by the application or actions can be started
later by the client�s state machine. The state machine
must then have states that wait for some activity to be
started or that start the activity themselves. Either way,
it must also have states that check for the activity to be
completed, usually by calling host layer CDI routines.

CLIENT DRIVER ARCHITECTURE SUMMARY
As described in the preceding sections, a client driver
consists of the following:

� Device-specific (or device class-specific) API
� Logic necessary to implement the API and man-

age the driver�s state machine
� Two call-back functions that are used by the host

layer to initialize the driver and provide notification
of events that occur on the bus

ISR

1

2

3 5

4

Application

Client Driver

Host Layer
© 2008 Microchip Technology Inc. DS01141A-page 7

AN1141

Client Driver Table
Since an embedded USB host may need to support
several different types of devices, it may need several
different client drivers. This may be the case even if the
embedded host has only a single USB host port. In fact,
some peripheral devices can have multiple functions,
so more then one client driver may be active at one
time. In order for the host layer to be able to manage
multiple client drivers, it must be able to call multiple
routines using the same function signature (one for
each driver). To support this, a table driven method is
used. Since the set of client drivers supported will
almost certainly be different for each embedded host,
the application must implement this table. Each entry in
the table corresponds to a single client driver and con-
tains pointers to the driver�s initialization and event-
handling call-back routines (see �Client Driver Archi-
tecture�). For additional flexibility, each table entry
also contains an initialization value that can be used to
modify the driver�s behavior.

Figure 5 illustrates the relationship between the client
driver table and the client drivers.

FIGURE 5: CLIENT DRIVER TABLE

Note: The dotted arrows showing the
EventHandler pointers have been par-
tially removed to avoid cluttering the dia-
gram.

MyClientInit(DWORD flags)
{

switch(flags)
{

case 0:
…
case 1:
…
case 2:
…

}
}

MyClientEvenetHandler(…)
{

…
}

MsdClientInit(DWORD flags)
{

switch(flags)
{

case 0:
…
case 1:
…
case 2:
…

}
}

MsdClientEvenetHandler(…)
{

…
}

Client Drivers
HidClientInit(DWORD flags)
{

switch(flags)
{

case 0:
…
case 1:
…
case 2:
…

}
}

HidClientEventHandler(…)
{

…
}

P->Initialize(0)
P->EventHandler(...)
P->Initialize(1)
P->EventHandler(...)
P->Initialize(2)
P->EventHandler(...)
P->Initialize(FLAG1)
P->EventHandler(...)
P->Initialize(0)
P->EventHandler(...)
P->Initialize(FLAG2)
P->EventHandler(...)

Client Driver Table

0

1

2

3

4

5

DS01141A-page 8 © 2008 Microchip Technology Inc.

AN1141

When a device is attached, the host layer reads its
descriptors and determines whether the device can be
supported. If it can be supported, the device will be
configured and made ready for the driver to use. Then
the host layer indexes into the appropriate entry in the
client driver table and calls the client driver�s initializa-
tion routine using the �Initialize� pointer, and passing to
it the initialization value given in that entry of the table.
The driver can then perform any initialization activities
that are necessary. Later, when events occur on the
USB, the host layer calls the event-handling routine
using the EventHandler pointer in the same entry in
the client driver table, passing it data that identifies the
event (as described in �Client Driver Architecture�).
More than one entry in the table can correspond to a
single client driver. The initialization value can be used
to modify the behavior of the driver, depending on
which entry in the client driver table was used. This is
useful for writing an adaptive driver with behavior that
varies according to the specific device or type of
device.
For example, a Human Interface Device (HID) client
driver may need to support a keyboard, a mouse, or a
joy stick. The host layer may use a different entry in the
client driver table, depending on which of those three
devices is detected. If a different initialization value is
used for each entry (e.g., 0, 1, and 2 in Figure 5), the
client driver can behave appropriately for the type of
device.

Targeted Peripheral List
A full USB host, such as a PC, must be able to install
the client drivers for USB devices for which the host
was not originally designed. However, an embedded
host is only required to support a fixed set of USB
peripheral devices or classes of devices. This set is
defined by the embedded host�s TPL (Targeted
Peripheral List).
USB peripheral devices are identified in the TPL in one
of two ways*:
� VID-PID combination
� Class-Subclass-Protocol combination
VID is the vendor ID number (provided by the USB
Implementer�s Forum to identify the device maker). PID
is the product ID number (provided by the maker of the
device).
USB peripheral devices are all assigned to a particular
class of devices (or identified as vendor-specific). Each
device class can have a number of subclasses and
each subclass can support one or more protocols that
it may use.
Both the VID/PID and Class-Subclass-Protocol
(CL-SC-P) numbers are provided to the host in the
peripheral device�s descriptors (tables of data
contained on the device). Refer to the �Universal Serial
Bus Specification, Revision 2.0� for details about the
USB device framework (see �References�).

The Microchip USB embedded host firmware models
the TPL as a table that associates the device identifier
(either VID-PID or CL-SC-P combination) with an entry
in the client driver table. When a device is attached to
the USB, the TPL table is searched to determine if a
device is supported, and to identify which client driver
will be used to control the device. Figure 6 illustrates
the relationship between the TPL and client driver
table.

Note: * Embedded hosts can support client driv-
ers for specific devices, and for classes of
devices, as well. However, a true USB
�On-The-Go� (OTG) device must specify
supported devices individually by VID and
PID.
Refer to the USB On-The-Go Supplement
for details on USB OTG devices (see
�References�).
© 2008 Microchip Technology Inc. DS01141A-page 9

AN1141

FIGURE 6: TARGETED PERIPHERAL LIST TABLE

A bit (TPL_CLASS_DRV) in the �Flags� field of each TPL
table entry indicates if the Device Identifier field con-
tains a Class-Subclass-Protocol combination (if set) or
a VID-PID combination (if not set). Associated with
each Device Identifier is an index into the client driver
table. This index is used to locate the corresponding
entry in the client driver table and access the client
driver as described in �Client Driver Table�.
The TPL also contains other information providing an
optional ability to select the initial configuration of the
peripheral device if the TPL_SET_CONFIG flag is set in
the flags field. (Otherwise, the �Config� number is
ignored and the initial configuration is chosen starting
at the lowest configuration number (1) and stopping at
the first configuration that can be supported.)

