
AN1109
 An SNMP Agent Using BSD Socket API
INTRODUCTION
Simple Network Management Protocol (SNMP), an
Internet protocol, was designed to manage network
devices: file servers, hubs, routers, etc. However, it is
also useful to manage and control embedded systems
that are connected on an IP network. These systems
can communicate through SNMP to transfer control
and status information, thereby creating a truly distrib-
uted system. Unlike more familiar human-oriented
protocols like HTTP, SNMP is considered a machine-
to-machine protocol.

This Microchip SNMP agent application note and the
included FAT16 module, supplemented by the TCP/IP
application note AN1108, “Microchip TCP/IP Stack with
BSD Socket API”, provide an SNMP agent that can be
integrated with almost any application on a Microchip
32-bit microcontroller product.

The TCP/IP application note and the FAT16 module are
required to compile and run the SNMP agent module.
All notes and files mentioned in this document are
available for download from www.microchip.com.

The software in the installation files includes a sample
application that demonstrates all of the features offered
by this SNMP agent module.

Questions and answers about the SNMP agent module
are provided at the end of this document in “Answers
to Common Questions” on page 44.

ASSUMPTION
The author assumes that the reader is familiar with the
following Microchip development tools: MPLAB® IDE
and MPLAB® REAL ICE™ in-circuit emulator. It is also
assumed that the reader is familiar with C programming
language, as well as TCP/IP stack, FAT16 file system,
and Management Information Base (MIB) Script con-
cepts. Terminology from these technologies is used in
this document, and only brief overviews of the concepts
are provided. Advanced users are encouraged to read
the associated specifications.

FEATURES
This application note provides one of the main compo-
nents of an SNMP management system, the SNMP
agent that runs on the managed device.

The simple agent presented here incorporates the
following features:

• Provides portability across the 32-bit family of PIC®
microcontrollers

• SNMP agent APIs (Application Program Inter-
faces) are compatible with PIC18/24 SNMP agent
APIs

• Functions independently of RTOS or application
• Supports Microchip’s MPLAB® C32 C Compiler
• Supports SNMP version 1 over UDP
• Supports Get, Get-Next, Set and Trap PDUs
• Automatically handles access to constant OIDs
• Supports up to 255 dynamic OIDs and unlimited

constant OIDs
• Supports sequence variables with 7-bit index
• Supports enterprise-specific Trap with one

variable information
• Uses an MIB that can be stored using FAT16
• Includes a PC-based MIB compiler
• Does not contain built-in TCP/UDP/IP statistics

counters (user application must define and
manage the required MIB)

This document offers discussion of the SNMP protocol
sufficient to explain implementation and design of the
SNMP agent. Refer to specification RFC 1157 and
related documents for more detailed information about
the protocol. The TCP/IP stack and its accompanying
software modules, along with the software and hard-
ware for using FAT16, are prerequisites for creating the
SNMP agent.

Author: Sean Justice
Microchip Technology Inc.
© 2008 Microchip Technology Inc. DS01109B-page 1

www.microchip.com

AN1109
LIMITATIONS
The SNMP agent is developed on an embedded sys-
tem, so the standard ASCII format for the MIB file is
reduced to a binary file (BIB). This increases the speed,
because parsing a binary file is accomplished much
more quickly than parsing an ASCII file.

This application note implements SNMP agent specifi-
cations, version 1. Support for version 2, or higher,
would require code changes.

TYPICAL HARDWARE
A typical SNMP agent application requires the use of
TCP/IP (AN1108, “Microchip TCP/IP Stack with BSD
Socket API”) and FAT16 hardware and software. The
SNMP agent demo runs on an Explorer 16 board that
has the appropriate TCP/IP connection (Microchip Part
Number AC164123) and a FAT16-type media storage
device (Microchip Part Number AC164122). The
Explorer 16 board must be populated with two PICtail™
Plus connectors in J5 and J6. Refer to Explorer 16
documentation for more information.

FIGURE 1: SNMP SERVER DEPENDENCIES

RESOURCE REQUIREMENTS
Program memory required by the SNMP agent is
stated in the following table.

TABLE 1: MEMORY REQUIREMENTS

The compiler used for the memory requirements was
the Microchip MPLAB® C32 C Compiler, version 1.00.
The optimization was not used. Note that the use of
compilers and optimization settings may increase or
decrease the memory requirements.

FAT16TCP/IP Stack

SNMP Server

Resource Memory

SNMP.c module 13,800 bytes
RAM memory required by the
SNMP module

30 bytes

Note: The minimum stack size for this module is 3072
bytes. This requirement can be decreased by
defining _SNMP_USE_DYMANIC_MEMORY in
SNMP.h to allocate all UDP packets on the
heap, which should be at least 3072 bytes.
DS01109B-page 2 © 2008 Microchip Technology Inc.

AN1109
INSTALLING SOURCE FILES
The complete source code for the Microchip SNMP
Agent is available for download from the Microchip web
site (see Appendix A: “Source Code for the SNMP
Agent” on page 46).

The source code is distributed in a single Windows®

installation file:
pic32mx_bsd_tcp_ip_v1_00_00.exe.

Perform the following steps to complete the installation:

1. Execute the file. A Windows installation wizard
will guide you through the installation process.

2. Click I Accept to consent to the software license
agreement.

3. After the installation process is completed, the
SNMP Agent Using BSD Socket API item is
available under the Microchip program group.
The complete source files are copied to the
following directory, in your choice of installation
path:

\pic32_solutions\microchip\
bsd_tcp_ip\source\bsd_snmp_agent

The “include” files are copied to the following
directory:
\pic32_solutions\microchip\include\
bsd_tcp_ip\

The demonstration application for the BSD SNMP
agent is located in the following directory:
\pic32_solutions\bsd_snmp_agent_demo

4. For the latest version-specific features and limi-
tations, refer to the version HTML page, which
can be accessed through index.html.

SOURCE FILE ORGANIZATION
The SNMP agent server consists of multiple files.
These files are organized in multiple directories.

Table 2 shows the directory structure.

Table 3 on page 4 lists the server-related source files.
© 2008 Microchip Technology Inc. DS01109B-page 3

AN1109

TABLE 2: SOURCE FILE DIRECTORY STRUCTURE

TABLE 3: SOURCE FILES

Directory Description

\pic32_solutions\microchip\
bsd_tcp_ip\source\bsd_snmp_agent

SNMP agent source code and documentation

\pic32_solutions\microchip\include\bsd_tcp_ip\ SNMP agent include files
\pic32_solutions\bsd_snmp_agent_demo SNMP agent project and demo related source

files
\pic32_solutions\microchip\bsd_tcp_ip\source TCP/IP source files
\pic32_solutions\microchip\include\bsd_tcp_ip\
templates

SNMP Agent and TCP/IP template header files

\pic32_solutions\microchip\bsd_tcp_ip\templates SNMP Agent template source files
\pic32_solutions\microchip\fat16\source File I/O source files
\pic32_solutions\microchip\include\fat16 File I/O header files
\pic32_solutions\microchip\include\fat16\template File I/O template header files

File Directory Description

bsd_snmp_agent_demo.mcp \pic32_solutions\bsd_snmp_agent_demo MPLAB® REAL ICE™
in-circuit emulator SNMP
agent demo project file

bsd_snmp_agent_demo.mcw \pic32_solutions\bsd_snmp_agent_demo MPLAB® REAL ICE™
in-circuit emulator SNMP
agent demo workspace
file

main.c \pic32_solutions\bsd_snmp_agent_demo\source Main demo file
snmpex.c \pic32_solutions\bsd_snmp_agent_demo\source User-modifiable SNMP

agent source file
snmpex.h \pic32_solutions\bsd_snmp_agent_demo\source User-modifiable SNMP

agent include file
snmpex_private.h \pic32_solutions\bsd_snmp_agent_demo\source User-modifiable SNMP

agent include file
eTCP.def \pic32_solutions\bsd_snmp_agent_demo\source User-modifiable FAT16

defines
fat.def \pic32_solutions\bsd_snmp_agent_demo\source User-modifiable HTTP

defines
mib2bib.exe \pic32_solutions\microchip\

bsd_tsp_ip\tools\bsd_snmp_agent
Application to convert
MIB file to BIB file

snmp.c \pic32_solutions\microchip\
bsd_tcp_ip\source\bsd_snmp_agent

SNMP agent source file

snmp_private.h \pic32_solutions\micro-
chip\bsd_tcp_ip\source\bsd_snmp_agent

SNMP agent private
include file

snmpex.tmpl \pic32_solutions\microchip\bsd_tcp_ip\
template

User-modifiable SNMP
agent source file
template

snmp.h \pic32_solutions\microchip\include\
bsd_tcp_ip\

SNMP agent include file

snmpex.tmpl \pic32_solutions\microchip\include\
bsd_tcp_ip\templates

User-modifiable SNMP
agent include file
template

snmpex_private.tmpl \pic32_solutions\microchip\include\
bsd_tcp_ip\templates

User-modifiable SNMP
agent include file
template
DS01109B-page 4 © 2008 Microchip Technology Inc.

AN1109
DEMO APPLICATION
The Microchip SNMP Agent includes a complete work-
ing application to demonstrate the SNMP agent running
on the Microchip BSD TCP/IP stack. This application is
designed to run on Microchip’s Explorer 16 demonstra-
tion board. However, it can be easily modified to support
any board.

Programming the Demo Application
If you need more information about SNMP, a more
extensive overview is presented on page 9.

If you are already familiar with SNMP and the Microchip
stack, the following information describes the process
of incorporating an SNMP agent into an application.

The flowchart in Figure 2 outlines the general steps for
developing a Microchip SNMP Agent. There are two
main processes involved, developing the MIB, and
using the MIB to develop the actual agent. Each pro-
cess has several steps. Each process is explained later
in this document.

The major steps are:

1. Downloading and installing the accompanying
source files for the SNMP agent.

2. Using the MIB script (page 30) to define your
private MIB, along with other standard MIB that
your application may require.

3. Using the included MIB compiler, mib2bib (on
page 37), to build a binary MIB image (BIB).

4. Placing the BIB file into the FAT16 storage
media device (i.e., an SD card).

To program a target board with the demo application,
you must have access to a PIC microcontroller pro-
grammer. The following procedure assumes that you
will be using MPLAB REAL ICE in-circuit emulator as a
programmer. If not, refer to the instructions for your
specific programmer.

