
© 2008 Microchip Technology Inc. DS01107B-page 1

AN1107

INTRODUCTION
An embedded HTTP (Hyper Text Transfer Protocol)
server, or web server (as it is commonly called), is an
excellent addition to any network-enabled device.
HTTP server capability allows an embedded device to
be monitored and controlled remotely using any stan-
dard, off-the-shelf Internet browser. Owing to the
ubiquitous deployment of Internet browsers, a web-
enabled device can be accessed from almost any
computer – desktop or mobile.

This Microchip HTTP server application note and the
included FAT16 module, supplemented by the TCP/IP
application note AN1108, “Microchip TCP/IP Stack with
BSD Socket API”, provide an HTTP Server module that
can be integrated with almost any application on a
Microchip 32-bit microcontroller product.

The TCP/IP application note and the FAT16 module are
required to compile and run the HTTP server module.
All notes and files mentioned in this document are
available for download from www.microchip.com.

The software in the installation files includes a sample
application that demonstrates all of the features offered
by this HTTP server module.

Questions and answers about the HTTP server module
are provided at the end of this document in “Answers
to Common Questions” on page 35.

ASSUMPTION
The author assumes that the reader is familiar with the
following Microchip development tools: MPLAB® IDE
and MPLAB® REAL ICE™ in-circuit emulator. It is also
assumed that the reader is familiar with C programming
language, as well as TCP/IP stack, FAT16 file system,
and HTTP server concepts. Terminology from these
technologies is used in this document, and only brief
overviews of the concepts are provided. Advanced
users are encouraged to read the associated
specifications.

FEATURES
The HTTP server provided here does not implement all
HTTP functionality; it is a minimal server targeted for
embedded systems. The user can easily add new
functionality as required.

The HTTP server presented here incorporates the
following features:
• Provides portability across the 32-bit family of PIC®

microcontrollers
• HTTP Server APIs compatible with PIC18/PIC24

Microchip HTTP Server APIs
• Supports multiple HTTP connections
• Automatic interaction with the FAT16 file system
• Supports the HTTP methods: GET, HEAD, POST,

and PUT
• Supports “continue” response that may be

requested by the client.
• Supports a modified Common Gateway Interface

(CGI) to invoke predefined functions from within
the remote browser

• Supports dynamic web page content generation
• Supports HTTP web page authentication

LIMITATIONS
While the HTTP server supports the passing variables
and values using the GET and POST method, the size
of the data is limited. The size of the variable and value
are limited to HTTP_VAR_LEN and HTTP_VALUE_LEN,
respectively, to allow for the variable/value pair to be
contained in the receive buffer. Accommodation for this
limitation should be made in the web page design. It is
prudent to use the smallest possible variable and value
length to save memory length allocations.

Because the server is running on an embedded sys-
tem, large web pages with graphics could take longer
to download to the web browser. The use of pages con-
taining frames that are updated independently will
allow for faster refreshing of data.

The HTTP server is designed to handle a finite amount
of simultaneous connections. The number of connec-
tions that the server can handle depends on the
amount of data that is able to be allocated on the mem-
ory heap. An analysis of a worst-case scenario can be
used to insure that the size of the memory heap is
sufficient to support the maximum number of
simultaneous connections.

Author: Sean Justice
Microchip Technology Inc.

An HTTP Server Using BSD Socket API

www.microchip.com

AN1107

DS01107B-page 2 © 2008 Microchip Technology Inc.

TYPICAL HARDWARE
The HTTP server demonstration application requires
the use of AN1108, “Microchip TCP/IP Stack with BSD
Socket API”, and FAT16 hardware and software.

FIGURE 1: HTTP SERVER DEPENDENCIES

RESOURCE REQUIREMENTS
Program memory required by the HTTP server is
stated in the following table.

TABLE 1: MEMORY REQUIREMENTS

The compiler used for the memory requirements was
Microchip C32 version 1.00. The optimization was not
used. Note that the use of compilers and optimization
settings may increase or decrease the memory
requirements.

TABLE 2: RAM MEMORY REQUIRED BY
THE HTTP SERVER

FAT16TCP/IP Stack

HTTP Server

Resource Memory

HTTP.c module 5492 bytes
RAM memory required by the
HTTP server

30 bytes

Note: Since the HTTP server requires the use of
TCP/IP and FAT16, it will also inherit their
program memory and RAM requirements.

Resource Memory

Private data 6 bytes
Per connection data 44 bytes
Per passed parameter 32 bytes

(user-defined)
HTTP file name 32 bytes

(user-defined)
Receive buffer 80 bytes

(user-defined)
Transfer buffer 80 bytes

(user-defined)
Note: A typical application running 10 HTTP

connections with the default size defines will
use 2548 bytes of RAM.

© 2008 Microchip Technology Inc. DS01107B-page 3

AN1107

INSTALLING SOURCE FILES
The complete source code for the Microchip HTTP
Server is available for download from the Microchip
web site (see “Source Code for the HTTP Server” on
page 37).

The source code is distributed in a single Windows®

installation file:
 pic32mx_bsd_tcp_ip_v1_00_00.exe.

Perform the following steps to complete the installation:

1. Execute the file. A Windows installation wizard
will guide you through the installation process.

2. Click I Accept to consent to the software license
agreement.

3. After the installation process is completed, the
HTTP Server Using BSD Socket API item is
available under the Microchip program group.
The complete source files are copied to the
following directory, in your choice of installation
path:
\pic32_solutions\microchip\
bsd_tcp_ip\source\bsd_http_server

The “include” files are copied to the following
directory:
\pic32_solutions\microchip\
include\bsd_tcp_ip

The demonstration application for the BSD
HTTP server is located in the following directory:
\pic32_solutions\
bsd_http_server_dhcp_demo

4. For the latest version-specific features and limi-
tations, refer to the version HTML page, which
can be accessed through index.html .

SOURCE FILE ORGANIZATION
The HTTP Server consists of multiple files. These files
are organized in multiple directories.

Table 3 shows the directory structure.

Table 4 lists the server-related source files.

AN1107

DS01107B-page 4 © 2008 Microchip Technology Inc.

TABLE 3: SOURCE FILE DIRECTORY STRUCTURE

TABLE 4: SOURCE FILES

Directory Description

pic32_solutions\bsd_http_server_dhcp_demo HTTP server demo project files
and source files

pic32_solutions\microchip\bsd_tcp_ip\source\bsd_http_server HTTP server source files

pic32_solutions\microchip\include\bsd_tcp_ip HTTP server “include” files

pic32_solutions\microchip\bsd_tcp_ip\source TCP/IP source files

pic32_solutions\microchip\include\bsd_tcp_ip\templates HTTP server and TCP/IP template
header files

pic32_solutions\microchip\bsd_tcp_ip\templates HTTP server template source files

pic32_solutions\microchip\fat16\source File I/O source files

pic32_solutions\microchip\include\fat16 File I/O header files

pic32_solutions\microchip\include\fat16\template File I/O template header files

File Directory Description

bsd_http_server_demo.mcp pic32_solutions\
bsd_http_server_dhcp_demo

MPLAB HTTP server demo project

bsd_http_server_demo.mcw pic32_solutions\
bsd_http_server_dhcp_demo

MPLAB HTTP server demo
workspace

httpex.c pic32_solutions\
bsd_http_server_dhcp_demo\source

User-modifiable HTTP server
callback functions

main.c pic32_solutions\
bsd_http_server_dhcp_demo\source

Main demo file

httpex.h pic32_solutions\
bsd_http_server_dhcp_demo\source

User-modifiable HTTP server
callback functions header

eTCP.def pic32_solutions\
bsd_http_server_dhcp_demo\source

User-modifiable TCP/IP defines

fat.def pic32_solutions\
bsd_http_server_dhcp_demo\source

User-modifiable FAT16 defines

http.c pic32_solutions\microchip\
bsd_tcp_ip\source\bsd_http_server

HTTP server library source

http_private.h pic32_solutions\microchip\
bsd_tcp_ip\source\bsd_http_server

HTTP server private defines

httpex.tmpl pic32_solutions\microchip\
bsd_tcp_ip\templates

User-modifiable HTTP server
callback functions template

http.h pic32_solutions\
microchip\include\bsd_tcp_ip

HTTP ”include”