Referring to Figure 6, notice that more than one entry
in the TPL table can reference a single entry in the cli-
ent driver table (for example, the first and third entries).
This allows multiple, specific devices of the same class
to use a single client driver for that class by specifying
each device�s VID-PID combination. Alternately, an
entire class of devices can be supported by specifying
a CL-SC-P combination (for example, the second
entry). Also, if more then one entry in the client driver
table points to a single client driver (as shown in
Figure 5 in �Client Driver Table�), a single class driver
can be used to support several specific devices by VID-
PID combination or various classes (or subclasses) of
devices by CL-SC-P combination. Any required
changes in driver behavior based on variations
between devices and subclasses or protocol differ-
ences can be indicated using the client driver�s initial-
ization value, given in the client driver table entry.
Together, the TPL and client driver tables provide a
highly flexible mechanism through which an embedded
host can support practically any combination of periph-
eral devices and client drivers desired.

P->Initialize(0)
P->EventHandler(...)
P->Initialize(1)
P->EventHandler(...)
P->Initialize(2)
P->EventHandler(...)
P->Initialize(FLAG1)
P->EventHandler(...)
P->Initialize(0)
P->EventHandler(...)
P->Initialize(FLAG2)
P->EventHandler(...)

Client Driver
Table

0

1

2

3

4

5

Device
Identifier Config

Client
DriverFlags

VID:PID 0 00
CL:SC:P 0 3TPL_CLASS_DRV
VID:PID 2 0TPL_SET_CONFIG
VID:PID 0 40
CL:SC:P 0 5TPL_CLASS_DRV
CL:SC:P 0 1TPL_CLASS_DRV
CL:SC:P 0 2TPL_CLASS_DRV

Targeted Peripheral List

Note: The TPL is searched starting at the top so
that the first matching entry found will be
given priority if more then one entry might
match a single device. This can be useful
for supporting multiple configurations of a
single device or device-specific behavior
with a fall-back to general class behavior.
A client driver�s initialization routine has an
opportunity to fail, causing the search to
continue.
DS01141A-page 10 © 2008 Microchip Technology Inc.

AN1141
IMPLEMENTING AN EMBEDDED
HOST�S FIRMWARE
This section describes the steps necessary to design
and implement the firmware for an embedded USB
host using the Microchip framework.
Overview:
1. Implement the main application
2. Implement the USB client driver(s)
3. Implement the TPL and Client Drivers Tables
4. Configure USB stack options

Implementing the Main Application
Using MPLAB IDE, create a new application for the
supported microcontroller. (Refer to the MPLAB IDE
online help for instructions on how to create a project.)
Implement and test any application-specific non-USB
functionality desired.
To support the USB FW stack, the application�s main
function must call USBInitialize, once before any
other USB activity takes place. After USBInitialize
has been called, the application must call USBTasks in
its main loop.

EXAMPLE 1: MAIN APPLICATION
ROUTINE

As described in �USB Embedded Host Firmware
Architecture�, the interface between the application
and the client driver is completely up to the designer of
the client driver. However, if an event-driven implemen-
tation is chosen, the application should implement an
event-handling routine to receive events from the USB
stack and any client drivers (see the
USB_EVENT_HANDLER data type). If this is done, client
drivers can be designed to call the application and pass
events to it similar to the way the driver receives events
from the USB stack. If not, the client driver must contain
API routines to provide any status information required.
The application can also receive events from the host
layer, such as the VBus events shown in Example 2.

// Initialize the USB stack.
USBInitialize(0);

// Main Processing Loop
while(1)
{
 // Check USB for events and
 // handle them appropriately.
 USBTasks();

 // Perform any additional
 // processing needed.
}

© 2008 Microchip Technology Inc. DS01141A-page 11

AN1141

EXAMPLE 2: APPLICATION EVENT-HANDLER

To identify this function to the host layer (and to
Microchip-supplied client drivers) define the
USB_HOST_APP_EVENT_HANDLER macro in the USB
configuration header (see �Configuring the USB
Stack Options�) to equate to the function�s name.

EXAMPLE 3: IDENTIFYING THE APPLICATIONS EVENT HANDLER

Refer to the USB_EVENT data type full details on which
events are pre-defined and what data (if any) is
associated with each event.
The application must also implement the TPL and Cli-
ent Drivers Tables and make calls to the API routines of
client drivers as necessary to control any supported
USB peripheral devices. However, this is most easily
done after all client drivers have been implemented.

Implementing the USB Client Driver(s)
As described in �USB Embedded Host Firmware
Architecture�, the purpose of a client driver is to pro-
vide a simple, abstract model of the function of a USB
peripheral device, and implement an API by which the
application may control it.
The design of this API is completely dependent on the
device (or class) to be controlled. However, to imple-
ment the API, the client driver must interface with the
USB Host layer through its CDI. (Refer to �Host Layer
API and Client Driver Interface�.)
The following examples show how simple read and
write API routines might be implemented.

BOOL MyApplicationEventHandler (BYTE address, USB_EVENT event, void *data, DWORD size)
{
 // Handle specific events.
 switch (event)
 {
 case EVENT_MY_CLIENT_ATTACH:
 // Do anything necessary when your device attaches.
 break;
 case EVENT_MY_CLIENT_DETACH:
 // Do anything necessary when your device detaches.
 break;
 case EVENT_VBUS_SES_END:
 // Turn off VBus.
 break;
 case EVENT_VBUS_SES_VALID:
 // Turn on VBus.
 break;
 default:
 return FALSE
 }
 return TRUE;

}

#define USB_HOST_APP_EVENT_HANDLER MyApplicationEventHandler
DS01141A-page 12 © 2008 Microchip Technology Inc.