1. Connect MPLAB REAL ICE to the Explorer 16
board or to your target board.

2. Apply power to the target board.
3. Launch the MPLAB IDE.
4. Select the PIC device of your choice (this step is

required only if you are importing a hex file that
was previously built).

5. Enable the MPLAB REAL ICE in-circuit
emulator as your programming tool.

6. If you want to use the previously-built hex file,
simply import the following hex file:
bsd_snmp_agent_demo\release\bsd_snmp
_agent_demo.hex

7. If you are rebuilding the hex file, open the project
file:
bsd_snmp_agent_demo\bsd_snmp_agent_
demo.mcp, and follow the build procedure to
create the application hex file.

8. The demo application contains necessary con-
figuration options required for the Explorer 16
board. If you are programming another type of
board, make sure that you select the appropriate
oscillator mode from the MPLAB REAL ICE
configuration settings menu.

9. Select the Program menu option from the
MPLAB REAL ICE in-circuit emulator menu to
begin programming the target.

10. After a few seconds, you should see the mes-
sage “Programming successful”. If not, check
your board and your MPLAB REAL ICE connec-
tion. Click Help on the menu bar for further
assistance.

11. Remove power from the board and disconnect
the MPLAB REAL ICE cable from the target
board.

When successfully built, you can use any standard
SNMP management software to access your SNMP
agent device.
© 2008 Microchip Technology Inc. DS01109B-page 5

AN1109

FIGURE 2: OVERVIEW OF THE SNMP AGENT DEVELOPMENT PROCESS

MIB Text File

Microchip
MIB Compiler

(mib2bib)

Binary MIB File
(.bib)

Processor
Compiler

Complete
Application

 Data File
 Binary

MIB Development

SNMP Agent Development

Application Source
Files

Microchip
TCP/IP Stack

Files
FAT16 Media
(i.e., SD Card)
DS01109B-page 6 © 2008 Microchip Technology Inc.

AN1109

Setting Demo Application Hardware
In order to run the SNMP demo correctly, you must set
up the hardware on the Explorer 16 board to use the
TCP/IP stack and FAT16. Refer to AN1108, “Microchip
TCP/IP Stack with BSD Socket API”, for the proper
hardware setup.

The demo requires that the TCP/IP connection
(Microchip Part Number AC164123) uses SPI 1 and
the FAT16-type media storage device (Microchip Part
Number AC164122) uses SPI 2.

Executing the Demo Application
When the programmed microcontroller is installed on
the Explorer 16 demo board and powered up, the LCD
display shows the following information:

PIC32 BSD SNMP

<Current IP address>

BUILDING THE DEMO SNMP AGENT
The demo SNMP agent application included in this
application note can be built using Microchip’s 32-bit
MPLAB C32 C Compiler. However, you can port the
source to whichever compiler that you routinely use
with Microchip microcontroller products.

The demo application also includes the following
predefined SNMP agent project file:
bsd_snmp_agent_demo.mcp. The file is used with
the Microchip MPLAB IDE. The project was created
using a PIC32 device. If you are using a different
device, you must select the appropriate device by using
the MPLAB IDE menu command. In addition, the demo
application project uses additional “include” paths as
defined in the Build Options of MPLAB IDE:

.\source

..\microchip\include

Table 4 on page 8 lists the source files needed to build
the demo SNMP agent application, and their respective
locations.

The following instructions describe a high-level proce-
dure for building the demo application. This procedure
assumes that you are familiar with MPLAB IDE and will
be using MPLAB IDE to build the application. If not,
refer to the instructions of the development
environment you are using to create and build the proj-
ect.

1. Make sure that source files for the Microchip
SNMP Agent are installed. If not, refer to
“Installing Source Files”on page 3.

2. Launch MPLAB IDE and open the
bsd_snmp_agent_demo.mcp project file.

3. Use the appropriate MPLAB IDE menu com-
mands to build the project. Note that the demo
project was created to compile properly when
the source files are located in the directory struc-
ture that is suggested by the installation wizard.
If you installed the source files to other locations,
you must recreate or modify existing project
settings to accomplish the build.

4. The build process should finish successfully. If
not, make sure that your MPLAB IDE and
compiler are set up correctly.
© 2008 Microchip Technology Inc. DS01109B-page 7

AN1109

TABLE 4: DEMO SNMP AGENT APPLICATION PROJECT FILES

File Location

main.c \pic32_solutions\bsd_snmp_agent_demo\source

snmpex.c \pic32_solutions\bsd_snmp_agent_demo\source

eTCP.def \pic32_solutions\bsd_snmp_agent_demo\source

fat.def \pic32_solutions\bsd_snmp_agent_demo\source

snmp.c \pic32_solutions\microchip\bsd_tcp_ip\source\bsd_snmp_agent

block_mdr.c \pic32_solutions\microchip\bsd_tcp_ip\source

earp.c \pic32_solutions\microchip\bsd_tcp_ip\source

eicmp.c \pic32_solutions\microchip\bsd_tcp_ip\source

eip.c \pic32_solutions\microchip\bsd_tcp_ip\source

ENC28J60.c \pic32_solutions\microchip\bsd_tcp_ip\source

etcp.c \pic32_solutions\microchip\bsd_tcp_ip\source

ether.c \pic32_solutions\microchip\bsd_tcp_ip\source

eudp.c \pic32_solutions\microchip\bsd_tcp_ip\source

gpfunc.c \pic32_solutions\microchip\bsd_tcp_ip\source

pkt_queue.c \pic32_solutions\microchip\bsd_tcp_ip\source

route.c \pic32_solutions\microchip\bsd_tcp_ip\source

socket.c \pic32_solutions\microchip\bsd_tcp_ip\source

tick.c \pic32_solutions\microchip\bsd_tcp_ip\source

fat.c \pic32_solutions\microchip\fat16\source

fileio.c \pic32_solutions\microchip\fat16\source

mediasd.c \pic32_solutions\microchip\fat16\source

mstimer.c \pic32_solutions\microchip\common

exlcd.c \pic32_solutions\microchip\common
DS01109B-page 8 © 2008 Microchip Technology Inc.

AN1109
SNMP OVERVIEW
SNMP is an application-layer communication protocol
that defines a client-server relationship. Its relationship
to the TCP/IP protocol stack is shown in Figure 3.

SNMP describes a standard method to access vari-
ables residing in a remote device. It also specifies the
format in which this data must be transferred and inter-
preted. When a device is SNMP enabled, any SNMP
compatible host system can monitor and control that
device.

FIGURE 3: LOCATION OF SNMP IN THE TCP/IP PROTOCOL STACK

SNMP Terminology
This application note frequently uses terminology
described by the SNMP specification which we will
review here briefly. Figure 4 on page 10 shows the
typical SNMP model and the associated terminology.

NETWORK MANAGEMENT STATION
The Network Management Station (NMS) is half of the
SNMP client-server setup; the other half is the agent.
Because the focus of this document is on the agent, the
NMS is mentioned here solely to be thorough.

Typically, the NMS is on a personal computer running
special software, although it could very well be any
embedded device. NMS acts as an SNMP client,
periodically polling the SNMP agent for data. NMS can
be used to monitor a collection of similar or dissimilar
devices.

When a device is SNMP-enabled, any NMS software
available commercially or otherwise can be used. One
of the advantages of the PC-based NMS systems that
are available commercially is that many of them pro-
vide graphical representations of the managed
devices. Also, these systems may allow the addition of
devices to a network without requiring changes in the
NMS software; they dynamically load information about
devices that are added, as well as providing the option
of manage those devices. These features give SNMP
the functionality that makes it a popular choice for
network and device management.

MANAGED NODE OR SNMP AGENT
A managed node (SNMP agent) is the device that is
being managed by the NMS. SNMP agent implements
the server portion of the SNMP protocol, acting as the
agent between the device application and the NMS
software. The relationship is not necessarily
one-to-one, as a single agent can simultaneously serve
data to many NMSs. The agent waits for NMS requests
and responds with appropriate information.

DHCP SNMP HTTP FTP

UDP TCP

IP ICMP

PPP SLIP ARP

Modem USART Ethernet

Application Layer

Transport Layer

Internet Layer

Network Access

Physical Layer
© 2008 Microchip Technology Inc. DS01109B-page 9

AN1109

FIGURE 4: OVERVIEW OF THE SNMP MODEL

MANAGEMENT INFORMATION BASE (MIB)
Each SNMP agent manages its own special collection
of variables, called a Management Information Base
(MIB). To organize the MIB, SNMP defines a schema
known as the Structure of Management Information
(SMI).

Figure 5 shows a generic SMI. The MIB is structured in
a tree-like fashion, with one root at the top of the tree
and one or more children below the root. Each child
may contain one or more children of its own, thus cre-
ating an entire tree. The bottom-most nodes that do not
have any children are called leaf nodes. These nodes
contain the actual data.

SNMP and other RFC documents for the Internet
define several MIBs. Figure 6 shows a subtree of the
actual MIB for the Internet. Subtrees, such as “system”,
“UDP”, and “TCP”, are standard MIBs that are defined
by specific RFC documents. These and other standard
MIBs should not be modified if the SNMP agent needs
to be compatible with other NMS software.

A special subtree, called “enterprise”, is defined for pri-
vate enterprises. Any SNMP agent device manufac-
turer may obtain its own private enterprise number.
When assigned, the manufacturer may add or remove
any number of subtrees beneath it as they may require.
Private enterprise numbers may be obtained by apply-
ing to IANA (Internet Assigned Number Authority).
Applications can be made at their web site,
www.iana.org/cgi-bin/enterprise.pl.

OBJECT IDENTIFIER (OID)
Each node in the MIB tree is identified by a sequence
of decimal numbers called an Object Identifier (OID). A
specific node is uniquely referenced by its own OID and
that of its parents’ OIDs. An OID is written in
“dotted-decimal” notation, similar to those used by IP
addresses (but not limited to four levels). For example,
the OID for the system node in Figure 6 is written as
‘1.3.6.1.2.1’. For the convenience of readers, an OID
is frequently written with each node name and its OID
in parenthesis. Using this convention, the OID for
the system node can be rewritten as
“iso(1).org(3).dod(6).internet(1).mgmt(2).mib(1)”.