http.tmpl pic32_solutions\microchip\
include\bsd_tcp_ip\templates

User-modifiable HTTP defines,
template

httpex.tmpl pic32_solutions\microchip\
include\bsd_tcp_ip\templates

User-modifiable HTTP server
callback functions header, template

© 2008 Microchip Technology Inc. DS01107B-page 5

AN1107

DEMO APPLICATION
Included with the Microchip HTTP Server is a complete
working application to demonstrate the HTTP server
running on the Microchip BSD TCP/IP stack. This appli-
cation (the web server) is designed to run on Microchip’s
Explorer 16 demonstration board. However, it can be
easily modified to support any board.

Demo HTTP Server Application Features
Version 1.0 of the demo HTTP Server application imple-
ments the following features. Refer to version log,
through index.html, for version specific feature
additions or improvements.

• Downloads files to a HTTP client
• Downloads dynamic files to a HTTP client
• Using the GET method to pass information, will

toggle LEDs on the Explorer16 board
• Using the POST method to pass information, will

display messages on the Explorer16 board’s
LCD.

• Displays the web authentication.

The main source file for this application is main.c.
Users should refer to the source code as a starting point
for creating their own applications, utilizing different
aspects of the Microchip HTTP server.

In order to compile the project you must have the source
code from AN1108, “Microchip TCP/IP Stack with BSD
Socket API”.

Programming Demo Application
To program a target board with the demo application,
you must have access to a PIC® microcontroller pro-
grammer. The following procedure assumes that you
will be using MPLAB REAL ICE in-circuit emulator as a
programmer. If not, refer to the instructions for your
specific programmer.

1. Connect MPLAB REAL ICE in-circuit emulator
to the Explorer 16 board or to your target board.

2. Apply power to the target board.
3. Launch the MPLAB IDE.
4. Select the PIC device of your choice (this step is

required only if you are importing a hex file that
was previously built).

5. Enable the MPLAB REAL ICE in-circuit
emulator as your programming tool.

6. If you want to use a previously built hex file,
import the following file:

7. pic32_solutions\
bsd_http_server_dhcp_demo\release\
bsd_http_server_dhcp_demo.hex

If you are rebuilding the hex file, open the project
file: pic32_solutions\
bsd_http_server_dhcp_demo\bsd_http_
server_dhcp_demo.mcp, and follow the build
procedure to create the application hex file.

7. The demo application contains necessary con-
figuration options required for the Explorer 16
board. If you are programming another type of
board, make sure that you select the appropriate
oscillator mode from the MPLAB configuration
settings menu.

8. Select the Program menu option from the
MPLAB REAL ICE in-circuit emulator menu to
begin programming the target.

9. After a few seconds, you should see the mes-
sage “Programming successful”. If not, check
your board and your MPLAB REAL ICE connec-
tion. Click Help on the menu bar for further
assistance.

10. Remove power from the board and disconnect
the MPLAB cable from the target board.

AN1107

DS01107B-page 6 © 2008 Microchip Technology Inc.

Setting Demo Application Hardware
In order to run the HTTP demo correctly, you must set
up the hardware on the Explorer16 board to use the
TCP/IP stack and FAT16. Refer to AN1108, “Microchip
TCP/IP Stack with BSD Socket API” for proper
hardware setup.

The demo requires that the TCP/IP connection
(Microchip Part Number AC164123) uses SPI 1 and
the FAT16-type media storage device (Microchip Part
Number AC164122) uses SPI 2.

The HTTP Server demo application provides DCHP
server support. If no DCHP server is present, the
default address that has been provided by http.def
will be used.

Sample web pages are provided with this demo and
have been saved, by default, to the following location:
pic32_solutions\bsd_http_server_dhcp_dem
o\webpages. Copy the sample web pages to the SD
media card so that the web page content will display
properly.

Executing Demo Application
When the programmed microcontroller is installed on
the Explorer 16 demo board and powered up, the sys-
tem LED should blink to indicate that the application is
running. The two-line LCD display will show the
following information:

PIC32 BSD HTTP

<Current IP address>

When configured correctly and using the provided
FAT16 module, the demo HTTP server will serve web
pages. The sample web pages demonstrate which
HTTP methods are supported. An authentication page
is also included. The sample pages included with the
Microchip stack source archive illustrate a modified
form of CGI (a remote method invocation) and dynamic
page generation (variable substitution).

Building the Demo HTTP Server
The demo HTTP server application included in this
application note can be built using Microchip’s MPLAB
C32 C Compiler. However, you can port the source to
whichever compiler that you routinely use with
Microchip microcontroller products.

This application note includes a predefined HTTP
server project file for use with Microchip MPLAB IDE:
bsd_http_server_dhcp_demo.mcp. This project
was created using a PIC32 device. If you are using a
different device, you must select the appropriate device
by using MPLAB menu command. In addition, the
demo application project uses additional include paths
as defined in the Build Options of MPLAB IDE.

.\source

..\microchip\include

Table 5 lists the source files that are needed to build the
demo HTTP server application, and their respective
locations.

The following instructions describe a high-level proce-
dure for building the demo application. This procedure
assumes that you are familiar with MPLAB IDE and will
be using MPLAB IDE to build the application. If not,
refer to the instructions for your in-circuit development
environment to create and build the project.

1. Make sure that source files for the Microchip
HTTP server are installed. If not, refer to
“Installing Source Files”on page 3.

2. Launch MPLAB IDE and open the project file,
bsd_http_server_dhcp_demo.mcp

3. Use the appropriate MPLAB IDE menu com-
mands to build the project. Note that the demo
project was created to compile properly when
the source files are located in the directory struc-
ture that is suggested by the installation wizard.
If you installed the source files to other locations,
you must recreate or modify existing project
settings to accomplish the build.

4. The build process should finish successfully.
If not, make sure that your MPLAB IDE and
compiler are set up correctly.