AN1141

EXAMPLE 4: CLIENT DRIVER API ROUTINES

BYTE MyClientRead(BYTE DevAddr, void *Buffer, UINT32 Len)
{
 BYTE RetVal;

 // Make sure we're in an initialized state
 if (myClientData.Initialized != TRUE)
 return USB_INVALID_STATE;

 // Make sure the right device address was given.
 if (DevAddr != myClientData.DevAddr)
 return USB_INVALID_STATE;

 // Make sure we're not busy already
 if (myClientData.RxBusy)
 return USB_BUSY;

 // Set the busy flag, clear the count and start a new IN transfer.
 myClientData.RxBusy = TRUE;
 myClientData.RxLen = 0;
 RetVal = USBHostRead(DevAddr, USB_IN_EP|MY_EP_NUM, (BYTE *)Buffer, Len);
 if (RetVal != USB_SUCCESS) {
 myClientData.RxBusy = FALSE; // Clear flag to allow re-try
 }

 return RetVal;

}

BYTE MyClientWrite(BYTE DevAddr, void *Buffer, UINT32 Len)
{
 BYTE RetVal;

 // Make sure we're in an initialized state
 if (myClientData.Initialized != TRUE)
 return USB_INVALID_STATE;

 // Make sure the right device address was given.
 if (DevAddr != myClientData.DevAddr)
 return USB_INVALID_STATE;

 // Make sure we're not busy already
 if (myClientData.RxBusy)
 return USB_BUSY;

 // Set the busy flag and start a new OUT transfer.
 myClientData.TxBusy = TRUE;
 RetVal = USBHostWrite(DevAddr, USB_OUT_EP|MY_EP_NUM, (BYTE *)Buffer, Len);
 if (RetVal != USB_SUCCESS) {
 myClientData.TxBusy = FALSE; // Clear flag to allow re-try
 }

 return RetVal;

}

© 2008 Microchip Technology Inc. DS01141A-page 13

AN1141

THE CLIENT DRIVER�S INITIALIZATION
ROUTINE
The purpose of the client driver�s initialization routine is
to initialize (or re-initialize) the client driver when a
supported device is attached and configured. It must
implement the function signature defined by the
USB_CLIENT_INIT data type.

EXAMPLE 5: CDI INITIALIZATION ROUTINE

For some types of peripheral devices, the client driver�s
initialization routine will need to do something to start
the interaction with the peripheral device, such as start-
ing a control transfer or reading the first block of data.
For other peripherals, it will be sufficient to notify the
application that the device has been attached and the
application will perform the initial action. In some
cases, a later event (possibly unrelated to the USB) will
start the interactions with the peripheral. Exact actions
taken will depend entirely on the peripheral device
being used and the application being implemented.

BOOL MyClientInit (BYTE address, DWORD flags)
{
 BYTE *pDesc;

 // Initialize state data
 memset(&myClientData, 0, sizeof(myClientData));

 // Save device the address, VID, & PID
 myClientData.DevAddr = address;
 pDesc = USBHostGetDeviceDescriptor(address);
 pDesc += 8;
 myClientData.vid = (UINT16)*pDesc; pDesc++;
 myClientData.vid |= ((UINT16)*pDesc) << 8; pDesc++;
 myClientData.pid = (UINT16)*pDesc; pDesc++;
 myClientData.pid |= ((UINT16)*pDesc) << 8; pDesc++;

 // Set Client Driver Init Complete.
 myClientData.Initialized = TRUE;

 // Notify the application that my device has been attached.
 USB_HOST_APP_EVENT_HANDLER(address, EVENT_MY_CLIENT_ATTACH, NULL, 0);

 // Do anything else necessary.

 return TRUE;

}

DS01141A-page 14 © 2008 Microchip Technology Inc.

AN1141

THE CLIENT DRIVER�S EVENT-HANDLING
ROUTINE
As described in �USB Embedded Host Firmware
Architecture�, client drivers can be designed to be
event driven or polled. For an event-driven client driver,
the event-handling routine maintains the state of the
driver by performing any necessary actions to transition
from one state to the next. The following example of a
simple event-handling routine checks to make sure that
the client driver is in an initialized state then handles
either the �detach� (EVENT_DETACH) or �transfer done�
(EVENT_TRANSFER) events.

In both cases, the routine updates state variables and
notifies the application.
This example also demonstrates the use of
event-specific data.

EXAMPLE 6: EVENT-HANDLING ROUTINE

BOOL MyClientEventHandler (BYTE address, USB_EVENT event, void *data, DWORD size)
{
 // Make sure we're in an initialized state
 if (myClientData.Initialized != TRUE)
 return FALSE;

 // Make sure it was for our device
 if (address != myClientData.DevAddr)
 return FALSE;

 // Handle specific events.
 switch (event)
 {
 case EVENT_DETACH:
 // Notify the application that the device has been detached.
 USB_HOST_APP_EVENT_HANDLER(myClientData.DevAddr, EVENT_MY_CLIENT_DETACH,
 &myClientData.DevAddr, sizeof(BYTE));
 myClientData.Initialized = FALSE;
 return TRUE;

 case EVENT_TRANSFER:
 if ((data != NULL) && (size == sizeof(HOST_TRANSFER_DATA)))
 {
 HOST_TRANSFER_DATA *pTrans = (HOST_TRANSFER_DATA *)data;

 if (pTrans->bEndpointAddress & USB_IN_EP)
 {
 myClientData.RxBusy = FALSE;
 myClientData.RxLength = pTrans->dataCount;
 USB_HOST_APP_EVENT_HANDLER(myClientData.DevAddr, EVENT_MY_CLIENT_RX_DONE,
 &pTrans->dataCount, sizeof(DWORD));
 }
 else
 {
 myClientData.TxBusy = FALSE;
 USB_HOST_APP_EVENT_HANDLER(gc_DevData.DevAddr, EVENT_MY_CLIENT_TX_DONE,
 &pTrans->dataCount, sizeof(DWORD));
 }
 return TRUE;
 }
 break;

 default:
 break;
 }

 return FALSE;
}

© 2008 Microchip Technology Inc. DS01141A-page 15

AN1141

The �detach� event (EVENT_DETACH) occurs when the
associated device is disconnected from the USB.
When this happens, this client�s event handling routine
notifies the application by sending a client-specific
event (EVENT_MY_CLIENT_DETACH) to the applica-
tion�s event-handling routine. It then clears its �Initial-
ized� flag to indicate that this device is no longer valid.
It clears the flag after notifying the application because
the application may need to call other API routines to
process the detach event and other API routines would
normally test the �Initialized� flag to ensure that the
driver is in a valid state before allowing an operation to
proceed.

The �transfer done� event (EVENT_TRANSFER) occurs
when a previously started transfer on a given endpoint
has completed. In the case of this client driver, it is
assumed that only one endpoint is used so the actual
endpoint number is not checked. However, the routine
does check the direction bit (which is part of the end-
point �address�) to determine if it was a transmit (Tx) or
receive (Rx) transfer that just completed. It then
updates state variables and notifies the application. It is
up to the application to start another transfer if and
when it is required. In this case, the routine updated
state variables before notifying the application,
because the �Tx� and �Rx� API routine may very well be
called in response to the client-specific events.
The routine returns TRUE when an event was handled
and FALSE in all other cases. This indicates to the host
layer that the client driver has successfully handled that
event.