By virtue of OID assignments, the first number is always
either ‘1’ or ‘2’, and the second number is less than 40.
The first two numbers, a and b, are encoded as one byte
having the value 40a + b. For the Internet, this number is
43. As a result, the system OID is transmitted as
‘43.6.1.2.1’, not ‘1.3.6.1.2.1’.

Embedded Device

Network Device

Data

Data

Data
Network Monitored device

Management
Protocol

Managed Nodes Management
Information

Base

Network
Management

Station

SNMP
Client

Network
SNMP over

Note: The Microchip SNMP MIB script that is
discussed later in this document requires
that all SNMP OIDs start with ‘43’.
DS01109B-page 10 © 2008 Microchip Technology Inc.

AN1109

FIGURE 5: GENERIC STRUCTURE OF MANAGEMENT INFORMATION (SMI)

FIGURE 6: EXAMPLE OF AN ACTUAL SMI (PARTIAL INTERNET SUBTREE)

Variable1

Variable2 Variable3 Variable4

Variable6 Variable7

Variable5

Root

Object Identifier

Leaf

internet (1)

directory (1) private (4)experimental (3)

root

iso (1)

system (1) tcp (6) ...

mib (1)

mgmt (2)

enterprises (1)

...

1.3.6.1.2.1

org (3)

dod (6)

1.3.6.1
OID of this Node:

OID of this Node:
© 2008 Microchip Technology Inc. DS01109B-page 11

AN1109

Abstract Syntax Notation (ASN)
Language
Each MIB variable contains several attributes, such as
data type, access type, and object identifier. SNMP
uses special language called Abstract Syntax Notation
version 1 (ASN.1) to describe detail about variables.
ASN.1 is also used to describe SNMP and other proto-
col data exchange formats. ASN.1 is written as a text
file and compiled using an ASN syntax compiler. Most
NMS and SNMP agent software are designed to read
ASN files and build MIB accordingly. An example of a
variable description in ASN.1 syntax is shown in
Example 1.

There are commercially available MIB builders that
allow users to build MIBs graphically without needing to
learn ASN syntax. The Microchip SNMP Agent uses its
own special script to describe its agent OIDs. It also
uses its own script compiler to create compact binary
representations of the MIB. The custom script also
allows the assignment of constant data to OIDs. The
Microchip MIB script and its compiler are described in
greater detail on page 30.

EXAMPLE 1: TYPICAL ASN.1 DESCRIPTION OF A VARIABLE

Binary Encoding Rules (BER)
SNMP uses ASN.1 syntax to describe its packet and
variable contents. ASN is an abstract syntax; that is, it
does not specify how the actual data is encoded and
transmitted between two nodes. A special set of rules,
called Binary Encoding Rules (BER), is used to encode
what is described by the ASN.1 syntax. BER is self-
contained and platform independent. Each data item
encoded with BER contains its data type, data length,
and its actual value; this is in contrast to regular data,
in which only the data content is given.

A data variable encoded by BER consists of a “tag
byte”, one or more “length bytes” and one or more
“value bytes”. The tag byte describes the data type
associated with the current data variable. The length
byte(s) gives the number of bytes used to describe data
content. The value bytes are the actual data content.
Figure 7 shows the breakdown of typical BER values
and an example of encoding. An example of typical
BER encoding is provided in Figure 8.

It is not necessary for you to learn the encoding rules.
The SNMP agent automatically handles encoding and
decoding of all supported data types.

FIGURE 7: GENERIC BER FORMAT

FIGURE 8: EXAMPLE OF BER
ENCODING

org OBJECT IDENTIFIER ::= { iso 3 }
dod OBJECT IDENTIFIER ::= { org 6 }
internet OBJECT IDENTIFIER ::= { dod 1 }
.
.
.
update OBJECT-TYPE

SYNTAX SEQUENCE OF UdpEntry
ACCESS not-accessible
STATUSmandatory
DESCRIPTION

“A table containing...”
::= { udp 5 }

Number Length ValueTag

2 1 5 8 to 8n 0 to n # of bits

Tag Byte Length Byte(s) Value Byte(s)

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 1

Encoding the Integer Value ‘49’:
DS01109B-page 12 © 2008 Microchip Technology Inc.

AN1109

Protocol Data Unit (PDU)
Data packets exchanged between two SNMP nodes
are called Protocol Data Units (PDU). SNMP version 1
defines a total of five main types of PDUs:

• Get-request

• Get-Next-response

• Get-response

• Set-request

• Trap

All Get and Set PDUs share a common message for-
mat, while the format of Trap PDUs is somewhat
different. The two formats are compared in Figure 9.

You do not need to know the details of the PDU format
or its encoding to use the Microchip SNMP Agent. The
SNMP agent module automatically handles all of the
low-level protocol details, including the encoding and
decoding of data variables. If you are interested in
learning details, refer to specification RFC 1157 for
information about individual PDU fields.

FIGURE 9: PDU FORMATS FOR Get/Set AND Trap PACKETS

Version

Community

PDU Type

Request ID

Error Status

Error Index

name1

value1

Get and Set PDU Format

Trap PDU Format

SNMP Header Get/Set Header Variables

namen

valuen
• • •

• • •

name1

value1

namen

valuen
• • •

• • •
Enterprise

Agent Address

Trap Type

Code
Time Stamp

Trap Header Variables
© 2008 Microchip Technology Inc. DS01109B-page 13

AN1109
MICROCHIP SNMP AGENT APIs
The SNMP agent is implemented by several files work-
ing together with the Microchip BSD TCP/IP Stack. Like
the other components of the stack, the core of the
SNMP agent is implemented by a single file, snmp.c.
In addition, at least five other callback functions must
be implemented to provide communication between
the SNMP module, the host application, and the rest of
the TCP/IP stack.

The SNMP agent also makes use of APIs. These are
well-defined methods for communicating between
applications and the SNMP agent, and are also
designed to make application design easier for the
user.

There are a total of 10 functions associated with the
SNMP agent. A complete description of the APIs
follows through page 29.
DS01109B-page 14 © 2008 Microchip Technology Inc.

AN1109

SNMPInit

SNMPInit is used to initialize the SNMP agent module.

Syntax
void SNMPInit(void)

Parameters
None

Return Values
None

Precondition
There must be at least one free UDP socket available, and the TCP/IP has been initialized.

Side Effects
One UDP socket will be used.

Remarks
None

Example
// Do Stack manager Init.
TCPIPSetDefaultAddr();
InitializeBoard();
InitStackMgr();
TickInit();

// Initialize SNMP module
SNMPInit();

// Initialize other modules...
...
© 2008 Microchip Technology Inc. DS01109B-page 15

AN1109

SNMPTask

SNMPTask is the main state machine task. It handles all incoming SNMP packets, processes them for correct
operation and calls back the main application.

Syntax
BOOL SNMPTask(void)

Parameters
None

Return Values
TRUE, if SNMP state machine has completed its task; the stack state machine can be changed.

FALSE, if otherwise.

Precondition
SNMPInit() has been called.

Side Effects
An incoming SNMP packet is processed and acted on. Packets are discarded after being processed.

Remarks
None

Example
// Do Stack manager Init.
TCPIPSetDefaultAddr();
InitializeBoard();
InitStackMgr();
TickInit();

// Initialize SNMP module
SNMPInit();

// Initialize other modules...
...

// Enter into main loop
while(1)
{

// Main Microchip TCP/IP Stack task
StackMgrProcess();

// Call SNMP Task
SNMPTask();

// Call another Stack tasks...
...

}

DS01109B-page 16 © 2008 Microchip Technology Inc.

AN1109

SNMPGetVar

SNMPGetVar is a callback used by the SNMP agent module to request a variable value from the main application.
If the current OID is a simple variable, index will always be ‘0’. If the current OID is a sequence variable, index
may be any value from ‘0’ through ‘127’.

Syntax
BOOL SNMPGetVar(SNMP_ID var, SNMP_INDEX index, BYTE *ref, SNMP_VAL *val)

Parameters
var [in]

OID variable ID whose value is requested.

index [in]

Index of OID variable. index is useful when the OID variable is of type sequence and NMS can query any of the
available values.

ref [in/out]

Reference for multi-byte Get. ref is set to SNMP_START_OF_VAR (value of 0x00) to mark the beginning of a data
transfer. The application may read and set this parameter to keep track of a multi-byte transfer. When the multi-byte
data transfer is complete, the application must set ref to SNMP_END_OF_VAR.

val [out]

Pointer to a buffer of up to 4 bytes, depending on the data type of var:

If data type is BYTE, the application should copy the value in val->byte

If data type is WORD, the application should copy the value in val->word

If data type is DWORD, the application should copy the value in val->dword

If data type is IP_ADDRESS, the application may copy the value in either val->dword or val->v[],
with the LSB being the MSB of the IP address

If data type is COUNTER32, TIME_TICKS or GAUGE32, the application should copy the value in
val->dword

If data type is ASCII_STRING or OCTET_STRING, the application should copy the value in val->byte,
one byte at a time. In this case, ref may be used to keep track of the multi-byte transfer.

Return Values
TRUE, if a value exists for a given var at given index; data is copied in val.

FALSE, if otherwise.

Precondition
None

Side Effects
None

Remarks
For a definition of the data types associated with val, refer to the DeclareVar description on page 31.
© 2008 Microchip Technology Inc. DS01109B-page 17

AN1109

SNMPGetVar (Continued)

Example
BOOL SNMPGetVar(SNMP_ID var, SNMP_INDEX index, BYTE *ref, SNMP_VAL* val)
{

BYTE myRef;
myRef = *ref;

switch(var)
{
case LED_D5: // LED D5 control variable.

val->byte = LED_D5_CONTROL;// Return LED D5 value
return TRUE;

case ANALOG_POT0:// 10-bit value of ADC
val->word = AN0Value.Val;
return TRUE;

case TRAP_COMMUNITY:// ASCII_STRING variables
// Make sure that given index is within our range.
// TRAP_COMMUNITY is part of larger table trapInfo
if (index < trapInfo.Size)
{

// If it is empty string, this is the end.
if (trapInfo.table[index].communityLen == 0)

*ref = SNMP_END_OF_VAR;
else
{

val->byte = trapInfo.table[index].community[myRef];

// Prepare for next byte transfer
myRef++;

// If we transferred all bytes, mark it as an end
if (myRef == trapInfo.table[index].communityLen)

*ref = SNMP_END_OF_VAR;
else

// Or else, set ref to track it.
*ref = myRef;

}
}
return TRUE;

}...