© 2008 Microchip Technology Inc. DS01107B-page 7

AN1107
TABLE 5: DEMO HTTP SERVER APPLICATION PROJECT FILES
File Directory

main.c \pic32_solutions\bsd_http_server_dhcp_demo\source

httpex.c \pic32_solutions\bsd_http_server_dhcp_demo\source

eTCP.def \pic32_solutions\bsd_http_server_dhcp_demo\source

fat.def \pic32_solutions\bsd_http_server_dhcp_demo\source

http.c \pic32_solutions\microchip\bsd_tcp_ip\source\bsd_http_server

dhcp.c \pic32_solutions\microchip\bsd_tcp_ip\source\bsd_dhcp_client

block_mdr.c \pic32_solutions\microchip\bsd_tcp_ip\source

earp.c \pic32_solutions\microchip\bsd_tcp_ip\source

eicmp.c \pic32_solutions\microchip\bsd_tcp_ip\source

eip.c \pic32_solutions\microchip\bsd_tcp_ip\source

ENC28J60.c \pic32_solutions\microchip\bsd_tcp_ip\source

etcp.c \pic32_solutions\microchip\bsd_tcp_ip\source

ether.c \pic32_solutions\microchip\bsd_tcp_ip\source

eudp.c \pic32_solutions\microchip\bsd_tcp_ip\source

gpfunc.c \pic32_solutions\microchip\bsd_tcp_ip\source

pkt_queue.c \pic32_solutions\microchip\bsd_tcp_ip\source

route.c \pic32_solutions\microchip\bsd_tcp_ip\source

socket.c \pic32_solutions\microchip\bsd_tcp_ip\source

tick.c \pic32_solutions\microchip\bsd_tcp_ip\source

fat.c \pic32_solutions\microchip\fat16\source

fileio.c \pic32_solutions\microchip\fat16\source

mediasd.c \pic32_solutions\microchip\fat16\source

mstimer.c \pic32_solutions\microchip\common

exlcd.c \pic32_solutions\microchip\common

AN1107

DS01107B-page 8 © 2008 Microchip Technology Inc.

USING THE HTTP SERVER
The installation files that accompany this application
note contain the full source code for the Microchip
HTTP server (see “Source Code for the HTTP
Server” on page 37).

All applications based on the Microchip HTTP server
must be written in a cooperative multitasking manner.
Cooperative multitasking architecture consists of a
number of tasks executing in sequence. A cooperative
task would quickly perform its required operation and
return so that the next task would be able to execute.

Because of this requirement, a task that needs to wait
for some external input, or performs a long operation,
should be broken down into subtasks using a state
machine approach. Further discussion of cooperative
multitasking and state machine programming is beyond
the scope of this document. You should refer to
software engineering literature for more detail.

To simplify file management and application develop-
ment, all source files are located in subdirectories
under the source directory. See “Source File Orga-
nization” page 3 for more information.

When you develop your application for the Microchip
HTTP server, the directory structure of the demo as a
reference to create your own application-specific
subdirectory.

The following steps are typical of those you would use
to develop an application based on the Microchip
Stack. Note that these steps assume that you are using
MPLAB IDE and are familiar with the interface.

1. Install the Microchip Stack source as described
in “Installing Source Files” on page 3.

2. Create your application-specific directory in the
pic32_solutions directory.

3. Use MPLAB IDE to create your application proj-
ect and add the Stack source files as per your
HTTP node functionality.

4. Use the MPLAB Build Option dialog box to set
two additional include search paths:
.\source
..\microchip\include

5. Add your application specific source files. Now
your application project is ready for the build.

Integrating Your Application
The HTTP server included with this application note is
implemented as a cooperative task that co-exists with
the Microchip BSD TCP/IP Stack and your main appli-
cation. The server, itself, is implemented in the source
file, http.c, with a user application implementing
seven callback functions. The demo application source
file, httpex.c, should be used as a template
application to create the necessary callback functions.

The main component of the server consists of the FTP
server task..

In order to integrate the HTTP server into a user
application, do the following:

1. Set the desired MAX_HTTP_CONNECTIONS
value in the http.def header file.

2. Include the files http.c in the project.
3. Include files to support the TCP/IP stack and

FAT16.
4. Modify the main() function of the application to

include the HTTP server.
The HTTP server uses the file index.htm as its
default web page. If a remote client (browser) accesses
the HTTP server by its IP address or domain name
only, index.htm is the default page served. This
requires that all applications include a file named
index.htm. If necessary, the name of this default file
can be changed by modifying the compiler definition
HTTP_DEFAULT_FILE_STR in the http.def file.

For HTTP authentication, the server will display the file
blocked.htm if the user has entered an incorrect user
name or password. If you wish to change the file that is
displayed, modify compiler definition file:
HTTP_UNATHORIZED_FILE located in http.def.

As a default, the authentication encryption method is
BASIC64 for transmitting the user name and password
to the server. To change the encryption method, modify
the following compiler definition file
HTTP_AUTHENTICATION_METHOD (it is located in
http.def).

© 2008 Microchip Technology Inc. DS01107B-page 9

AN1107
All HTTP filenames should be in FAT16 format: file
names cannot be longer than eight characters, cannot
contain spaces, and the extensions cannot be longer
than three characters.

It is very important to make sure that none of the web
page file names contain any of the following special
alphanumeric characters:

• single or double quotes (‘ and “)
• left or right angle brackets (< and >)
• the pound sign (#)
• the percent sign (%)
• left or right brackets or braces ([, {,] and })
• the “pipe” symbol (|)
• the backslash (\)
• the caret (^)
• the tilde (~)

If a file does contain any of these characters, the corre-
sponding web page will become inaccessible. No prior
warning will be given.
The HTTP server also maintains a list of file types that
it supports. It uses this information to advise a remote
browser on how to interpret a particular file, based on
the file’s three-letter extension. By default, the
Microchip HTTP server supports “.txt”, “.htm”,
“.gif”, “.cgi”, “.jpg”, “.cla”, “.wav”, “.js” and
“.css” files. If an application uses file types that are not
included in this list, the user may modify the table
“_httpExtTbl” in the file “http.c” to allow them.

HTTP SERVER TASK
The HTTP server task contains three functions the
main application can call to set up, run, and stop HTTP
protocol. They initialize the TCP/IP stack and create a
listening socket. The functions also control incoming
connections and requests, as well as closing all of the
connections correctly.

• HTTPInit

• HTTPServer

• HTTPCloseAll

AN1107

DS01107B-page 10 © 2008 Microchip Technology Inc.

HTTPInit

HTTPInit will initialize the TCP/IP connection to handle incoming connections by an HTTP client.

Syntax
BOOL HTTPInit(void)

Parameters
None.

Precondition
The TCP/IP socket must be initialized.

Side Effects
None.

Remarks
HTTPInit should be called after FAT16 and TCP/IP have been initialized.

Example
// Initialize the TCP/IP
 TCPIPSetDefaultAddr();
 InitStackMgr();
 TickInit();

 // Initialize the FAT16 library.
 if (!FSInit())
 {
 // If failed to initialize the FAT16, set an error LED
 // Primary reasons for failure would be no SD card detected
 // Or badly formatted SD card.
 return -1;
 }

 if(!HTTPInit())
 return -1;

© 2008 Microchip Technology Inc. DS01107B-page 11

AN1107
HTTPServer

HTTPServer controls the incoming connections and processes HTTP client requests.

Syntax
void HTTPServer(void)

Parameters
None.

Return Values
None.

Precondition
HTTPInit must have been called before HTTPServer, to work correctly. The TCP/IP service routine must be
called before, or after, HTTPInit.

Example
// TCP/IP, HTTP and DHCP have all been initialized

 while(1)
 {
 StackMgrProcess();
 HTTPServer();
 DHCPTask();
 }

AN1107

DS01107B-page 12 © 2008 Microchip Technology Inc.

HTTPCloseAll

HTTPCloseAll is used to close all of the TCP/IP connections and deallocate any memory.

Syntax
void HTTPCloseAll(void)

Parameters
None.

Return Values
None.

Precondition
None.

Side Effects
The HTTP server will not accept or process any requests from the HTTP clients.

Remarks
This function will close all connections to the HTTP clients. In order to re-establish the HTTP server, the main
application must call HTTPInit and then HTTPServer to handle the incoming HTTP client requests.