DEFINING CLIENT-SPECIFIC EVENTS
In the examples shown, both the client driver�s initial-
ization and the event-handling routines called the appli-
cation�s event-handling routine to send it client-specific
events. To define client-specific events, the
USB_EVENT data type must be extended. This data
type is a C language enum with several predefined val-
ues. All of the predefined values are less then the
EVENT_USER_BASE value (except EVENT_BUS_ERR,
which is defined as UINT_MAX to make it the highest
possible value). This allows new event values to be
easily defined using the following technique.

Note: Instead of defining its own detach event
(EVENT_MY_CLIENT_DETACH), the
event-handling routine could also have
propagated the EVENT_DETACH event to
the application. The choice us up to the
designer of the client driver�s API.

Note 1: Code executed within the context of the
event-handling routine must not block.

2: Refer to the USB_EVENT data type for a
complete list and description of all pre-
defined events. (See �Host Layer API
and Client Driver Interface�.)
DS01141A-page 16 © 2008 Microchip Technology Inc.

AN1141

EXAMPLE 7: DEFINING CLIENT-SPECIFIC EVENTS

There are two key features of this technique.
First, since the client-specific events are all defined by
adding offsets to a pre-defined member of the
USB_EVENT enumeration (EVENT_USER_BASE), they
will all be given the data type associated with that
value. This ensures that all client-specific events are of
the correct data type.
Second, since a secondary offset with a default value
was included in each event�s definition, the entire set of
events can be easily shifted to a different range of val-
ues within the USB_EVENT enumeration. This allows
applications to easily resolve conflicts between the
event definitions of different client drivers by defining
the secondary offset (EVENT_MY_CLIENT_OFFSET in
this example) as an appropriate value to prevent over-
lapping events. This is especially useful when a device
includes more then one client driver or when a client
driver will be shared across multiple products.

IMPLEMENTING A POLLED CLIENT DRIVER
If a polled model is preferred over the event-driven
method, it can be easily implemented. Instead of using
an event-handling routine like the one shown in �The
Client Driver�s Event-Handling Routine�, a polled
client driver would implement a central tasks routine to
manage state transitions. This routine would check the
state of the host layer and take different actions, based
on the current state of the client driver. It would need to
be called regularly, along with the USBTasks routine,
and would become part of the client driver�s API.
Example 8 demonstrates simple read and write func-
tionality, similar to the event-driven example shown in
�The Client Driver�s Event-Handling Routine�.

#ifndef EVENT_MY_CLIENT_OFFSET // The application can add a non-zero offset
 #define EVENT_MY_CLIENT_OFFSET 0 // to my client's events to resolve conflicts
#endif // in event number.

#define EVENT_MY_CLIENT_ATTACH (EVENT_USER_BASE + EVENT_MY_CLIENT_OFFSET + 0)
 // Indicates that my device has been attached.
 // data: NULL
 // size: 0

#define EVENT_MY_CLIENT_DETACH (EVENT_USER_BASE + EVENT_MY_CLIENT_OFFSET + 1)
 // Indicates that the device has been detached from the USB.
 // data: Points to a BYTE that contains the device address.
 // size: sizeof(BYTE)

#define EVENT_MY_CLIENT_TX_DONE (EVENT_USER_BASE + EVENT_MY_CLIENT_OFFSET + 2)
 // Indicates that a previous write request has completed.
 // data: Pointer to a variable containing the actually number bytes written.
 // size: sizeof(DWORD)

#define EVENT_MY_CLIENT_RX_DONE (EVENT_USER_BASE + EVENT_MY_CLIENT_OFFSET + 3)
 // Indicates that a previous read request has completed.
 // data: Pointer to a variable containing the actually number bytes read.
 // size: sizeof(DWORD).
© 2008 Microchip Technology Inc. DS01141A-page 17

AN1141

EXAMPLE 8: POLLED CLIENT-TASKS ROUTINE

void MyClientTasks (void)
{
 BYTE deviceStatus;
 BYTE errorCode;

 // Make sure we're in an initialized state.
 if (myClientData.Initialized != TRUE)
 return;

 // Check device status.
 deviceStatus= USBHostDeviceStatus(myClientData.DevAddr);

 // Make sure our device hasn't been disconnected.
 if (deviceStatus != USB_DEVICE_ATTACHED)
 {
 myClientData.Initialized = FALSE;
 return;
 }

 // Perform state-specific tasks.
 switch (myClientData.State)
 {
 case STATE_IDLE:
 break;

 case STATE_WAITING_TRANSFER_DONE:

 if (USBHostTransferIsComplete(myClientData.DevAddr, MY_RX_ENDPONT,
 &errorCode, &myClientData.RxLength)
 {
 if (errorCode)
 {
 // handle errors
 }
 myClientData.RxBusy = FALSE;
 }

 if (USBHostTransferIsComplete(myClientData.DevAddr, MY_TX_ENDPONT,
 &errorCode, &myClientData.TxLength)
 {
 if (errorCode)
 {
 // handle errors
 }
 myClientData.TxBusy = FALSE;
 }

 if (!(myClientData.RxBusy || myClientData.$TxBusy))
 myClientData.State = STATE_IDLE;
 break;

 default:// invalid state!
 myClientData.State = STATE_IDLE;
 break;
 }

}

DS01141A-page 18 © 2008 Microchip Technology Inc.

AN1141

In both the polled and event-driven examples, the read
and write API routines check the appropriate �busy�
flag (myClientDriver.TxBusy or
myClientDriver.RxBusy). If not busy, the API rou-
tine sets the appropriate flag and (in the polled case)
transitions to the STATE_WAITING_TRANSFER_DONE
state.
One important difference between the polled and
event-driven techniques is that the event-handling rou-
tine is called directly when the transfer has finished,
and the polling routine must call
USBHostTransferIsComplete CDI routine to
determine when the transfer has finished.