// All unknown variables are cannot be retrieved.

return FALSE;
}

DS01109B-page 18 © 2008 Microchip Technology Inc.

AN1109

SNMPGetNextIndex

SNMPGetNextIndex is a callback used by the SNMP agent module to request next index after given index (if
there is one).

Syntax
BOOL SNMPGetNextIndex(SNMP_ID var, SNMP_INDEX *index)

Parameters
var [in]

OID variable ID whose next index value is requested. Only var of type sequence is called with this function.

index [in/out]

Pointer to index of OID variable. The application should read the value pointed to by this pointer and update its
content with the next available index, if there is one. If there is none, there is no need to modify its content.

INDEX_INVALID if no index is given. In that case, the next index is the very first available index.

Return Values
TRUE, if next index exists after given index.
FALSE, if otherwise.

Precondition
None

Side Effects
None

Remarks
SNMPGetNextIndex is only called for sequence index variables. The application needs to handle only index type
variables in this callback.

Example
BOOL SNMPGetNextIndex(SNMP_ID var, SNMP_INDEX *index)
{

SNMP_INDEX tempIndex;
tempIndex = *index;

switch(var)
{
case TRAP_RECEIVER_ID:

// There is no next possible index if table itself is empty.
if (trapInfo.Size == 0)

return FALSE;
// INDEX_INVALID means start with first index.
if (tempIndex == SNMP_INDEX_INVALID)
{

*index = 0;
return TRUE;

}
// Next index is one more than current one but less than size of table.
else if (tempIndex < (trapInfo.Size-1))
{

*index = tempIndex+1;
return TRUE;

}
break;

}
return FALSE;

}

© 2008 Microchip Technology Inc. DS01109B-page 19

AN1109

SNMPIsValidSetLen

SNMPIsValidSetLen is a callback used by the SNMP agent module to determine if a variable can be written with
a specific length of value. When NMS performs a Set-request operation, it supplies the new value. The SNMP
agent passes the length of this value to the application and confirms that the current variable can hold the given
length of data. If data length is too long for the variable to handle, application returns FALSE and the SNMP agent
fails the current request.

Syntax
BOOL SNMPIsValidSetLen(SNMP_ID var, BYTE len)

Parameters
var [in]

OID variable ID whose Set capability is to be checked.

len [in]

Length of Set-request data as issued by NMS.

Return Values
TRUE, if given variable var is designed to handle given length len of data.

FALSE, if otherwise.

Precondition
None

Side Effects
None

Remarks
SNMPIsValidSetLen is called for a dynamic OID with a READWRITE access attribute and ASCII_STRING or
OCTET_STRING data types only. For a definition of the READWRITE access type, refer to the DeclareVar
description on page 31.

Example
BOOL SNMPIsValidSetLen(SNMP_ID var, BYTE len)
{

switch(var)
{
case TRAP_COMMUNITY:

 // Length must be less than our allocated memory.
if (len < MAX_COMMUNITY_LEN+1)

return TRUE;
break;

case LCD_DISPLAY:
// Similarly LCD length must be less than LCD capability.
if (len < LCD_DISPLAY_LEN+1)

return TRUE;
break;

}
return FALSE;
}

DS01109B-page 20 © 2008 Microchip Technology Inc.

AN1109

SNMPSetVar

SNMPSetVar is a callback used by the SNMP agent module to modify a dynamic OID variable whose access type
is READWRITE.

Syntax
BOOL SNMPSetVar(SNMP_ID var, SNMP_INDEX index, BYTE ref, SNMP_VAL val)

Parameters
var [in]

OID variable ID whose value needs to be modified.

index [in]

Index of OID variable var. If this is a simple variable, index will always be ‘0’. In other cases, application must
validate given index before using it.

ref [in]

Reference to track multi-byte Set.

The very first Set callback will contain SNMP_START_OF_VAR (0x00) and subsequent callbacks will contain
ascending ref values to indicate the index of the byte being transferred. After transfer is complete, the value of
SNMP_END_OF_VAR will be passed to mark the end of transfer. The application should use this indication to update
local flags and values.

val [in]

Pointer to data value of up to 4 bytes, depending on the data type of var:

If data type is BYTE, the variable value is in val.byte.

If data type is WORD, the variable value is in val.word.

If data type is DWORD, the variable value is in val.dword.

If data type is IP_ADDRESS, the variable value is in val.v[] or val.dword.

If data type is GAUGE32, TIME_TICKS or COUNTER32, the variable value is in val.dword.

If data type is ASCII_STRING or OCTET_STRING, one byte of variable value is in val.byte.
A multi-byte transfer will be performed to transfer the entire data string.

Return Values
TRUE, if val is successfully written to the variable var.

FALSE, if otherwise.

Precondition
None

Side Effects
None

Remarks
SNMPSetVar is called for a dynamic OID with the READWRITE access attribute. In the case of ASCII_STRING and
OCTET_STRING with more than one byte to Set, this function will be called multiple times to transfer up to 127
bytes of data.

If given variable is of type simple, index will always be ‘0’.

For a definition of the data types associated with val, refer to the DeclareVar description on page 31.
© 2008 Microchip Technology Inc. DS01109B-page 21

AN1109

SNMPSetVar (Continued)

Example
BOOL SNMPSetVar(SNMP_ID var, SNMP_INDEX index, BYTE ref, SNMP_VAL val)
{

switch(var)
{
case LED_D5:// D5 is 8-bit control variable.

LED_D5_CONTROL = val->byte;
return TRUE;

case TRAP_RECEIVER_IP:// This is Sequence variable
// Make sure that index is within our range.

 if (index < trapInfo.Size)
 {

// This is just an update to an existing entry.
trapInfo.table[index].IPAddress.Val = val.dword;
return TRUE;

 }
 else if (index < TRAP_TABLE_SIZE)
 {

// This is an addition to table.
trapInfo.table[index].IPAddress.Val = val.dword;
// Create other empty entries.
trapInfo.table[index].communityLen = 0;

// Update table size.
trapInfo.Size++;
return TRUE;

}
break;

case LCD_DISPLAY:
// Copy all bytes until all bytes are transferred

 if (ref != SNMP_END_OF_VAR)
 {

LCDDisplayString[ref] = val.byte;
LCDDisplayStringLen++;

}
 else
 {

// Display it on the first line of the LCD
XLCDGoto(0, 0);
XLCDPutString(LCDDisplayString);

 }
return TRUE;
}

// All unknown variables cannot be Set.
return FALSE;
}

DS01109B-page 22 © 2008 Microchip Technology Inc.

AN1109

SNMPValidate

SNMPValidate is a callback used by the SNMP agent module to ask the application if the given community is a
valid string for the given operation.

Syntax
BOOL SNMPValidate(SNMP_ACTION SNMPAction, char *community)

Parameters
SNMPAction [in]

SNMP action type. Possible values for this parameter are:

community [in]

Community string that was passed along with given action.

Return Values
TRUE, if the community is a allowed to perform a given operation.

FALSE, if otherwise.

Precondition
None

Side Effects
None

Remarks
None

Example
char PUBLIC_COMMUNITY[] = “public”;
#define PUBLIC_COMMUNITY_LEN(sizeof(PUBLIC_COMMUNITY)-1)

char PRIVATE_COMMUNITY[] = “private”;
#define PRIVATE_COMMUNITY_LEN(sizeof(PRIVATE_COMMUNITY)-1)

BOOL SNMPValidate(SNMP_ACTION SNMPAction, char* community)
{

if (memcmp(community, (ROM void*)PUBLIC_COMMUNITY,
 PUBLIC_COMMUNITY_LEN))
{

if (SNMPAction == SNMP_GET)
return TRUE;

}
else if (memcmp(community, (ROM void*)PRIVATE_COMMUNITY,

 PRIVATE_COMMUNITY_LEN))
{

if (SNMPAction == SNMP_SET)
return TRUE;

}
return FALSE;

}

Value Meaning

SNMP_GET Get-request is being performed to fetch one or more variables
SNMP_SET Set-request is being performed to set one or more variables
© 2008 Microchip Technology Inc. DS01109B-page 23

AN1109

SNMPNotifyPrepare

SNMPNotifyPrepare is used by the application to prepare to send SNMP Trap to the remote host.

Syntax
void SNMPNotifyPrepare(IP_ADDR *remoteHost,
 char *community,
 BYTE communityLen,
 SNMP_ID agentIDVar,
 BYTE notificationCode,
 DWORD timestamp);

Parameters
remoteHost [in]

Remote host IP address that needs to notified.

community [in]

Community string to use for this notification.

communityLen [in]

Length of community string.

agentIDVar [in]

OID ID that is already defined as Agent ID in Microchip MIB script.

notificationCode [in]

Notification code that is to be used in this notification, this is the “Trap Type”.

timestamp [in]

Time stamp (10 ms resolution) at which this notification event occurred.

Return Values
None

Precondition
None

Side Effects
None

Remarks
SNMPNotifyPrepare is called at the beginning of a notification. With this function call, the application transfers
notification information to the SNMP agent module. To complete notification, the application must also call
SNMPNotifyIsRead() and SNMPNotify().
DS01109B-page 24 © 2008 Microchip Technology Inc.

AN1109

SNMPNotifyPrepare (Continued)

Example
// This function is wrapper to send a notification to remote NMS
// as stored in local trap table.

static BOOL SendNotification(BYTE receiverIndex,
 SNMP_ID var,
 SNMP_VAL val)

{
static enum { SM_PREPARE, SM_NOTIFY_WAIT } smState = SM_PREPARE;
IP_ADDR IPAddress;

// Copy interested trap receiver IP address into local
// variable – in network order.
IPAddress.v[0] = trapInfo.table[receiverIndex].IPAddress.v[3];
IPAddress.v[1] = trapInfo.table[receiverIndex].IPAddress.v[2];
IPAddress.v[2] = trapInfo.table[receiverIndex].IPAddress.v[1];
IPAddress.v[3] = trapInfo.table[receiverIndex].IPAddress.v[0];

// Process to send notification must be written in co-operative
// multi-tasking fashion.
// Initial state prepares SNMP agent module by supplying
// necessary information.
switch(smState)
{
case SM_PREPARE:

 SNMPNotifyPrepare(&IPAddress,
 trapInfo.table[receiverIndex].community,
 trapInfo.table[receiverIndex].communityLen,
 MICROCHIP, // Agent ID Var
 6, // Notification code
 TickGet()); // Timestamp

smState = SM_NOTIFY_WAIT;
break;

case SM_NOTIFY_WAIT:
// When notify prepare is done,
// wait for SNMP agent to be ready.
if (SNMPIsNotifyReady(&IPAddress))
{

// When it is ready, supply interested variable.
// In this version, only one variable
// can be sent per notification.
SNMPNotify(var, val, 0);
return TRUE;

}
}
return FALSE;

}

© 2008 Microchip Technology Inc. DS01109B-page 25

AN1109

SNMPNotifyIsReady

SNMPNotifyIsReady is used by the application to check whether the SNMP agent is ready for a SNMPNotify()
call.