Example
// close all HTTP connects
 HTTPCloseAll();

© 2008 Microchip Technology Inc. DS01107B-page 13

AN1107

HTTP SERVER MEMORY USAGE
When the HTTP server accepts an incoming client con-
nection, the server allocates memory on the stack to
manage the incoming requests. To limit the number of
connections, modify the HTTP_MAX_CONNECTIONS in
http.def file.

Memory usage is set as shown below:

• 44 bytes of memory that is unadjustable
• length of the file name (HTTP_FILENAME_LEN)
• length of the receive buffer

(HTTP_HTML_CMD_LEN + 1)
• length of the transmit buffer

(HTTP_SEND_BUF_LEN + 1)
• length of the number of GET parameters

(HTTP_MAX_ARGS * HTTP_VAR_LEN)

The topical memory allocated for each connection
would be 366 bytes. The user can modify the “upon”
defines to increase or decrease the amount of memory
allocated in http.def.

DYNAMIC HTTP PAGE GENERATION
The HTTP server can dynamically alter pages and sub-
stitute real-time information, such as input/output sta-
tus. To incorporate this real-time information, the
corresponding CGI file (*.cgi) must contain a text
string %xx, where the ‘%’ character serves as a control
code and ‘xx’ represents a two-digit variable identifier.
The variable value has a range of 00-99. When the
HTTP server encounters this text string, it removes the
‘%’ character and calls the HTTPGetVar function. If the
page requires ‘%’ as a display character, it should be
preceded by another ‘%’ character. For example, to
display “23%” in a page, put “23%%”.

AN1107

DS01107B-page 14 © 2008 Microchip Technology Inc.

HTTPGetVar

HTTPGetVar is a callback from HTTP. When the HTTP server encounters a string ‘%xx’ in a CGI page that it is
serving, it calls this function. HTTPGetVar is implemented by the main user application and is used to transfer
application specific variable status to HTTP.

Syntax
WORD HTTPGetVar(BYTE var, WORD ref, BYTE *val)

Parameters
var [in]

Variable identifier whose status is to be returned.

ref [in]

Call Reference. This reference value indicates whether this is a first call. After first call, this value is strictly main-
tained by the main application. HTTP uses the return value of this function to determine whether to call this function
again for more data. Given that only one byte is transferred at one time with this callback, the reference value allows
the main application to keep track of its data transfer. If a variable status requires more than single bytes, the main
application can use ref as an index to data array that is to be returned. Every time a byte is sent, the updated value
of ref is returned as a return value; the same value is passed on next callback. In the end, when the last byte is
sent, the application must return HTTP_END_OF_VAR as a return value. HTTP will keep calling this function until it
receives HTTP_END_OF_VAR as a return value.

Possible values for this parameter are:

data [out]

One byte of data that is to be transferred.

Return Values
New reference value as determined by main application. If this value is other than HTTP_END_OF_VAR, HTTP will
call this function again with return value from the previous call.

If HTTP_END_OF_VAR is returned, HTTP will not call this function and assumes that variable value transfer is
finished.

Possible values for this parameter are:

Precondition
None

Value Meaning

HTTP_START_OF_VAR This is the very first callback for a given variable for the current instance.
If a multi-byte data transfer is required, this value should be used to
conditionally initialize index to the multi-byte array that will be transferred
for the current variable.

For all others Main application specific value.

Value Meaning

HTTP_END_OF_VAR This is a last data byte for a given variable. HTTP will not call this
function until another variable value is needed.

For all others Main application specific value.

© 2008 Microchip Technology Inc. DS01107B-page 15

AN1107
HTTPGetVar (Continued)

Side Effects
None

Remarks
Although this function requests a variable value from the main application, the application does not have to return
a value. The actual variable value could be an array of bytes that may or may not be the variable value. Which
information to return is completely dependent on the main application and the associated web page. For example,
the variable ‘50’ may mean a JPEG frame of 120 x 120 pixels. In that case, the main application can use the refer-
ence as an index to the JPEG frame and return one byte at one time to HTTP. HTTP will continue to call this function
until it receives HTTP_END_OF_VAR as a return value of this function.

Given that this function has a return value of 16 bits, up to 64 Kbytes of data can be transferred as one variable
value. If more length is needed, two or more variables can be placed side-by-side to create a larger data transfer
array.

Example 1
Consider the page “status.cgi” that is being served by HTTP.

status.cgi contains following HTML line:

…
<td>S3=%04</td><td>D6=%01</td><td>D5=%00</td>
…

During processing of this file, HTTP encounters the %04 string. After parsing it, HTTP makes a callback
HTTPGetVar(4, HTTP_START_OF_VAR, &value). The main user application implements HTTPGetVar as
follows:

WORD HTTPGetVar(BYTE var, WORD ref, BYTE *data)
{

// Identify variable.
// Is it RB5 ?
if (var == 4)
{
// We will simply return ‘1’ if RB5 is high,
// or ‘0’ if low.

if (PORTBbits.RB5)
*val = ‘1’;

else
*val = ‘0;

// Tell HTTP that this is last byte of
// variable value.
return HTTP_END_OF_VAR;

}
else
// Check for other variables...
...

}

AN1107

DS01107B-page 16 © 2008 Microchip Technology Inc.

HTTPGetVar (Continued)

Example 2
Assume that the page “status.cgi” needs to display the serial number of the HTTP web server device.

The page “status.cgi” being served by HTTP contains the following HTML line:

…
<td>Serial Number=%05</td>
…

While processing this file, HTTP encounters the ‘%05’ string. After parsing it, HTTP makes a callback
HTTPGetVar(4, HTTP_START_OF_VAR, &value). The main application implements HTTPGetVar as follows:

WORD HTTPGetVar(BYTE var, WORD ref, BYTE *data)
{

// Identify variable.
// Is it RB5 ?.
// If yes, handle RB5 value - will be similar to Example 1.
// Is it “SerialNumber” variable ?
if (var == 5)
{

// Serial Number is a NULL terminated string.
// First of all determine, if this is very first call.
if (ref == HTTP_START_OF_VAR)
{

// This is the first call. Initialize index to SerialNumber
 // string. We are using ref as our index.

ref = (BYTE)0;
}
// Now access byte at current index and save it in buffer.
*val = SerialNumberStr[(BYTE)ref];
// Did we reach end of string?
if (*val == ‘\0’)
{

// Yes, we are done transferring the string.
// Return with HTTP_END_OF_VAR to notify HTTP server that we

 // are finished transferring the value.
return HTTP_END_OF_VAR;

}
// Or else, increment array index and return it to HTTP server.
(BYTE)ref++;
// Since value of ref is not HTTP_END_OF_VAR, HTTP server will call
// us again for rest of the value.
return ref;

else
// Check for other variables...
...

}

© 2008 Microchip Technology Inc. DS01107B-page 17

AN1107
HTTP CGI

The HTTP server implements a modified version of CGI. With this interface, the HTTP client can invoke a function
within HTTP and receive results in the form of a web page. A remote client invokes a function by HTML GET method
with more than one parameter. Refer to “RFC1866” (the HTML 2.0 language specification) for more information.

When a remote browser executes a GET method with more than one parameter, the HTTP server parses it and calls
the main application with the actual method code and its parameter. In order to manage this method, the main
application must implement a callback function with an appropriate code.

The Microchip HTTP server does not perform “URL decoding”. This means that if any of the form field text contains
certain special alphanumeric characters (such as <, >, ”, #, %, etc.), the actual parameter value would contain %xx
(xx being the two-digit hexadecimal value of the ASCII character) instead of the actual character. For example, an
entry of <Name> would return %3CName%3C.

A file that contains HTML form must have .cgi as its file extension.