Implementing the TPL and Client Driver
Tables
As described in �USB Embedded Host Firmware
Architecture�, the TPL and client driver tables deter-
mine which devices (or classes of devices) an embed-
ded host will support, and which client driver(s) will be
used for each. Since this choice is application-specific,
these tables are considered part of the application.
© 2008 Microchip Technology Inc. DS01141A-page 19

AN1141

IMPLEMENTING THE CLIENT DRIVER TABLE
The client driver table is implemented as an array of
structures of the CLIENT_DRIVER_TABLE data type,
which is defined as follows:

FIGURE 7: CLIENT DRIVER TABLE
STRUCTURE

The �Initialize� member is a pointer to the client driver�s
initialization routine and the EventHandler member
is a pointer to the client driver�s event-handling routine.
These data types for these callback routine pointers
are defined as follows:

EXAMPLE 9: CALLBACK POINTER DATA TYPES

A driver must implement routines that match these
function signatures such as those shown in the exam-
ples in �The Client Driver�s Initialization Routine�
and �The Client Driver�s Event-Handling Routine�.
Prototypes for these routines should be given in the
client driver�s public API header file so that the applica-
tion can use them in the Client Drivers Table, as shown
by Example 10.

typedef struct _CLIENT_DRIVER_TABLE
{
 USB_CLIENT_INIT Initialize;
 USB_CLIENT_EVENT_HANDLER EventHandler;
 DWORD flags;
} CLIENT_DRIVER_TABLE;

typedef BOOL (*USB_CLIENT_INIT) (BYTE address, DWORD flags);

typedef BOOL (*USB_CLIENT_EVENT_HANDLER) (BYTE address, USB_EVENT event,
 void *data, DWORD size);
DS01141A-page 20 © 2008 Microchip Technology Inc.

AN1141

EXAMPLE 10: CLIENT DRIVER TABLE

Example 10 demonstrates how to support six different
types of devices using three client drivers. (See
Figure 5, in �Client Driver Table�.)

1. The HID class driver in this example would be
an adaptive driver that supports the following
types of devices:
a) keyboard when its initialization routine is

passed 0
b) mouse when its initialization routine is

passed 1
c) joystick when its initialization routine is

passed 2
2. The mass storage class driver would support the

following protocols:
a) Bulk-only protocol when FLAG1 is passed

to its initialization routine
b) CBI (Command Block Interface) when

FLAG2 is passed.
3. The third �My Client� driver uses the examples in

this document.

By default, the host layer expects the client driver table
array to be named usbClientDriverTable. If
another name is used, it must be identified by defining
the USB_CLIENT_DRIVER_TABLE macro (see
Example 11).

EXAMPLE 11: IDENTIFYING THE CLIENT
DRIVER TABLE

CLIENT_DRIVER_TABLE usbClientDrvTable[] =
{
 { // HID Client Driver: Mouse
 USBHostHidInit, // Initialization Routine
 USBHostHidEventHandler, // Event Handler Routine
 0 // Initializaton Parameter
 },
 { // HID Client Driver: Keyboard
 USBHostHidInit, // Initialization Routine
 USBHostHidEventHandler, // Event Handler Routine
 1 // Initializaton Parameter
 },
 { // HID Client Driver: Joystick
 USBHostHidInit, // Initialization Routine
 USBHostHidEventHandler, // Event Handler Routine
 2 // Initializaton Parameter
 },
 { // Mass Storage Client Driver: Bulk Only
 USBHostMsdInit, // Initialization Routine
 USBHostMsdEventHandler, // Event Handler Routine
 FLAG1 // Initializaton Parameter
 },
 { // My Client Driver
 USBHostMyClientInit, // Initialization Routine
 USBHostMyClientEventHandler, // Event Handler Routine
 0 // Initializaton Parameter
 },
 { // Mass Storage Client Driver: CBI
 USBHostMsdInit, // Initialization Routine
 USBHostMsdEventHandler, // Event Handler Routine
 FLAG2 // Initializaton Parameter
 }
};

Note: These examples are just for illustration.
Refer to the appropriate USB device class
specifications for details on HID, mass
storage, and other device classes.
Refer to the application notes listed in the
�References� section for details on the
client drivers provided by Microchip.

Note: The client driver table is never searched. It
is only accessed using the indices given in
the TPL table. So the host layer never
needs to know its exact length.

#define USB_CLIENT_DRIVER_TABLE \

 myClientDriverTable
© 2008 Microchip Technology Inc. DS01141A-page 21

AN1141

IMPLEMENTING THE TPL TABLE
The TPL table is an array of structures of the USB_TPL
data type. Each structure contains members for the
device identifier, the initial configuration, the client
driver table index, and a flags field.
The USB_TPL structure is defined as follows:

FIGURE 8: TPL TABLE STRUCTURE

The �device� member is a DWORD-sized union that
can hold either the VID-PID or CL-SC-P
device-identifier number combinations. The other fields
are each one byte in size, with the flags field being a
union of the individual flags bits. The bConfigura-
tion member allows the device�s initial configuration
to be specified in the TPL table when the bSetCon-
figuration flag is set. The ClientDriver member
is the index into the client driver table for the device
identified and is how the TPL table associates a partic-
ular device (or a class of devices) with a particular client
driver. The bfAllowHNP flag, when set, instructs the
host layer to enable Host Negotiation Protocol (HNP)
and is only valid for true USB OTG devices. The bfIs-
ClassDriver flag is set to when a CL-SC-P ID com-
bination is used and the ClientDriver index is for a
class driver. When this flag is cleared, a VID-PID com-
bination must be used in the device field. The driver
can be device-specific or a class driver of the correct
type for the device identified.
Since the TPL table is searched from the beginning
whenever a device is newly attached to the USB, the
length of the table must be identified to the host layer.
This must be done by defining the NUM_TPL_ENTRIES
macro.

EXAMPLE 12: DEFINING TABLE LENGTH

By default, the host layer expects the TPL table array
to be named usbTPL. If the array is named anything
else, it must be identified to the host layer using the
USB_TPL_TABLE macro.

EXAMPLE 13: IDENTIFYING THE TPL
TABLE

The TPL table is usually initialized statically. To simplify
initialization of the device identifier field, the
INIT_VID_PID and INIT_CL_SC_P macros are
available.

FIGURE 9: DEVICE IDENTIFIER FIELD INITIALIZATION MACROS

The following initialization macros (which can be ORd
together) are also available to simplify initialization of
the flags field.