Syntax
BOOL SNMPNotifyIsReady(IP_ADDR *remoteHost)

Parameters
remoteHost [in]

Remote host IP address that needs to notified.

Return Values
TRUE, if SNMP agent is ready for SNMPNotify().

FALSE, if otherwise. The application should maintain a time-out counter and abort calling this function if it does not
return TRUE within the time-out value.

Precondition
SNMPNotifyPrepare() is already called.

Side Effects
None

Remarks
SNMPNotifyIsReady performs ARP resolution and obtains the MAC address for a given IP address. When ARP
resolution is complete, it returns TRUE and the application is free to call SNMPNotify()to actually notify the host.
DS01109B-page 26 © 2008 Microchip Technology Inc.

AN1109

SNMPNotifyIsReady (Continued)

Example
// This function is wrapper to send a notification to remote NMS
// as stored in local trap table.
static BOOL SendNotification(BYTE receiverIndex,

 SNMP_ID var,
 SNMP_VAL val)

{
static enum { SM_PREPARE, SM_NOTIFY_WAIT } smState = SM_PREPARE;
IP_ADDR IPAddress;

// Copy interested trap receiver IP address into local
// variable – in network order.
IPAddress.v[0] = trapInfo.table[receiverIndex].IPAddress.v[3];
IPAddress.v[1] = trapInfo.table[receiverIndex].IPAddress.v[2];
IPAddress.v[2] = trapInfo.table[receiverIndex].IPAddress.v[1];
IPAddress.v[3] = trapInfo.table[receiverIndex].IPAddress.v[0];

// Process to send notification must be written in co-operative
// multi-tasking fashion.
// Initial state prepares SNMP agent module by supplying
// necessary information.
switch(smState)
{
case SM_PREPARE:

SNMPNotifyPrepare(&IPAddress,
 trapInfo.table[receiverIndex].community,
 trapInfo.table[receiverIndex].communityLen,
 MICROCHIP, // Agent ID Var
 6, // Notification code
 TickGet()); // Timestamp

smState = SM_NOTIFY_WAIT;
break;

case SM_NOTIFY_WAIT:
// When notify prepare is done, wait for SNMP agent to be ready.
if (SNMPIsNotifyReady(&IPAddress))
{

// When it is ready, supply interested variable.
// In this version, only one variable
// can be sent per notification.
SNMPNotify(var, val, 0);
return TRUE;

}
}
return FALSE;

}

© 2008 Microchip Technology Inc. DS01109B-page 27

AN1109

SNMPNotify

SNMPNotify is used by the application to transfer the variable that caused notification.

Syntax
BOOL SNMPNotify(SNMP_ID var, SNMP_VAL val, SNMP_INDEX index)

Parameters
var [in]

OID ID that is to be included in this notification.

val [in]

Value of var that is to be included in this notification.

index [in]

Index of OID ID that is to be included in this notification.

Return Values
TRUE, if remote host was successfully notified.

FALSE, if otherwise.

Precondition
SNMPIsNotifyReady() = TRUE

Side Effects
None

Remarks
SNMPNotify builds the SNMP Trap PDU and sends it to the previously-specified remote host.

Only variables of the data types BYTE, WORD, DWORD, IP_ADDRESS, COUNTER32, and GAUGE32 can be used in
SNMPNotify; in other words, only variables of these data types can generate notification. In addition, these
variables must be declared as dynamic.
DS01109B-page 28 © 2008 Microchip Technology Inc.

AN1109

SNMPNotify (Continued)

Example
// This function is wrapper to send a notification to remote NMS
// as stored in local trap table.
static BOOL SendNotification(BYTE receiverIndex,

 SNMP_ID var,
 SNMP_VAL val)

{
static enum { SM_PREPARE, SM_NOTIFY_WAIT } smState = SM_PREPARE;
IP_ADDR IPAddress;

// Copy interested trap receiver IP address into local
// variable – in network order
IPAddress.v[0] = trapInfo.table[receiverIndex].IPAddress.v[3];
IPAddress.v[1] = trapInfo.table[receiverIndex].IPAddress.v[2];
IPAddress.v[2] = trapInfo.table[receiverIndex].IPAddress.v[1];
IPAddress.v[3] = trapInfo.table[receiverIndex].IPAddress.v[0];

// Process to send notification must be written in co-operative
// multi-tasking fashion.
// Initial state prepares SNMP agent module by supplying
// necessary information.
switch(smState)
{
case SM_PREPARE:

SNMPNotifyPrepare(&IPAddress,
 trapInfo.table[receiverIndex].community,
 trapInfo.table[receiverIndex].communityLen,
 MICROCHIP, // Agent ID Var
 6, // Notification code
 TickGet()); // Timestamp

smState = SM_NOTIFY_WAIT;
break;

case SM_NOTIFY_WAIT:
// When notify prepare is done, wait for SNMP agent to be ready.
if (SNMPIsNotifyReady(&IPAddress))
{

// When it is ready, supply interested variable. – In this
// version, only one variable can be sent per notification.
SNMPNotify(var, val, 0);
return TRUE;

}
}
return FALSE;

}

© 2008 Microchip Technology Inc. DS01109B-page 29

AN1109
DESCRIBING THE MIB WITH
MICROCHIP MIB SCRIPT
Microchip’s SNMP Agent uses a custom script to
describe the MIB. This script is designed to simplify the
MIB definition and its integration with the main applica-
tion. The actual MIB used by the SNMP agent is a
binary image created by the Microchip MIB to BIB
compiler (page 37).

Microchip MIB Script Commands
A Microchip MIB file is an ASCII text file consisting of
multiple command lines. Each command line consists
of a single command that begins with the dollar sign
character ($), and one or more command parameters
that are delimited with commas and enclosed in paren-
theses. Lines that do not start with a dollar sign are
interpreted as comments and are not processed by the
compiler. Commands must be written in a single line,
they cannot span multiple lines.

The MIB script language includes a total of five com-
mands, each with a specific syntax. Only one com-
mand, DeclareVar, is mandatory; the others are
optional, depending on the application and the types of
information to be defined. In practice, at least one other
command will be used in defining an MIB. The syntax
of the script commands is explained on pages 31
through 36.

Example 2 shows part of a typical Microchip MIB file. In
this example, three separate items are being defined.
In the first script “paragraph”, a read-only node is being
established at the OID of 43.6.1.2.1.1.5. It contains the
identifier string “Microchip SNMP Agent” as static
information.

In the second paragraph, a node with dynamic temper-
ature information is being established at the OID
of 43.6.1.4.1.1.17095.3.1. The variable called
TempAlarm is assigned an identifier of ‘1’.

In the final paragraph, a two-column data array is being
created with the variables DigInputs and
DigChannel. The variables, themselves, are located
in two separate nodes with neighboring OIDs. In
addition, DigChannel is being used as the index for
the array.

EXAMPLE 2: PARTIAL LISTING OF A MICROCHIP MIB (TEXT) FILE

$DeclareVar(sysName, ASCII_STRING, SINGLE, READONLY, 43.6.1.2.1.1.5)
$StaticVar(sysName, Microchip SNMP Agent)

$DeclareVar(TempAlarm, BYTE, SINGLE, READWRITE, 43.6.1.4.1.17095.3.1)
$DynamicVar(TempAlarm, 1)

$DeclareVar(DigInputs, BYTE, SEQUENCE, 43.6.1.4.1.17095.16.1.1)
$DeclareVar(DigChannel, BYTE, SEQUENCE, 43.6.1.4.1.17095.16.1.2)
$SequenceVar(DigInputs, DigChannel)
$SequenceVar(DigChannel, DigChannel)
DS01109B-page 30 © 2008 Microchip Technology Inc.

AN1109

DeclareVar

DeclareVar declares a single variable and all of its mandatory attributes.

Status
Mandatory

Syntax
$DeclareVar(oidName, dataType, oidType, accessType, oidString)

Parameters
oidName

Name of this OID variable. This name must be unique and must follow the ANSI ‘C’ naming convention; i.e., it must
not start with a number and must not contain special characters (‘&’, ‘+’, etc.). If this variable is declared to be
dynamic, the MIB compiler will define a ‘C’ define symbol using the variable name in the header file mib.h. The
main application includes this header file and refers to this OID using oidName.

dataType

Data type of this OID variable. Valid keywords are:

oidType

OID variable type. Valid keywords are:

AccessType

OID access type: Valid keywords are:

oidString

Full “dotted-decimal” string describing this variable. If this OID is part of the Internet MIB subtree, the first two OIDs,
iso(1).org(3), must be written as decimal ‘43’ (i.e., system OID will be written as ‘43.6.1.2.1.1’).

The OID string for all OID variables must contain the same root, i.e., if the first OID variable is declared with 43 as
a root node, all following variables must also contain 43 as a root node.

Keyword Description

BYTE 8-bit data.
WORD 16-bit (2-byte) data.
DWORD 32-bit (4-byte) data.

IP_ADDRESS 4-byte IP address data.
COUNTER32 4-byte COUNTER32 data as defined by SNMP specification.
GAUGE32 4-byte GAUGE32 data as defined by SNMP specification.

OCTET_STRING Up to 127 bytes of binary data bytes.
ASCII_STRING Up to 127 bytes of ASCII data string.

OID Up to 127 bytes of dotted-decimal OID string value. If any of the individual OID values
are greater than 127, the total number of allowable OID bytes will be less than 127.

Keyword Description

SINGLE If this variable contains single value.
SEQUENCE If this variable contains array of values. All variables with an oidType of SEQUENCE

must be assigned an “index” OID variable using the SequenceVar command.