AN1107

DS01107B-page 18 © 2008 Microchip Technology Inc.

HTTPExecCmd

HTTPExecCmd is a callback from HTTP. When the HTTP server receives a GET method with more than one param-
eter, it calls this function. HTTPExecCmd is implemented by the main application. This function must decode the
given method code and take appropriate actions. Such actions may include supplying a new web-page name to be
returned, and/or performing an I/O task.

Syntax
void HTTPExecCmd(BYTE **argv, BYTE argc)

Parameters
argv [in]

List of command string arguments. The first string (argv[0]) represents the form action, while the rest
(argv[1..n]) are command parameters.

argc [in]

Total number of parameters, including form action.

Return Values
Main application may need to modify argv[0] with a valid web page name to be used as command result.

Precondition
None.

Side Effects
None.

Remarks
This is a callback from HTTP to the main application as a result of a remote invocation. There could be simultaneous
(one after another) invocation of a given method. Main application must resolve these simultaneous calls and act
accordingly.

By default, the number of arguments (or form fields) and total of argument string lengths (or form URL string) is
limited to 5 and 80, respectively. The form fields limit includes the form action name. If an application requires a
form with more than four fields and/or total URL string of more than 80 characters, the corresponding definitions of
MAX_HTTP_ARGS and MAX_HTML_CMD_LEN (defined in http.def) must be increased.

Example
Consider the HTML page “Power.cgi”, as displayed by a remote browser:

<html>
<body><center>
<FORM METHOD=GET action=Power.cgi>
<table>
<tr><td>Power Level:</td>
<td><input type=text size=2 maxlength=1 name=P value=%07></td></tr>
<tr><td>Low Power Setting:</td>
<td><input type=text size=2 maxlength=1 name=L value=%08></td></tr>
<tr><td>High Power Setting:</td>
<td><input type=text size=2 maxlength=1 name=H value=%09></td></tr>
<tr><td><input type=submit name=B value=Apply></td></tr>
</table>
</form>
</body></html>

© 2008 Microchip Technology Inc. DS01107B-page 19

AN1107
HTTPExecCmd (Continued)

This page displays a table with labels in the first column and text box values in the second column. The first row,
first column cell contains the string Power Level; the second column is a text box to display and modify the power
level value. The last row contains a button labelled Apply. A user viewing this page has the ability to modify the
value in the Power Level text box and click on the Apply button to submit the new power level value to the
Microchip stack.

Assume that a user enters values of ‘5’, ‘1’, and ‘9’ in the Power Level, Low Power Setting, and High Power Set-
ting text boxes, respectively, then clicks Apply. The browser would create a HTTP request string
Power.cgi?P=5&L=1&H=9 and send it to the HTTP server. The server in turn calls HTTPExecCmd with the
following parameters:

argv[0] = “Power.cgi”, argv[1] = “P”, argv[2] = “5”, argv[3]=“L“, argv[4]=“1”, argv[5]=“H“,
argv[6]=“9“
argc = 7

The main application implements HTTPExecCmd as below:

void HTTPExecCmd(BYTE *argv, BYTE argc)
{

BYTE i;
// Go through each parameter for current form command.
// We are skipping form action name, so i starts at 1...
for (i = 1; i < argc; i++)
{

// Identify parameter.
if (argv[i][0] == ‘P’) // Is this power level?
{

// Next parameter is the Power level value.
PowerLevel = atoi(argv[++i]);

}
else if (argv[i][0] == ‘L’) // Is this Low Power Setting?

LowPowerSetting = atoi(argv[++i]);
else if (argv[i][0] == ‘H’) // Is this High Power Setting?

HighPowerSetting = atoi(argv[++i]);
}
// If another page is to be displayed as a result of this command, copy
// its upper case name into argv[0]
// strcpy(argv[0], “RESULTS.CGI”);

}

Note: For this example, the total number of arguments exceeds the default limit of 5. In order for this example to
function properly, the value of MAX_HTTP_ARGS (located in http.def) must be set to at least 7.

AN1107

DS01107B-page 20 © 2008 Microchip Technology Inc.

HTTP POST
The HTTP server supports the POST method. The POST method sends data from the client to the server. This
method is usually preferred over the GET method because it does not limit the amount of data that is transferred,
while “hiding” the data from the user. When using the GET method, the data that was transferred to the server is
displayed in the URL, where the POST method will not. The GET method also limits the number of characters that
can be transmitted.

HTTP POST methods are commonly used in forms that might have many fields or comment dialogs. The data from
these forms is sent in the body of the HTTP client request. The server will process the information and may choose
to display a confirmation page notifying the user that the data was received.

© 2008 Microchip Technology Inc. DS01107B-page 21

AN1107
HTTPSendVar

HTTPSendVar is a callback from HTTP. When the HTTP server receives a POST request, it will call this function to
post the variable and value. The main application will implement this function. The function must decode the vari-
able and its value to perform the desired method. The file name of the action making the POST request is passed
to provide the method with proper decoding. The actions taken by this function may include updating a database
file, I/O, or sending an e-mail. The function will send back an HTTP status code that will inform the server regarding
the status of the request.

Syntax
HTTP_STATUS_CODES HTTPSendVar(BYTE *filename, BYTE *var, BYTE *value, BOOL end)

Parameters
filename [in]

Name of the file that was requested by the client.

var [in]

ASCII variable from the POST request.

value [in]

ASCII value from the POST request.

end [in]

A flag indicating that there is no more information to be passed.

Return Values
The main application will return an HTTP_STATUS_CODES enumeration, based on the actions that were performed.

HTTP_STATUS_OK – function was able to perform required task.

HTTP_STATUS_CREATED – a new file was created, based on the posted data.

HTTP_STATUS_ACCEPTED – the change requested by the data was accepted by the server.

HTTP_STATUS_NOT_MODIFIED – based on the data that was past, no modification was performed.

HTTP_STATUS_BAD_REQUEST – server was not able to process the request.

HTTP_STATUS_NOT_IMPLEMENTED – server was not able to process the request, due to the fact that the
parameters passed have not been implemented.

Precondition
None.

Side Effects
None.

Remarks
This is a callback from HTTP to the main application. The variable and value are passed in ASCII format and any
special characters that have already been formatted. The variable and value lengths are assigned in http.def
and have a default of 80 characters. If the user would like to change the variable or value length, they need to modify
HTTP_VAR_LEN and HTTP_VALUE_LEN, which are found in http.def, respectively.

Example
Consider the following HTML code that uses the POST method to send data to the server:

<form action=lcdwrite.cgi method=POST>
Line 1 <input type=text name=line1 size=18 maxlength=16>

Line 2 <input type=text name=line2 size=18 maxlength=16>

<input type=submit>
<input type=reset>

AN1107

DS01107B-page 22 © 2008 Microchip Technology Inc.

HTTPSendVar (Continued)
The HTML page will display two input boxes into which the user can type text. There will also be two buttons: Reset
and Submit. Reset will clear the text boxes and Submit will send the information in the text box to the server.

The data that is sent will look like the following line, assuming that the user entered Testing on the first line and
1 2 3 on the second line:

line1=Testing&line2=1+2+3

The HTTP server will call the callback function twice with the following data:

....
HTTPSendVar(“lcdwrite.cgi”, “line1”, “Testing”, FALSE);
....
HTTPSendVar(“lcdwrite.cgi”, “line2”, “1 2 3”, TRUE);
....