FIGURE 10: TPL FLAGS MACROS

typedef struct _USB_TPL
{
 union
 {
 DWORD val;
 struct
 {
 WORD idVendor;
 WORD idProduct;
 };
 struct
 {
 BYTE bClass;
 BYTE bSubClass;
 BYTE bProtocol;
 };
 } device;

 BYTE bConfiguration;

 BYTE ClientDriver;

 union
 {
 BYTE val;
 struct
 {
 BYTE bfAllowHNP : 1;
 BYTE bfIsClassDriver : 1;
 BYTE bfSetConfiguration : 1;
 };
 } flags;

} USB_TPL;

#define NUM_TPL_ENTRIES 7

#define USB_TPL_TABLE MyUsbTplTable

#define INIT_VID_PID(v,p) {((v)|((p)<<16))}

#define INIT_CL_SC_P(c,s,p) {((c)|((s)<<8)|((p)<<16))}

#define TPL_ALLOW_HNP 0x01 // Flag to enable Host Negotiation Protocol
#define TPL_CLASS_DRV 0x02 // Flag to identify a class driver

#define TPL_SET_CONFIG 0x04 // Flag for setting the configuration
DS01141A-page 22 © 2008 Microchip Technology Inc.

AN1141

Example 14 depicts the example TPL table that, when
combined with the example client driver table (see
�Implementing the Client Driver Table�), shows how
a system could support any of the following:
� An application-specific HID-class device (VID = 0x04D8, PID = 0x00EF)
� A mass storage class device using the bulk-only protocol (CL = 0x08, SC = 0x06, P = 0x50)
� A second configuration (probably with reduced resource requirements) of the same application-specific HID-class

device, as listed in the first line (VID = 0x04D8, PID = 0x00EF, Configuration = 2)
� A vendor-specific device (VID = 0x04D8, PID = 0x00EE)
� A mass-storage class device using the CBI (Control/Bulk/Interrupt) protocol (CL = 0x08, SC = 0x06, P = 0x01)
� A HID-class keyboard (CL = 0x03, SC = 0x00, P = 0x01)
� A HID-class mouse (CL = 0x03, SC = 0x00, P = 0x02)

EXAMPLE 14: TPL TABLE

USB_TPL MyUsbTplTable[NUM_TPL_ENTRIES] =
{
// VID & PID or Client
// Class, Subclass & Protocol Config Driver Flags
 { INIT_VID_PID(0x04D8, 0x00EF), 0, 0, {0} },
 { INIT_CL_SC_P(0x08, 0x06, 0x50), 0, 3, {TPL_CLASS_DRV} },
 { INIT_VID_PID(0x04D8, 0x00EF), 2, 0, {TPL_SET_CONFIG} },
 { INIT_VID_PID(0x04D8, 0x00EE), 0, 4, {0} },
 { INIT_CL_SC_P(0x08, 0x06, 0x01), 0, 5, {TPL_CLASS_DRV} },
 { INIT_CL_SC_P(0x03, 0x00, 0x01), 0, 1, {TPL_CLASS_DRV} },
 { INIT_CL_SC_P(0x03, 0x00, 0x02), 0, 2, {TPL_CLASS_DRV} }
};

Note: The VID number shown in the example is for Microchip. The PID numbers shown are just examples and
do not necessarily correspond to any particular devices.
© 2008 Microchip Technology Inc. DS01141A-page 23

AN1141

Configuring the USB Stack Options
This section highlights several key configuration
options that must be used correctly to ensure proper
operation of the USB Embedded Host firmware stack.
These options, when required, must be defined in the
USB configuration header file. This file must be in the
project�s include-file search path and should be consid-
ered part of the application (see �Host Layer API and
Client Driver Interface�).
The following is a list of USB stack options:
� USB_SUPPORT_HOST

� NUM_TPL_ENTRIES

� USB_HOST_APP_EVENT_HANDLER

� USB_ENABLE_TRANSFER_EVENT

� USB_EVENT_QUEUE_DEPTH

� USB_PING_PONG_MODE

� USB_SUPPORT_INTERRUPT_TRANSFERS

� USB_SUPPORT_ISOCHRONOUS_TRANSFERS

� USB_SUPPORT_BULK_TRANSFERS

� USB_NUM_BULK_NAKS

� USB_NUM_CONTROL_NAKS

� USB_NUM_INTERRUPT_NAKS

� USB_NUM_COMMAND_TRIES

� USB_NUM_ENUMERATION_TRIES
DS01141A-page 24 © 2008 Microchip Technology Inc.

AN1141

USB_SUPPORT_HOST

Purpose This macro identifies that the USB firmware stack is being used for an embedded host
application.

Precondition None
Valid Values This macro does not need to have a value assigned to it. Defining it is sufficient.
Default: Not defined
Example #define USB_HOST_ONLY

NUM_TPL_ENTRIES

Purpose This macro identifies the number of entries in the embedded host�s Targeted Peripheral List
(TPL) table. It is necessary to define this because the host firmware must search the TPL table
whenever a device is attached to the bus to determine if it can be supported.

Precondition None
Valid Values This macro must be defined as an integer constant that identifies the number of entries in the

TPL table.
Default: Not defined
Example #define NUM_TPL_ENTRIES 7

USB_HOST_APP_EVENT_HANDLER

Purpose This macro identifies the name of the application�s optional event-handing call-back routine. If the
application does not implement the routine, this macro should be left undefined.

Precondition None
Valid Values This macro must equate to the name of the application�s event call-back routine or be left

undefined.
Default: Not defined
Example #define USB_HOST_APP_EVENT_HANDLER myClientEventHandler

USB_ENABLE_TRANSFER_EVENT

Purpose This macro causes the USB embedded host firmware stack to include support for the
EVENT_TRANSFER event when built. If this macro is not defined, the EVENT_TRANSFER event
will never be sent to any client drivers or to the application�s event handling routine. Applications
that do not require this event, and do not include any client drivers that require this event, can
leave this macro undefined to reduce the size of the USB firmware.

Precondition None
Valid Values This macro does not need to have a value assigned to it. Defining it is sufficient.
Default: Not defined
Example #define USB_ENABLE_TRANSFER_EVENT
© 2008 Microchip Technology Inc. DS01141A-page 25

AN1141

USB_EVENT_QUEUE_DEPTH

Purpose This macro determines how many EVENT_TRANSFER events (or transfer error events) the USB
host firmware can queue up before calling a client driver�s event-handling routine. Increasing this
value will allow the firmware to support greater latency between calls to the USBTasks routine
at the potential expense of real-time response and a slight increase RAM usage.