Keyword Description

READONLY If this variable can only be read.
READWRITE If this variable can be read and written.
© 2008 Microchip Technology Inc. DS01109B-page 31

AN1109

DeclareVar (Continued)

Result
If compiled successfully, this command will create a new OID variable. This variable can be used as an OID
parameter in other commands, such as StaticVar, DynamicVar, or SequenceVar.

Precondition
None

Examples
This command declares an OID variable named sysName as defined in the standard MIB subtree system:

$DeclareVar(sysName, ASCII_STRING, SINGLE, READONLY, 43.6.1.2.1.1.5)

This command declares an OID variable of type BYTE:

$DeclareVar(LED_D5, BYTE, SINGLE, READWRITE, 43.6.1.4.1.17095.3.1)
DS01109B-page 32 © 2008 Microchip Technology Inc.

AN1109

StaticVar

StaticVar declares a previously defined OID variable as static (i.e., OID containing constant data) and assigns
constant data to it.

Status
Optional; required only if the application needs to define static OID variables.

Syntax
$StaticVar(oidName, data, …)

Parameters
oidName

Name of OID variable that is being declared as a static. This oidName must have been declared by a previous
DeclareVar command.

data

Actual constant data for oidName. This data will be interpreted using the data type defined in the DeclareVar
command:

Result
If compiled successfully, this command will declare given oidName as a static OID. A static OID contains constant
data that is stored in the BIB. Static OIDs are automatically managed by the SNMP agent module; the application
does not have to implement callback logic to provide data for this OID variable.

Precondition
The given oidName must have been declared using previous DeclarVar command.

Examples
StaticVar declares an OID variable named sysName as defined in the standard MIB subtree system:

$StaticVar(sysName, Explorer 16 running Microchip SNMP Agent)

These commands declare an OID variable named sysID:

$DeclareVar(sysID, OID, SINGLE, READONLY, 43.6.1.2.1.1.2)
$StaticVar(sysID, 43.6.1.4.1.17095)

These commands declare an OID variable of type MAC address:

$DeclareVar(macID, OCTET_STRING, SINGLE, READONLY, 44.6.1.4.1.17095.10)
$StaticVar(macID, 0, 1, 2, 3, 4, 5)

Data Type Format Requirement

BYTE, WORD, or DWORD Must be written in decimal notation.

IP_ADDRESS and OID Must be written in appropriate dotted-decimal notation for data type.

ASCII_STRING
Must be free-form ASCII string with no quotes. Commas, parentheses and back-
slashes must be preceded by the back-slash (\) as an escape character.

OCTET_STRING Must be written in multiple individual bytes separated by commas.
© 2008 Microchip Technology Inc. DS01109B-page 33

AN1109

DynamicVar

DynamicVar declares a previously defined OID variable as dynamic. A dynamic OID variable is managed by the
main application. The main application is responsible for providing or updating the value associated with this
variable.

Status
Optional; required only if application requires dynamic OID variables.

Syntax
$DynamicVar(oidName, id)

Parameters
oidName

Name of OID variable that is being declared as a dynamic. It must have been declared by a previous DeclareVar
command.

id

Any 8-bit identifier value from 0 to 255. It must be unique among all dynamic OID variables. The main application
uses this value to refer to actual OID string defined by oidName.

Note: An OID variable of data type OID cannot be declared as dynamic.

Result
If compiled successfully, this command will declare given oidName as a dynamic variable. An entry will be created
in the header file mib.h file of the form:

#define oidName id

An application can refer to this dynamic OID by including the header “mib.h” in the source file that needs to refer
to this OID.

Precondition
The given oidName must have been declared using previous DeclareVar command.

Example
These commands declare an OID variable named LED_D5 as a dynamic variable:

$DeclareVar(LED_D5, BYTE, SINGLE, READWRITE, 43.6.1.4.1.17095.3.1)
$DynamicVar(LED_D5, 5)
DS01109B-page 34 © 2008 Microchip Technology Inc.

AN1109

SequenceVar

SequenceVar declares a previously defined OID variable as a sequence variable and assigns an index to it. A
sequence variable can consist of an array of values and any instance of its values can be referenced by index. More
than one sequence variable may share a single index creating multi-dimensional arrays. The current version limits
the size of the index to 7 bits wide, meaning that such arrays can contain up to 127 entries.

Status
Optional; required only if application needs to define sequence variables.

Syntax
$SequenceVar(oidName, indexName)

Parameters
oidName

Name of OID variable that is being declared as a sequence. This oidName must have been declared by a previous
DeclareVar command with oidType of SEQUENCE.

indexName

Name of OID variable that will form an index to this sequence. It must have been declared by a previous
DeclareVar command with dataType of BYTE.

Note: The dataType of indexName must be BYTE. All sequence variables must also be declared as dynamic.

Result
If compiled successfully, this command will declare given oidName as a dynamic variable.

Precondition
A given oidName must have been declared using previous DeclareVar command with oidType of SEQUENCE.

Example
These commands declare a Trap table called TRAP_RECEIVER consisting of four columns:

TRAP_RECEIVER_ID

TRAP_ENABLED

TRAP_RECEIVER_IP

TRAP_COMMUNITY

Any row in this table can be accessed using TRAP_RECEIVER_ID as an index.

$DeclareVar(TRAP_RECEIVER_ID, BYTE, SEQUENCE, READWRITE, 43.6.1.4.1.17095.2.1.1.1)
$DynamicVar(TRAP_RECEIVER_ID, 1)
$SequenceVar(TRAP_RECEIVER_ID, TRAP_RECEIVER_ID)

$DeclareVar(TRAP_RECEIVER_ENABLED, BYTE, SEQUENCE, READWRITE, 43.6.1.4.1.17095.2.1.1.2)
$DynamicVar(TRAP_RECEIVER_ENABLED, 2)
$SequenceVar(TRAP_RECEIVER_ENABLED, TRAP_RECEIVER_ID)

$DeclareVar(TRAP_RECEIVER_IP, IP_ADDRESS, SEQUENCE, READWRITE,
43.6.1.4.1.17095.2.1.1.3)
$DynamicVar(TRAP_RECEIVER_IP, 3)
$SequenceVar(TRAP_RECEIVER_IP, TRAP_RECEIVER_ID)

$DeclareVar(TRAP_COMMUNITY, ASCII_STRING, SEQUENCE, READWRITE,
43.6.1.4.1.17095.2.1.1.4)
$DynamicVar(TRAP_COMMUNITY, 4)
$SequenceVar(TRAP_COMMUNITY, TRAP_RECEIVER_ID)
© 2008 Microchip Technology Inc. DS01109B-page 35

AN1109

AgentID

AgentID assigns a previously declared OID variable of type OID as an Agent ID for this SMNP Agent. OID variable
defined to be Agent ID must be supplied in SNMPNotify function to generate Trap.

Status
Optional; required only if application needs to generate Trap(s).

Syntax
$AgentID(oidName, id)

Parameters
oidName

Name of OID variable that is being declared as a sequence. This oidName must have been declared by a previous
DeclareVar command with oidType of OID.

id

An 8-bit identifier value to identify this Agent ID variable.

Note: The data type of oidName must be OID. oidName must be declared static.

Result
If compiled successfully, AgentID will declare given oidName as a dynamic variable.

Precondition
The given oidName must have been declared using a previous DeclareVar command with oidType of OID. It
must also have been declared static using a previous StaticVar command.

Example
The following command sequence declares the Agent ID for this SNMP agent:

$DeclareVar(MICROCHIP, OID, SINGLE, READONLY, 43.6.1.2.1.1.2)
$StaticVar(MICROCHIP, 43.6.1.4.1.17095)
$AgentID(MICROCHIP, 255)
DS01109B-page 36 © 2008 Microchip Technology Inc.

AN1109
MICROCHIP MIB COMPILER mib2bib
In addition to the source code for the SNMP agent, the
companion file archive for this application note includes
a simple command-line compiler for 32-bit versions of
Microsoft Windows®. The compiler, named “mib2bib”
(management information base to binary information
base), converts the Microchip MIB script into a binary
format compatible with the Microchip SNMP Agent. It
accepts Microchip MIB script in ASCII format and gen-
erates two output files: the binary information file
snmp.bib, and the C header file mib.h. The binary
file can be placed on an SD media card to be read by
the FAT16 code.

The complete command line syntax for mib2bib is:

mib2bib [/?] [/h] [/q] <MIBFile>
[/b=<OutputBIBDir>] [/I=<OutputIncDir]

where:

/? displays command line help

/h displays detail help for all script commands

/q overwrites existing “snmp.bib” and “mib.h” files

<MIBFile> is the input MIB script file.

<OutputBIBDir> is the output BIB directory where
snmp.bib should be copied. If a directory is not
specified, the current directory will be used.

<OutputIncDir> is the output Inc directory where
mib.h should be copied. If a directory is not specified,
the current directory will be used.

For example, the command:

mib2bib MySNMP.mib

compiles the script MySNMP.mib and generates the
output files snmp.bib and mib.h in the same directory.

In contrast, the command:

mib2bib /q MySNMP.mib /b=WebPages

compiles the script file MySNMP.mib and overwrites
the existing output files. Additionally, it specifies that
the file snmp.mib is located in the subdirectory Web-
Pages. Because it isn’t specified, mib.h is assumed to
be in the current directory.

If compilation is successful, mib2bib displays the statis-
tics on the binary file, including the number of OIDs and
the Agent ID, as well as the output file size. A typical
display following a successful run is shown in Example 3.

The MIB compiler is a simple rule script compiler. While
it can detect and report many types of parsing errors, it
does have these known limitations:

• All command lines must be written in single line.
• All command parameters must immediately end

with either a comma ‘,’ or right parenthesis.
For example, $DeclareVar(myOID,
ASCII_STRING , …) will fail because the
ASCII_STRING keyword is not immediately
followed by a comma.

• All numerical data must be written in decimal
notation.

The mib2bib compiler reports all errors with a script
name, line number, error code, and actual description
of error. A list of errors, along with their explanations, is
provided in Table 5 on page 38.
© 2008 Microchip Technology Inc. DS01109B-page 37

AN1109

EXAMPLE 3: TYPICAL OUTPUT DISPLAY FOR AN mib2bib COMPILATION

C:\pic32_solutions\bsd_snmp_agent_demo\Source>mib2bib /q snmp.mib /b=WebPages
mib2bib v1.0 (May 27 2003)
Copyright (c) 2003 Microchip Technology Inc.