The main application implements HTTPSendVar as shown below:

HTTP_STATUS_CODES HTTPSendVar(BYTE *filename, BYTE *var, BYTE *value, BOOL end)
{
 BYTE i;
 BYTE k;

 for(i = 0; i < HTTP_EX_POST_SIZE; i++)
 {
 if(!strcmp(filename, actionFile[i].filename))
 break;
 }

 if(i >= HTTP_EX_POST_SIZE)
 return HTTP_STATUS_NOT_FOUND;

 switch(i)
 {
 case 0:
 for(k = 0; k < HTTP_EX_POST_LCD_WRITE_SIZE; k++)
 {
 if(!strcmp(var, lcdwriteVar[k].filename))
 break;
 }

 if(k >= HTTP_EX_POST_LCD_WRITE_SIZE)
 return HTTP_STATUS_NOT_IMPLEMENTED;

 strcpy(lcdLine[k].filename, value);

 {
BYTE size;

size = (BYTE)strlen(lcdLine[k].filename);

if(size < 16)
{

BYTE j;
BYTE*ptr;

ptr = lcdLine[k].filename;

for(j = size; j < 16; j++)
ptr[j] = ' ';

ptr[j] = '\0';

© 2008 Microchip Technology Inc. DS01107B-page 23

AN1107
HTTPSendVar (Continued)

}

 MyLcdWriteLine(k + 1, lcdLine[k].filename);
}

 break;

 return HTTP_STATUS_OK;
}

Note: This function uses a constant look-up table to check support of the POST request. Also, the user may wish
to use this method instead of HTTPExecCmd for processing parameters that are passed with the GET
request. It they do so, define _HTTP_EXTEND_SET in http.def to allow the HTTP to use this callback
when managing the GET request.

AN1107

DS01107B-page 24 © 2008 Microchip Technology Inc.

HTTP PUT
To upload files onto the server, the client will use the PUT method. The PUT method contains the file body for the
server to save on the server. The method will either create or update the file on the server.

© 2008 Microchip Technology Inc. DS01107B-page 25

AN1107
HTTPPUTUpload

HTTPPUTUpload is a callback from the HTTP. When the client sends a PUT request, the HTTP calls this function
to check whether the file is allowed to be uploaded.

Syntax
BOOL HTTPPUTUpload(BYTE *filename)

Parameters
filename [in]

The file that has been requested to be uploaded on the server.

Return Values
If the file is allowed to be uploaded, the function will return TRUE, else FALSE.

Remarks
This callback function is used to protect the client from uploading files that could overwrite “protected” files. There
could be four ways in which the main application accepts or rejects the file:

1. The main application checks for a specific file name that it will allow to be uploaded.
2. The main application allows only certain file extension to be uploaded.
3. The main application checks the file against a list of protected files or protected file extensions.
4. The main application does not allow certain file extensions to be uploaded.

It is recommended that the main application block the uploading of *.htm files, or at least have some sort of
authentication requirement to access the web page that would allow such an action.

Example
The application can implement HTTPPUTUpload in any one of these combinations.

1. The main application could check for a specific file to upload:
BOOL HTTPPUTUpload(BYTE *filename)
{
 if(!strcmp(filename, "somefile.txt"))

return TRUE;

return FALSE;
}

2. The main application may allow for certain file extensions to be uploaded:
BOOL HTTPPUTUpload(BYTE *filename)
{
 while(*filename != '.' || *filename != '\0')

filename++;

if(*filename == '\0')
return FALSE;

if(!strcmp(filename, ".txt"))
return TRUE;

return FALSE;
}

AN1107

DS01107B-page 26 © 2008 Microchip Technology Inc.

HTTPPUTUpload (Continued)

3. The main application could restrict which file(s) can be uploaded:
BOOL HTTPPUTUpload(BYTE *filename)
{

if(!strcmp(filename, "somefile.txt"))
return FALSE;

return TRUE;
}

4. The main application can restrict which types of files are uploaded by file extension:
BOOL HTTPPUTUpload(BYTE *filename)
{
 while(*filename != '.' || *filename != '\0')

filename++;

if(*filename == '\0')
return FALSE;

if(!strcmp(filename, ".txt"))
return FALSE;

return TRUE;
}

© 2008 Microchip Technology Inc. DS01107B-page 27

AN1107
HTTPPUTSendFile

HTTPPUTSendFile is a callback from the HTTP. When the HTTP has uploaded a file, the main application might
want to display a page to the client indicating the status of the upload. Most likely the file that is loaded by the client
will be a dynamic file type (CGI).

Syntax
BOOL HTTPPUTSendFile(BYTE *filename, HTTP_STATUS_CODES status)

Parameters
filename [out]

The name of the file that will be downloaded to the client following the upload.

status [in]

The current status of the upload process. This parameter indicates the status of the uploading file. The main
application might want to download a different file when the upload failed vs. when it is successful.

HTTP_STATUS_CREATED – file was successfully uploaded on the server.

HTTP_STATUS_INTERNAL_SERVER_ERR – error in uploaded file.

Return Values
If the function returns TRUE, the file will be downloaded to the client.

Precondition
None.

Side Effects
None.

Remarks
The callback from HTTP to the main application is for the client to display notification of the status of the PUT
method. It is recommended that the main application download a page indicating success or failure to the client.

Example
The main application implements HTTPPUTSendFile as shown below:

BOOL HTTPPUTSendFile(BYTE *filename, HTTP_STATUS_CODES status)
{
 if(status == HTTP_STATUS_CREATED)

strcpy(filename, "put_ok.cgi");
else if(status == HTTP_STATUS_INTERNAL_SERVER_ERR)

strcpy(filename, "put_err.htm");
else

return FALSE;

 return TRUE;
}

AN1107

DS01107B-page 28 © 2008 Microchip Technology Inc.

HTTP Authentication
The web developer may want to limit public access to certain pages or files on the server. HTTP has authentication
to allow for this limited access. When a client tries to access a restricted page or file, the server will prompt the client
for a user name and password. The client will try again to access the page, this time passing an encrypted user
name and password. The main application is responsible for decrypting and verifying the user name and password.
The HTTP server will pass the type of encryption method that the client will use to encrypt the user name and pass-
word. Since the type of encryption is made public when the server passes it to the client, it is recommended that
the client double encrypt the data. That is, to take the user name and password and initially encrypt it using a Java
Script, and then let the client encrypt it. This means that the server will also have to double decrypt the user name
and password. It is also important to note that HTTP does not have a log out. This means that once the client has
access to the pages; as long as the browser is open, it will resend the user name and password when accessing
pages or files.

© 2008 Microchip Technology Inc. DS01107B-page 29

AN1107
HTTPAuthorizationRequired

Like the callback function HTTPPUTUpload, HTTPAuthorizationRequired is used to decide whether the file
needs to have authorization. Also like HTTPPUTUpload, this function can be implemented in more than one way.
The HTTP server can require authorization on a file-by-file basis or based on the file extension. It is recommend
that you use authorization on pages that will allow users to upload files onto the HTTP server.

Syntax
BOOL HTTPAuthorizationRequired(BYTE *filename)

Parameters
filename [in]

Name of the file requested by the client.

Return Values
If the file requires authorization to download, the function will return TRUE, else FALSE.

Precondition
None.

Side Effects
None.

Remarks
None.

Example
The main application implements HTTPAuthorizationRequired as shown below:

BOOL HTTPAuthorizationRequired(BYTE *filename)
{

if(!strcmp(filename, "somefile.htm"))
return TRUE;

return FALSE;
}

AN1107

DS01107B-page 30 © 2008 Microchip Technology Inc.