Precondition This macro is ignored if USB_ENABLE_TRANSFER_EVENT is not also defined.
Default Value 4
Valid Values If used, this macro must be defined as a non-zero integer value. If not defined, this macro will be

assigned the default value. It is recommended that it never be assigned a value less then the
default value.

Default: Not defined
Example #define USB_EVENT_QUEUE_DEPTH 6

USB_PING_PONG_MODE

Purpose Some families of Microchip microcontrollers support multiple methods of buffering USB data
(refer to the appropriate data sheet). A USB endpoint may have a single buffer for data trans-
ferred to-or-from that endpoint; or it may have two buffers, between which the controller alter-
nates in a ping-pong fashion when transferring data. This macro determines which method is
used.

Precondition The chosen microcontroller must support the method selected.
Valid Values USB_PING_PONG__NO_PING_PONG � Disables ping-pong buffering

USB_PING_PONG__ALL_BUT_EP0 � Disables ping-pong buffering for Endpoint 0, enabling it for
all others
USB_PING_PONG__EP0_OUT_ONLY � Enables ping-pong buffering for Endpoint 0, disabling it
for all others
USB_PING_PONG__FULL_PING_PONG � Enables ping-pong buffering for all endpoints

Default: Not defined
Example #define USB_PING_PONG_MODE USB_PING_PONG__FULL_PING_PONG

USB_SUPPORT_INTERRUPT_TRANSFERS

Purpose When defined, this macro includes support for interrupt transfers when the USB embedded
firmware stack is built. If it is not defined, interrupt transfers may not be supported. It can be left
undefined to reduce program size, if interrupt transfers are not required by any device, or class
of devices, listed in the TPL table.

Precondition None
Valid Values This macro does not need to have a value assigned to it. Defining it is sufficient.
Default: Not defined
Example #define USB_SUPPORT_INTERRUPT_TRANSFERS

Note: Since only Endpoint 0 is used when operating as an embedded host (when
USB_HOST_ONLY is defined), the USB_PING_PONG__FULL_PING_PONG and
USB_PING_PONG__EP0_OUT_ONLY options are equivalent (both enabling ping
pong buffering) and the USB_PING_PONG__NO_PING_PONG and
USB_PING_PONG__ALL_BUT_EP0 options are equivalent (both disabling ping pong
buffering). In general, it is recommended to enable full ping pong buffering unless it
is not supported.
For PIC32 processors, this value should always be set to
USB_PING_PONG__FULL_PING_PONG.
DS01141A-page 26 © 2008 Microchip Technology Inc.

AN1141

USB_SUPPORT_ISOCHRONOUS_TRANSFERS

Purpose When defined, this macro includes support for isochronous transfers when the USB embedded
firmware stack is built. If it is not defined, isochronous transfers may not be supported. It can be
left undefined to reduce program size, if isochronous transfers are not required by any device, or
class of devices, listed in the TPL table.

Precondition None
Valid Values This macro does not need to have a value assigned to it. Defining it is sufficient.
Default: Not defined
Example #define USB_SUPPORT_ISOCHRONOUS_TRANSFERS

USB_SUPPORT_BULK_TRANSFERS

Purpose When defined, this macro includes support for bulk transfers when the USB embedded firmware
stack is built. If it is not defined, bulk transfers may not be supported. It can be left undefined to
reduce program size, if bulk transfers are not required by any device, or class of devices, listed
in the TPL table.

Precondition None
Valid Values This macro does not need to have a value assigned to it. Defining it is sufficient.
Default: Not defined
Example #define USB_SUPPORT_BULK_TRANSFERS

USB_NUM_BULK_NAKS

Purpose This macro determines how many times a device is allowed to NAK a bulk transfer before the
USB host firmware will be considered an error.

Precondition This macro is only valid if USB_SUPPORT_BULK_TRANSFERS is also defined.
Valid Values This macro must be defined as non-zero integer value. Since some bulk devices can NAK

thousands of bulk transfers before being ready to supply data, this number can be quite high.
Default: 10000
Example #define USB_NUM_BULK_NAKS 10000

USB_NUM_CONTROL_NAKS

Purpose This macro determines how many times the USB host firmware will allow a device to NAK a
control transfer before it will be considered an error.

Precondition None
Valid Values This macro must be defined as non-zero integer value. A value of 3 is recommended.
Default: 3
Example #define USB_NUM_CONTROL_NAKS 3

Note: For compatibility with the widest range of USB devices, it is recommended not to use
this option.
© 2008 Microchip Technology Inc. DS01141A-page 27

AN1141

USB_NUM_INTERRUPT_NAKS

Purpose This macro determines how many times the USB host firmware will allow a device to NAK an
interrupt OUT transfer before it will be considered an error. (When a device NAKs an interrupt IN
transfer, it is just an indication that it does not have any data to send.)

Precondition None
Valid Values This macro must be defined as non-zero integer value. A value of 3 is recommended.
Default: 3
Example #define USB_NUM_INTERRUPT_NAKS 3

USB_NUM_COMMAND_TRIES

Purpose This macro determines how many times the USB host firmware will retry a control transfer to a
device before it will be considered an error.

Precondition None
Valid Values This macro must be defined as non-zero integer value. A value of 3 is recommended.
Default: 3
Example #define USB_NUM_COMMAND_TRIES 3

USB_NUM_ENUMERATION_TRIES

Purpose This macro defines how many times the host will try to enumerate the device before giving up
and setting the device's state to DETACHED.

Precondition None
Valid Values Any integer value, although small numbers are recommended.
Default: 3
Example #define USB_NUM_ENUMERATION_TRIES 2

For the latest details on the USB stack�s configuration options, refer to the API document included with the source files.
DS01141A-page 28 © 2008 Microchip Technology Inc.

AN1141
HOST LAYER API AND CLIENT
DRIVER INTERFACE
The CDI provides functions to read and write data to or
from a peripheral device�s endpoints, perform USB
control transfers, access device descriptors, control
device configuration, perform general device control
and receive status information. The CDI also defines
the function signatures of the client driver�s initialization
and event-handling call-back routines.
Refer to the release notes distributed with the
embedded host firmware source files for full details on
the CDI.