Input MIB File : C:\pic32_solutions\bsd_snmp_agent_demo\Source\snmp.mib
Output BIB File: C:\pic32_solutions\bsd_snmp_agent_demo\Source\WebPages\snmp.bib
Output Inc File: C:\pic32_solutions\bsd_snmp_agent_demo\Source\mib.h

BIB File Statistics:

 Total Static OIDs : 9
 Total Static data bytes: 129
 Total Dynamic OIDs : 11
 (mib.h entries)
 Total Read-Only OIDs : 4
 Total Read-Write OIDs : 7

 Total OIDs : 20

 Total Sequence OIDs : 4
 Total AgentIDs : 1
===
 Total MIB bytes : 302
 (snmp.bib size)

TABLE 5: mib2bib RUN-TIME ERROR
Error Description Reason

1000 Unexpected end-of-file found End-of-file was reached before end-of-command
1001 Unexpected end-of-line found End-of-line was reached before end-of-command
1002 Invalid escape sequence detected; only ‘,’, ‘\’, ‘(‘, or’)’

may follow ‘\’
All occurrences of ‘,’, ‘(‘, ’)’, ‘\’ must be preceded
by ‘\’

1003 Unexpected empty command string received Command does not contain any parameter
1004 Unexpected right parenthesis found Right parenthesis was found in place of a parameter
1005 Invalid or empty command received Command does not contain sufficient parameters
1006 Unexpected escape character received A ‘\’ character was detected before or after

parameters were expected
1007 Unknown command received
1008 Invalid parameters: expected $DeclareVar

(oidName, dataType, oidType, access, oid)

1009 Duplicate OID name found Specified OID name is already in use
1010 Unknown data type received Data type keyword does not match one of the

allowed keywords
1011 Unknown OID type received OID type keyword does not match one of the

allowed keywords
1012 Empty OID string received
1013 Invalid parameters: expected $DynamicVar

(oidName, id)

1014 OID name is not defined
1015 Invalid OID ID received, must be between 0-255

inclusive
DS01109B-page 38 © 2008 Microchip Technology Inc.

AN1109
1016 Invalid parameters: expected $StaticVar
(oidName, value)

1017 Invalid parameters: expected $SequenceVar
(oidName, index)

1018 Current OID already contains a static value This OID has already been declared static
1019 Invalid number of index parameters received All SequenceVar must include only one index
1020 OID of sequence type cannot contain static data All sequence OID variables must be dynamic
1021 This is a duplicate OID, the root of this OID is not the

same as previous OID(s), or this OID is a child of a
previously defined OID

All OID string must contain same root OID

1022 Invalid index received, must be BYTE data value All sequence index OID must be of data type BYTE
1023 Invalid OID access type received: must be READONLY

or READWRITE
1024 Current OID is already assigned an ID value Current OID is already declared as dynamic
1025 Duplicate dynamic ID found Current OID is already declared as dynamic with

duplicate ID
1026 No static value found for this OID Current OID was declared static, but does not

contain any data
1027 No index value found for this OID Current OID was declared as sequence but does

not contain any index
1028 OID data scope (dynamic/static) is not defined Current OID was declared, but was not defined to

be static or dynamic
1029 Invalid data value found Data value for current OID does not match with its

data type
1030 Invalid parameters: expected $AgentID

(oidName, id)

1031 Only OID data type is allowed for this command AgentID command must use OID name of OID
data type

1032 This OID must contain static OID data AgentID command must use OID name of static
data

1033 This OID is already declared as an Agent ID Only one AgentID command is allowed
1034 An Agent ID is already assigned Only one AgentID command is allowed
1035 OID with READWRITE access cannot be static An OID was declared READWRITE and made static
1036 OID of OID data type cannot be dynamic Current version does not support OID variable of

data type OID
1037 This OID is already declared as dynamic
1038 This OID is already declared as static
1039 This OID does not contain Internet root, Internet root of

'43' must be used if this is Internet MIB
All internet OIDs must start with ‘43’, this is a
warning only and will not stop script generation

1040 Given value was truncated to fit in specified data type An OID was declared as BYTE or WORD but the
value given in StaticVar exceeded the data
range

1041 Given string exceeds maximum length of 127 All OCTET_STRING and ASCII_STRING must be
less than 128

1042 Invalid OID name detected. OID name must follow
standard 'C' variable naming convention

All OID names must follow ‘C’ naming convention
as these names are used to create ‘define’ state-
ments in the mib.h file

1043 Total number of dynamic OIDs exceeds 256 This version supports total dynamic OIDs of 256
only. All dynamic OID IDs must range from 0-255

TABLE 5: mib2bib RUN-TIME ERROR (CONTINUED)
Error Description Reason
© 2008 Microchip Technology Inc. DS01109B-page 39

AN1109

BIB Format
The binary image of the MIB generated by the compiler
is an optimized form of a modified binary tree. The core
SNMP module reads this information from the binary
file on the FAT16 media and uses it to respond to
remote NMS requests.

A BIB image consists of one or more node or OID
records. A parent node is stored first, followed by its
left-most child. This structure is repeated until the leaf
nodes of this tree are reached. The second left-most
child of the original parent is then stored in the same
manner, and the process is repeated until the entire
tree is stored.

Each record consists of several fields defined below.
The format of a single BIB record takes the form:

EXAMPLE 4: FORMAT OF A SINGLE BIB RECORD

Some fields indicated by angle brackets (< >) are
always present; other fields in square brackets ([]) are
optional depending on characteristics of the current
node. The IndexCount, IndexNodeInfo and
indexDataType fields, delimited with braces ({ }), are
optional but always occur together. The
siblingOffset and distantSiblingOffset are
16 bits wide; all other fields are 8 bits wide.

The oid field is the 8-bit OID value.

The nodeInfo field is an 8-bit data structure with each
bit serving as a flag for a different node feature.

TABLE 6: nodeinfo BITS

The id field is the 8-bit variable ID for the node as
defined by the MIB script command DynamicVar. This
field is only defined for leaf nodes where
bIsIDPresent = 1. A leaf node is one that does not
have any child, i.e., bIsParent = 0.

The siblingOffset field contains the offset (with
respect to beginning of the BIB image) to the sibling
node immediately to its right. Here we define a sibling
as a node that shares the same parent node; a parent
is the linked node immediately above it. This is defined
only if bIsSibling is ‘1’.

<oid>, <nodeInfo>, [id], [siblingOffset], [distantSiblingOffset], [dataType],
[dataLen], [data], [{IndexCount, <IndexNodeInfo>, <indexDataType>}]…

Bit Name When Set (= 1)

0 blsDistantSibling Node has distant sibling
1 blsConstant Node has constant data
2 blsSequence Node is sequence
3 blsSibling Node has a sibling
4 blsParent Node is a parent
5 blsEditable Node is writable
6 blsAgentID Node is an Agent ID variable
7 blsIDPresent Node contains ID
DS01109B-page 40 © 2008 Microchip Technology Inc.

AN1109

The distantSiblingOffset field contains the off-
set to a distant sibling. This is present only if
bIsDistantSibling is ‘1’. A distant sibling is
defined as a leaf node that shares an ancestor (more
than one level up) with another leaf node. In other
words, for any given node either siblingOffset or
distantSiblingOffset will be defined, but not
both at once.

The dataType field specifies the data type for this
node. This is defined only for leaf nodes
(bIsParent = 0). The supported data types are
shown in Table 7.

TABLE 7: SUPPORTED DATA TYPES

The dataLen field defines the length of constant data.
It is defined only for a leaf node with
bIsConstant = 1, i.e., a static node.

The data field contains the actual data bytes. As
above, only leaf nodes with bIsConstant = 1 (static
nodes) will have this field.

The IndexCount field contains the index number for
this node. This is defined only if this node is of the
sequence type (bIsSequence = 1). Since only one
index is allowed in this version, this value (when
defined) will always be ‘1’.

The IndexNodeInfo field is an 8-bit data structure
that works like the nodeInfo field; individual bit defini-
tions are the same. This is defined only if this node is of
the sequence type (bIsSequence = 1).

The indexDataType field defines the data type of the
index node; it works identically to the dataType field
and uses the same definitions. This is defined only if
this node is of the sequence type (bIsSequence = 1).

DEMO SNMP AGENT APPLICATION
To better demonstrate the abilities of the SNMP agent,
the companion archive file for this application note
includes a complete demo application. Using the
Microchip Explorer 16 demonstration board as a hard-
ware platform, it allows the user to control the board in
real-time. Key features of the demo include:

• Implements a complete MIB defined in ASN.1
syntax for use with NMS software

• Provides access to simple variables, such as
LEDs and push button switches

• Illustrates read/write access to a multi-byte
ASCII_STRING variable

• Implements run-time configurable Trap table
• Illustrates read/write access to a four-column
Trap table

• Implements DHCP to obtain automatic IP address
and other configuration parameters

Hex Value Data Type

00 BYTE

01 WORD

02 DWORD

03 OCTET_STRING

04 ASCII_STRING

05 IP_ADDRESS

06 COUNTER32

07 TIME_TICKS

08 GAUGE32

09 OID
© 2008 Microchip Technology Inc. DS01109B-page 41

AN1109

Using NMS Software with the SNMP
Agent and Microchip MIB
The demo application includes an MIB definition file
written in ASN.1 syntax. This file, mchp.mib, defines
the SMI for the Explorer 16 board’s private Microchip
MIB; it is also the basis for the MIB in the binary image
created by mim2bib.exe. Figure 10 shows the full
tree view of the MIB.

Any commercial or non-commercial NMS software that
is ASN.1 compatible should be able to read and com-
pile it. When it is loaded, you can use the NMS software
to display the Microchip MIB and communicate with the
demo application.

FIGURE 10: STRUCTURE OF THE PRIVATE MICROCHIP MIB IN THE DEMO APPLICATION

Microchip
(17095)

product (1) setup (2) control (3)

name (1) version (2) date (3)

trapTable (1)

trapEntry (1)

trapReceiverNumber (1) trapEnabled (2) trapReceiverIPAddress (3) trapCommunity (4)

ledD5 (1)

ledD6 (2)

pushButton (3)

analogPot0 (4)

analogPot1 (5)

lcdDisplay (6)
DS01109B-page 42 © 2008 Microchip Technology Inc.