HTTPChkAuthorization

A callback function, HTTPChkAuthorization will decrypt the user name and password sent by the client. The
type of encryption will also be passed, so the callback function will use the correct decrypting algorithm. The
decrypted user name and password will be in the form username:password.

Syntax
BOOL HTTPChkAuthorization(BYTE *type, BYTE *text)

Parameters
type [in]

The type of encryption used by the client.

text [in]

The encrypted user name and password sent by the client

Return Values
If the decrypted user name and password are authenticated, then the callback function will return a TRUE and allow
the client to receive the requested file.

Precondition
None.

Side Effects
None.

Remarks
The encryption method that is most commonly used is BASIC64. It is not a secure method for encryption because
it is so common and the method is passed along with the data in the HTTP header sent from the client. It is recom-
mend that the main application have a decrypting algorithm instead of compares. For this example, a simple com-
paring of user name and password will be used. An encryption algorithm is not included as part of this app note.

Example
Note: The user name and password, admin:password, is YWRtaW46cGFzc3dvcmQ= when using BASIC64 to
encrypt.

If the following data were passed, the main application would implement the function, as shown below:

HTTPChkAuthorization(“BASIC”, “YWRtaW46cGFzc3dvcmQ=”)
BOOL HTTPChkAuthorization(BYTE *type, BYTE *text)
{
 type = strupr(type);

 if(strcmp(type, "BASIC"))
 return FALSE;

 if(strcmp(text, "YWRtaW46cGFzc3dvcmQ="))
 return FALSE;

 return TRUE;
}

© 2008 Microchip Technology Inc. DS01107B-page 31

AN1107
HTTP HEAD

The HTTP client may request the HEAD method. This method will not need any callback function by the main appli-
cation. The HEAD request is nothing more than a sort of “are you there?” request. On receiving the request, the
server will send the appropriate response.

HTTP Continue
To avoid sending large amounts of data that could not be processed by the server, the HTTP client can send a
Continue request to the server. The client will only sent the header of a POST or PUT request, asking the server
to send a Continue response. If the server wishes to process the body of the request, it will respond with the
Continue response. The client will then send the remainder of the data. This is useful if data is large and could be
rejected by the server. An example might be the PUT request that will upload a large 300K file. The client will send
the header of the PUT request to make sure that the server is going to accept the uploading of this large file before
sending it. Like the HEAD request, the main function will not need to implement any callbacks for this feature.

AN1107

DS01107B-page 32 © 2008 Microchip Technology Inc.

USER-MODIFIABLE DEFINES
HTTP_MAX_CONNECTIONS

Location
http.def

Recommended Values
1 - 10

Remarks
The number of connections is limited by this value. One should consider the amount of memory that will be
allocated when assigning a value to this define.

HTTP_HTML_CMD_LEN

Location
http.def

Recommended Values
64-126

Remarks
This define is the buffer size of the TCP/IP receive. For each connection, a receive buffer for it is allocated on the
heap. Decreasing the define will also decrease the size of the data that you are able to process. An example would
be if you define HTTP_HTML_CMD_LEN to be 64 characters, yet you have a value that could be 80 characters, it will
not be processed correctly. It is recommended that web pages that pass information to the server have a limit on
the amount of characters that it can pass.

HTTP_VAR_LEN

Location
http.def

Recommended Values
At least half of HTTP_HTML_CMD_LEN. or a maximum of HTTP_HTML_CMD_LEN - (HTTP_VALUE_LEN + 3)

Remarks
This define is a limit on the size of the variable identifier that is passed in the GET or POST request. The developer
should consider this when designing the web page, to protect against incorrect processing.

HTTP_VALUE_LEN

Location
hhtp.def

Recommended Values
At least half of HTTP_HTML_CMD_LEN or a maximum of HTTP_CMD_LEN - (HTTP_VAR_LEN + 3)

Remarks
This define is a limit on the size of the value that is passed with the variable in the GET or POST request. The devel-
oper should consider this when designing the web page, by putting maximum lengths on the input that the client
may enter and send to the server.

© 2008 Microchip Technology Inc. DS01107B-page 33

AN1107
HTTP_FILENAME_LEN

Location
http.def

Recommended Values
13 - 32

Remarks
This define is for the requested web page from the client. The value should be at least 13 characters to hold an
8-character filename plus the ‘.’ and 3-character extension. If the user is using a file system that supports long file
names, the value can be greater. One should remember that the each connection will have a file name buffer.

HTTP_SEND_BUF_LEN

Location
http.def

Recommend Values
64-1536

Remarks
This define is the buffer length that is used to store data that is sent via TCP/IP. The buffer should be as small as
possible, because each connection will have a transmit buffer.

HTTP_MAX_ARGS

Location
http.def

Recommended Values
Odd numbers, starting with a minimum value of 3.

Remarks
This should be an odd number because the first argument will be the file name. One should remember that all of
the parameters that are passed need to fit in the receive buffer.

HTTP_DEFAULT_FILE_STR

Location
http.def

Recommended Value
Index.htm

Remarks
This define is the file name that is used when the client does not send any file to download. This is usually seen on
the first GET request. The user needs to make sure that the file name corresponds with a file in the file system.

AN1107

DS01107B-page 34 © 2008 Microchip Technology Inc.

HTTP_AUTHENTICATION_METHOD

Location
http.def

Recommend Value
Basic\r\n

Remarks
This define is which type of encryption the client will use when encrypting the user name and password for a web
page that requires authentication. There MUST be a return and newline character after the encryption scheme
(\r\n).

HTTP_UNATHORIZED_FILE

Location
http.def

Recommended Value
blocked.htm

Remarks
This define is the file name that the browsers will display when the user has tried to go into a unauthorized web
page. The file name MUST have a corresponding file in the file system.

© 2008 Microchip Technology Inc. DS01107B-page 35

AN1107

ANSWERS TO COMMON QUESTIONS
Q: Why am I not able to serve all of the

connections?
A: There could be two reasons that the HTTP

server does not properly serve all of the connec-
tions. The first reason could be that the TCP/IP
stack is already handling the maximum number
of connections. To correct this, see AN1108,
“Microchip TCP/IP Stack with BSD Socket API”
to learn how to increase the number of
supported connections.

 If the number of TCP/IP connections is not the
cause, the user may need to change the
HTTP_MX_CONNECTIONS in http.def.
Increasing this define will increase the amount of
memory that the server allocates when handling
connections. It is recommended that the user
calculate the amount of memory that would be
allocated in a worst case scenario.

Q: Why are my pages downloading so slowly?
A: The problem could be that you are trying to

download a large page. Remember, this is an
embedded system and its resources are not the
same as those in a PC. You might want to
change clock speeds to increase processing
power, or modify the page to download in
“frames.” Using frames will allow the smaller
parts of the page to be downloaded.

Increasing the transmit buffer length will
increase the amount of data sent in a TCP/IP
packet. However, it is recommend that you make
this length as small as possible, because the
server allocates this buffer on the heap for each
connection that is made on the server .

Q: Why am I not able to view any web pages?
A: Make sure that the link name for that page is cor-

rect. It is recommended that you use page
names that are eight characters in length and
have extensions that are three characters. Also
make sure that the format of the page (exten-
sion) is supported by the HTTP server. The table
that has page formats and file extensions is in
http.c, _httpExtTbl. The user may modify
the table, but they must remember that they are
responsible for also updating the
HTTP_FILE_EXT_ENUM enumeration located in
http.h.

Make sure that the IP address that the client is
using to request web pages is correct. You may
do this by checking the eTCP.def file in the
TCP/IP stack source code (AN1108).

Check that the file system is configured properly.