CONCLUSION
Microchip provides sample firmware for the most com-
monly requested classes of devices (see
�References�). However, even in cases where no
sample implementation is available to control a specific
USB device, the Microchip USB embedded host firm-
ware stack provides a powerful and easy-to-use frame-
work for developing embedded host applications using
supported Microchip microcontrollers. This document
explains how to implement client drivers for this frame-
work to allow an embedded host design to take
advantage of the power, flexibility, and availability of
USB devices.
© 2008 Microchip Technology Inc. DS01141A-page 29

AN1141

Software License Agreement
The software supplied herewith by Microchip Technology Incorporated (the �Company�) is intended and supplied to you, the
Company�s customer, for use solely and exclusively with products manufactured by the Company.
The software is owned by the Company and/or its supplier, and is protected under applicable copyright laws. All rights are reserved.
Any use in violation of the foregoing restrictions may subject the user to criminal sanctions under applicable laws, as well as to civil
liability for the breach of the terms and conditions of this license.
THIS SOFTWARE IS PROVIDED IN AN �AS IS� CONDITION. NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATU-
TORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
REFERENCES
� �Universal Serial Bus Specification, Revision 2.0�

http://www.usb.org/developers/docs
� �OTG Supplement, Revision 1.3�

http://www.usb.org/developers/onthego
� Requirements and Recommendations for USB

Products with Embedded Hosts and/or Multiple
Receptacles
http://www.usb.org/developers/docs/

� Microchip MPLAB® IDE
In-circuit development environment, available free
of charge, by license, from
http://www.microchip.com/mplabide

� Microchip Application Note AN1140, �USB
Embedded Host Stack�

� Microchip Application Note AN1142, �USB Mass
Storage Class on an Embedded Host�

� Microchip Application Note AN1143, �Generic
Client on an Embedded Host�

� Microchip Application Note AN1144, �USB HID
Class on an Embedded Host�

� Microchip Application Note AN1145, �Using a
USB Flash Drive on an Embedded Host�

APPENDIX A: SOURCE CODE FOR
THE USB EMBEDDED
HOST STACK

The source code for the Microchip USB embedded
host stack firmware is offered under a no-cost license
agreement. It is available for download as a single
archive file from the Microchip corporate web site, at:

www.microchip.com.
After downloading the archive, check the release notes
for the current revision level and a history of changes to
the software.
DS01141A-page 30 © 2008 Microchip Technology Inc.

http://www.usb.org/developers/docs/
http://www.usb.org/developers/docs/

AN1141
REVISION HISTORY

Rev. A Document (02/2008)
This is the initial released version of this document.
© 2008 Microchip Technology Inc. DS01141A-page 31

AN1141

NOTES:
DS01141A-page 32 © 2008 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:
� Microchip products meet the specification contained in their particular Microchip Data Sheet.

� Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

� There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip�s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

� Microchip is willing to work with the customer who is concerned about the integrity of their code.

� Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as �unbreakable.�

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip�s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer�s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.
© 2008 Microchip Technology Inc.
Trademarks

The Microchip name and logo, the Microchip logo, Accuron,
dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro,
PICSTART, PRO MATE, rfPIC and SmartShunt are registered
trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

FilterLab, Linear Active Thermistor, MXDEV, MXLAB,
SEEVAL, SmartSensor and The Embedded Control Solutions
Company are registered trademarks of Microchip Technology
Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard,
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,
ECONOMONITOR, FanSense, In-Circuit Serial
Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB
Certified logo, MPLIB, MPLINK, mTouch, PICkit, PICDEM,
PICDEM.net, PICtail, PIC32 logo, PowerCal, PowerInfo,
PowerMate, PowerTool, REAL ICE, rfLAB, Select Mode, Total
Endurance, UNI/O, WiperLock and ZENA are trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2008, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

 Printed on recycled paper.
DS01141A-page 33

Microchip received ISO/TS-16949:2002 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company�s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip�s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

DS01141A-page 34 © 2008 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260
Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445
Toronto
Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431
China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130
China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256
China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-4182-8400
Fax: 91-80-4182-8422
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513
Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122
Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934
Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859
Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850
Taiwan - Hsin Chu
Tel: 886-3-572-9526
Fax: 886-3-572-6459
Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803
Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820

WORLDWIDE SALES AND SERVICE

01/02/08

	USB Embedded Host Stack Programmer’s Guide
	Introduction
	Assumptions
	Features
	Limitations
	System Hardware
	PIC® MCU Memory Resource Requirements
	PIC® MCU Hardware Resource Requirements
	TABLE 1: Hardware Resource Requirements

	Installing Source Files
	Applications
	USB Embedded Host Firmware Architecture
	FIGURE 1: USB Embedded Host Firmware Stack
	FIGURE 2: Calling Client Driver API Routines
	FIGURE 3: Event Driven client Driver
	FIGURE 4: Polling-Based Client Driver
	FIGURE 5: Client Driver Table
	FIGURE 6: Targeted Peripheral List Table

	Implementing an Embedded Host’s Firmware
	EXAMPLE 1: Main Application Routine
	EXAMPLE 2: Application Event-Handler
	EXAMPLE 3: Identifying the Applications Event Handler
	EXAMPLE 4: Client Driver API Routines
	EXAMPLE 5: CDI Initialization Routine
	EXAMPLE 6: Event-Handling Routine
	EXAMPLE 7: Defining Client-Specific Events
	EXAMPLE 8: Polled Client-Tasks Routine
	FIGURE 7: Client Driver Table Structure
	EXAMPLE 9: Callback Pointer Data Types
	EXAMPLE 10: Client Driver Table
	EXAMPLE 11: Identifying the Client Driver Table
	FIGURE 8: TPL Table Structure
	EXAMPLE 12: Defining Table Length
	EXAMPLE 13: Identifying the TPL Table
	FIGURE 9: Device Identifier Field Initialization Macros
	FIGURE 10: TPL Flags Macros
	EXAMPLE 14: TPL Table

	Host Layer API and Client Driver Interface
	Conclusion
	References
	Appendix A: Source Code for the USB Embedded Host Stack
	Revision History
	Worldwide Sales and Service

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.2
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /3Of9Barcode
 /AbadiMT-CondensedLight
 /AdobePiStd
 /Angelina
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /Batang
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BrushScriptMT
 /CalistoMT
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /Map-Symbols
 /MatisseITC-Regular
 /MICROCHIP
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MonotypeCorsiva
 /MonotypeSorts
 /MS-Mincho
 /MSOutlook
 /MT-Extra
 /MVBoli
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Regular
 /NewsGothicMT
 /NewsGothicMT-Bold
 /NewsGothicMT-Italic
 /OCRAExtended
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /PMingLiU
 /Raavi
 /Shruti
 /SimSun
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Westminster
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