AN1109

The MIB definition in the demo application allows real-
time I/O and management of these features on the
Explorer 16 board:

• Trap receiver information
• Switch LEDs D5 and D6 on and off
• Read the status of push button S3
• Read two analog potentiometer values
• Write a message of up to 16 characters to the first

line of the on-board LCD display

PRODUCT SUBTREE
This subtree provides product related information, such
as name, version and date. Its OIDs are listed in
Table 8.

Trap TABLE SUBTREE
This subtree is an example of how an Agent would
remember and accept a Trap configuration as set by
remote NMS. This is a table consisting of four columns.
The size of this table is limited to 2 entries, as defined
by TRAP_TABLE_SIZE in the source file main.c.
When a Trap table entry is created with
TrapEnabled set (= 1), the Explorer 16 board will
generate a Trap whenever a push button switch is
pushed.

The OIDs for this subtree are listed in Table 9.

CONTROL SUBTREE
This subtree provides real-time I/O control of the
Explorer 16 board. The OIDs are listed in Table 10.

TABLE 8: PRODUCT SUBTREE AND ASSOCIATED OIDs

TABLE 9: Trap TABLE SUBTREE AND ASSOCIATED OIDs

TABLE 10: CONTROL SUBTREE AND ASSOCIATED OIDs

OID Name Access/Data Type Purpose

Name Read only, String Board name
Version Read only, String Version number string
Date Read only, String Release data (month, year)

OID Name Access/Data Type Purpose

TrapReceiverNumber Read only, Integer Index to this table
TrapEnabled Read-Write, Integer Enables this entry to receive Trap

1 = Enabled
0 = Disabled

TrapReceiverIPAddress Read-Write, IP Address IP address of NMS that is interested in
receiving Trap

TrapCommunity Read-Write, String with length of
8 characters

Community name to be used when
sending Trap to this receiver

OID Name Access Type Purpose
LedD5 Read-Write, Integer Switch on/off LED D5:

0 = On
1 = Off

LedD6 Read-Write, Integer Switch on/off LED D6:
0 = On
1 = Off

PushButton Read only, Integer Read status of push button switch S3:
1 = Open
0 = Closed

AnalogPot0 Read only, Integer Read 10-bit value of potentiometer AN0
AnalogPot1 Read only, Integer Read 10-bit value of potentiometer AN1
LcdDisplay Read-Write, 16 char. long String Writes first line of on-board LCD
© 2008 Microchip Technology Inc. DS01109B-page 43

AN1109

Experimenting with the Demo Agent
Application
You may add any number of static OIDs to the MIB
without making any changes to the demo application’s
source file (main.c). After adding the new OIDs to the
script file, create a new BIB file with the mib2bib
compiler.

If you want to add a dynamic OID to the demo, you
must change the snmpex.c source file. Corresponding
changes will also need to be made to the logic in the
SNMPGetVar, SNMPGetNextIndex and
SNMPSetVar callback functions. Also, you will need to
recompile the MIB script file; the new header file,
mib.h, will contain the new dynamic OIDs. When this
is all done, you can build the new project and
reprogram the microcontroller.

ANSWERS TO COMMON QUESTIONS
Q: Why is my SNMP Manager program unable to

detect my SNMP agent?
A: Make sure that you have the SNMP version set

to 1. Also, make sure that your IP address is
correct.

Q: Why am I unable to perform a “walk”?
A: The reason could be that the IP address of the

SNMP agent is incorrect and/or the SNMP
version is not set to 1.

Q: Why isn’t my SNMP agent notifying correctly?
A: Make sure that you have set up the trap param-

eters correctly. You should be able to view them
when you perform a walk.

Q: Why am I unable to set any parameters?
A: Make sure that you have the manager config-

ured properly. Also, make sure that your BIB file
has the “children” defined correctly.

Q: Why isn’t my SNMP agent servicing any
requests?

A: It is possible that the BIB file is not correctly
installed in the FAT16 storage device.
DS01109B-page 44 © 2008 Microchip Technology Inc.

AN1109
CONCLUSION
The SNMP agent presented here provides another pro-
tocol option for the Microchip BSD TCP/IP Stack.
Together with the stack and your application, it provides
a compact and efficient over-the-network management
agent than can run on any of the PIC32MX 32-bit
microcontrollers. Its ability to run independently of an
RTOS or application makes it versatile; while its ability
to handle up to 256 OIDs and an unlimited number of
static OIDs makes it flexible.

REFERENCES
J. Case, M. Fedor, M. Schoffstall and J. Davin, “A
Simple Network Management Protocol (SNMP)”, RFC
1157. SNMP Research, Performance Systems Interna-
tional and MIT Laboratory for Computer Science,
May 1990.

N. Rajbharti, AN833, “The Microchip TCP/IP Stack”
(DS00833). Microchip Technology Inc., 2002.

A. S. Tanenbaum, Computer Networks (Third Edition).
Upper Saddle River NJ: Prentice-Hall PTR, 1996.

W. R. Stevens, TCP/IP Illustrated, Volume 1: The
Protocols. Reading MA: Addison-Wesley, 1994.
© 2008 Microchip Technology Inc. DS01109B-page 45

AN1109

Software License Agreement
The software supplied herewith by Microchip Technology Incorporated (the “Company”) is intended and supplied to you, the
Company’s customer, for use solely and exclusively with products manufactured by the Company.
The software is owned by the Company and/or its supplier, and is protected under applicable copyright laws. All rights are reserved.
Any use in violation of the foregoing restrictions may subject the user to criminal sanctions under applicable laws, as well as to civil
liability for the breach of the terms and conditions of this license.
THIS SOFTWARE IS PROVIDED IN AN “AS IS” CONDITION. NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATU-
TORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
APPENDIX A: SOURCE CODE FOR
THE SNMP AGENT

Because of their size and complexity, complete source
code listings for the software discussed in this applica-
tion note are not provided here. A complete archive file
with all the necessary source and support files is
available, in .zip format, for the following applications:

• Microchip SNMP Agent
• Microchip MIB Script Compiler (mib2bib.exe)
• Demo Application for SNMP Agent and the

Explorer 16 Demonstration Board

The complete source file archive that accompanies
application note AN1108 “Microchip TCP/IP Stack with
BSD Socket API” is also available, and includes all of
the necessary source and support files for the stack.
These files are required to develop the Microchip
SNMP agent.

Both of these archive files may be downloaded from the
Microchip corporate web site at:

www.microchip.com
After downloading the archive, always check the
version.log file for the current revision level and a
history of changes to the software.

REVISION HISTORY

Revision A (10/2007)
This is the initial released version of this document.

Revision B (03/2008)
Revised “Installing Source Files” section; Revised
Tables 2, 3 and 4.
DS01109B-page 46 © 2008 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:
• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.
© 2008 Microchip Technology Inc.
Trademarks

The Microchip name and logo, the Microchip logo, Accuron,
dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro,
PICSTART, PRO MATE, rfPIC and SmartShunt are registered
trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

FilterLab, Linear Active Thermistor, MXDEV, MXLAB,
SEEVAL, SmartSensor and The Embedded Control Solutions
Company are registered trademarks of Microchip Technology
Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard,
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,
ECONOMONITOR, FanSense, In-Circuit Serial
Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB
Certified logo, MPLIB, MPLINK, mTouch, PICkit, PICDEM,
PICDEM.net, PICtail, PIC32 logo, PowerCal, PowerInfo,
PowerMate, PowerTool, REAL ICE, rfLAB, Select Mode, Total
Endurance, UNI/O, WiperLock and ZENA are trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2008, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

 Printed on recycled paper.
DS01109B-page 47

Microchip received ISO/TS-16949:2002 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

DS01109B-page 48 © 2008 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260
Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445
Toronto
Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431
China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130
China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256
China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-4182-8400
Fax: 91-80-4182-8422
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513
Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122
Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934
Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859
Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850
Taiwan - Hsin Chu
Tel: 886-3-572-9526
Fax: 886-3-572-6459
Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803
Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820

WORLDWIDE SALES AND SERVICE

01/02/08

	Introduction
	Assumption
	Features
	Limitations
	Typical Hardware
	FIGURE 1: SNMP Server Dependencies

	Resource Requirements
	TABLE 1: Memory Requirements

	Installing Source Files
	Source File Organization
	TABLE 2: Source File Directory Structure
	TABLE 3: Source Files

	Demo Application
	FIGURE 2: Overview of the SNMP Agent Development Process

	Building the Demo SNMP Agent
	TABLE 4: Demo SNMP Agent Application Project Files

	SNMP Overview
	FIGURE 3: Location of SNMP in the TCP/IP Protocol Stack
	FIGURE 4: Overview of the SNMP Model
	FIGURE 5: Generic Structure of Management Information (SMI)
	FIGURE 6: Example of an Actual SMI (Partial Internet Subtree)
	EXAMPLE 1: Typical ASN.1 Description of a Variable
	FIGURE 7: Generic BER Format
	FIGURE 8: Example of BER Encoding
	FIGURE 9: PDU Formats for Get/Set and Trap Packets

	Microchip SNMP Agent APIs
	Describing the MIB With Microchip MIB Script
	EXAMPLE 2: Partial Listing of a Microchip MIB (Text) File

	Microchip MIB Compiler mib2bib
	EXAMPLE 3: Typical Output Display for an mib2bib Compilation
	TABLE 5: mib2bib Run-time Error
	EXAMPLE 4: Format of a Single BIB Record
	TABLE 6: nodeinfo Bits
	TABLE 7: Supported Data Types

	Demo SNMP Agent Application
	FIGURE 10: Structure of the Private Microchip MIB in the Demo Application
	TABLE 8: Product Subtree and Associated OIDs
	TABLE 9: Trap Table Subtree and Associated OIDs
	TABLE 10: Control Subtree and Associated OIDs

	Answers to Common Questions
	Conclusion
	References
	Appendix A: Source Code for the SNMP Agent
	Revision History
	An SNMP Agent Using BSD Socket API
	Tradeamarks
	Worldwide Sales and Service

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /FranklinGothic-Book
 /FranklinGothic-BookItal
 /FranklinGothic-BookOblique
 /FranklinGothic-Demi
 /FranklinGothic-DemiItal
 /FranklinGothic-DemiOblique
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItal
 /FranklinGothic-HeavyOblique
 /FranklinGothic-Medium
 /FranklinGothic-MediumItal
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /MICROCHIP
 /SymbolMT
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