Make sure that the device is properly configured
for the target hardware.

Q: Why is the server not processing the parameters
passed by the HTTP client?

A: If the callback function is not handling the passed
parameters correctly, you might have two prob-
lems. Make sure that the callback function is
implemented correctly. You might not be recog-
nizing the passed file correctly, or that the vari-
able is a valid one. Check the web page source
code to make sure that the variable name
matches the variable name that you are expect-
ing. Make sure that the variable-plus-value
character length is not greater than the receive
buffer length.

A good way to verify that your data is being
passed, is to use LEDs or a dynamically loaded
page that may echo the data that was passed.

AN1107

DS01107B-page 36 © 2008 Microchip Technology Inc.

Q: Why is a web page that needs authorization
being displayed without prompting the user for
authentication?

A: HTTP does not log out the user when it loads
new pages. The authorization will be sent every
time with requesting pages. If the user has
already entered a correct user name and pass-
word and the browser is open, they will be able
to load that page.

Make sure that the callback function that tells the
HTTP server that the requested page needs
authorization is implemented correctly. If this
function is not properly identifying the pages that
require authentication, then a “protected” page
could be displayed.

The callback function that decrypts the incoming
user name and password needs to correctly
decode and evaluate that the passed user name
and password is valid. Make sure that the
encryption method used does not allow incorrect
information to be decrypted and mistaken for
valid information.

Q: Why is a web page that requires authorization
not displaying, even though I am using the
correct user name and password?

A: The encryption method that you are using could
be case sensitive, make sure that the data
entered is in the same format that it was regis-
tered in. It is recommended that the user name
and password not have any special characters.
Try to use 0-9, a-z, and A-Z in the user name and
password. Limit the size of the password and
user name to fit in the receive buffer.

Make sure that the encryption method that you
are passing to the client is the same method that
you are using to decrypt the data. Check to make
sure that the user name and password that you
are using are valid for the page that you are try-
ing to display. You may have different user name
and passwords to display different pages. The
client will only send the most recent user name
and password to the server.

Q: Why won’t the server save files that I upload?
A: Check the callback function that determines

whether the file is allowed to be uploaded on the
server. Using the HTTPPutSendFile callback
function, have the client display a CGI file that
may display the name of the file that was saved;
or an error page, if the upload fails, with a reason
code.

Make sure that the file system hardware and
software that you are using is working correctly.

The storage device that you are using could be
filled and not allowing more files to be uploaded.

Q: How do I guard against people uploading web
pages on my server?

A: It is highly recommended that you require autho-
rization to access web pages that will allow you
to upload any type of file, especially if it would
allow a client to upload web pages. Another pro-
vision that should be taken is to use the callback
function HTTPPutUpload to guard against
uploading web pages. This can easily done by
not allowing “.htm” and “.cgi” files to be
uploaded.

CONCLUSION
The HTTP server presented here provides another pro-
tocol option for the BSD Socket TCP/IP Stack.
Together with the stack and the user’s application, it
provides a compact and efficient web page provider
that can run on any of the PIC32MX 32-bit microcon-
trollers. Its ability to run independently of an RTOS or
application makes it versatile.

© 2008 Microchip Technology Inc. DS01107B-page 37

AN1107

Software License Agreement
The software supplied herewith by Microchip Technology Incorporated (the “Company”) is intended and supplied to you, the
Company’s customer, for use solely and exclusively with products manufactured by the Company.
The software is owned by the Company and/or its supplier, and is protected under applicable copyright laws. All rights are reserved.
Any use in violation of the foregoing restrictions may subject the user to criminal sanctions under applicable laws, as well as to civil
liability for the breach of the terms and conditions of this license.
THIS SOFTWARE IS PROVIDED IN AN “AS IS” CONDITION. NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATU-
TORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.

PARTIAL LIST OF RFC DOCUMENTS

The complete list of Internet RFCs and the associated
documents is available on many Internet web sites.
Interested readers are referred to www.faqs.org/rfcs
and www.rfc-editor.org as starting points.

APPENDIX A: SOURCE CODE FOR
THE HTTP SERVER

The complete source code for the HTTP Server for the
Microchip BSD TCP/IP Stack, including the demo appli-
cations and necessary support files, is offered under a
no-cost license agreement. It is available for download
as a single archive file from the Microchip corporate
web site, at:

www.microchip.com.
After downloading the archive, always check the file
version.log for the current revision level and a
history of changes to the software.

RFC
Document Description

RFC 826 Ethernet Address Resolution Protocol
(ARP)

RFC 791 Internet Protocol (IP)
RFC 792 Internet Control Message Protocol

(ICMP)
RFC 793 Transmission Control Protocol (TCP)
RFC 768 User Datagram Protocol (UDP)
RFC 821 Simple Mail Transfer Protocol (SMTP)
RFC 1055 Serial Line Internet Protocol (SLIP)
RFC 1866 Hypertext Markup Language

(HTML 2.0)
RFC 2616 Hypertext Transfer Protocol (HTTP) 1.1
RFC 1541 Dynamic Host Configuration Protocol

(DHCP)
RFC 1533 DHCP Options
RFC 959 File Transfer Protocol (FTP)

AN1107

DS01107B-page 38 © 2008 Microchip Technology Inc.

REVISION HISTORY

Revision A (10/2007)
This is the initial released version of this document.

Revision B (03/2008)
Revised “Installing Source Files” section; Revised
Tables 3, 4 and 5.

© 2008 Microchip Technology Inc. DS01107B-page 39

Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, Accuron,
dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro,
PICSTART, PRO MATE, rfPIC and SmartShunt are registered
trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

FilterLab, Linear Active Thermistor, MXDEV, MXLAB,
SEEVAL, SmartSensor and The Embedded Control Solutions
Company are registered trademarks of Microchip Technology
Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard,
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,
ECONOMONITOR, FanSense, In-Circuit Serial
Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB
Certified logo, MPLIB, MPLINK, mTouch, PICkit, PICDEM,
PICDEM.net, PICtail, PIC32 logo, PowerCal, PowerInfo,
PowerMate, PowerTool, REAL ICE, rfLAB, Select Mode, Total
Endurance, UNI/O, WiperLock and ZENA are trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2008, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

 Printed on recycled paper.

Note the following details of the code protection feature on Microchip devices:
• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Microchip received ISO/TS-16949:2002 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

DS01107B-page 40 © 2008 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260
Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445
Toronto
Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431
China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130
China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256
China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-4182-8400
Fax: 91-80-4182-8422
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513
Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122
Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934
Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859
Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850
Taiwan - Hsin Chu
Tel: 886-3-572-9526
Fax: 886-3-572-6459
Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803
Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820

WORLDWIDE SALES AND SERVICE

01/02/08

	Introduction
	Assumption
	Features
	Limitations
	Typical Hardware
	FIGURE 1: HTTP Server Dependencies

	Resource Requirements
	TABLE 1: Memory Requirements
	TABLE 2: RAM Memory Required by the HTTP Server

	Installing Source Files
	Source File Organization
	TABLE 3: Source File Directory Structure
	TABLE 4: Source Files

	Demo Application
	TABLE 5: Demo HTTP Server Application Project Files

	Using THE HTTP Server
	HTTP Server Task
	HTTP Server Memory Usage
	Dynamic HTTP Page Generation
	User-Modifiable Defines
	Answers to Common Questions
	Conclusion
	Partial List of RFC Documents
	Appendix A: Source Code for the HTTP Server
	Revision History
	An HTTP Server Using BSD Socket API
	Trademarks
	Worldwide Sales and Service

