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INTRODUCTION
This application note describes various ways of detect-
ing button presses using capacitive sensing. It
assumes general knowledge of the sensing process,
and it is suggested that AN1101, �Introduction to
Capacitive Sensing� be read prior to this application
note in order to understand the hardware concepts.

Some capacitive sensing solutions on the market offer
only a �black box� approach to capacitive sensing, where
an IC is purchased and it signals button presses with
limited configurability. Microchip�s capacitive sensing
solution offers the utmost in flexibility because the soft-
ware routines to detect a button press can be completely
user-written. This is not to say the user must develop
their own software routines as Microchip provides
capacitive sensing routines which may be used to get
started immediately with your capacitive sensing
solution.

INTRODUCTION TO SOFTWARE
All of the detection schemes described operate on the
same fundamental principle that a drop in frequency
count from the running average indicates a button
press. The basic physical process to scan buttons is to
set an oscillator, sensitive to capacitance, to oscillate
on a button pad for a fixed time period. After the fixed
period, measure the frequency and check if the
frequency is different than normal. Then, move the
oscillator to the next button pad to scan. Scanning
numerous buttons is accomplished sequentially.

There are two primary pieces of code which a user must
create. The flowchart in Figure 1 shows the basic flow of
a program utilizing capacitive sensing. The first capaci-
tive sensing section of code is �Capacitive Initializations�,
where the initializations to enable the oscillator, port
direction pins and all appropriate initialization settings are
made. The second important section of code contains the
series of blocks dubbed, �Cap ISR�, which are blocks of
code executed on an interrupt when the T0IF flag is set.
These blocks execute decision making code to deter-
mine if a button is pressed or unpressed and to scan all
buttons sequentially. Each important block is described in
detail in the following paragraphs.

Initialization
To begin, the hardware must be properly initialized. A
detailed depiction of the proper settings for the
PIC16F88X family is shown in Appendix A: �Register
Settings for the PIC16F88X Family�. The different
families of parts may have slightly different register
setting values, but the key bits and signal paths are to
be set the same. Therefore, Appendix A: �Register
Settings for the PIC16F88X Family� may be used as
a guideline for which bits to set in the other families of
parts where differences in registers occur.

Below is a short checklist to ensure everything is set
properly:

� Port Direction and Analog/Digital Selection
� Oscillator Signal Paths Enabled
� Enable Timers and Set Timer0 Prescalar
� Enable Interrupts

Servicing Interrupts
The capacitive sensing is interrupt-based on the
Timer0 interrupt signaled by the flag, T0IF. The first
thing the Interrupt Service Routine (ISR) should do is
check if the flagging interrupt is a Timer0 interrupt or
another interrupt. If it is a Timer0 interrupt, then the
capacitive sensing must be serviced.

If another interrupt vectors program flow to the ISR, the
ISR should service that interrupt, and at the end of the
interrupt routine, it must check that Timer0 did not roll
over during the ISR. If it did, the T0IF flag will be set, and
the sample it represents should be assumed as bad.
T0IF should then be cleared and the timers restarted to
take another sample. The sample is bad because the
fixed period for measurement, based on Timer0,
becomes variable if not serviced immediately. 

The following sections step through an ISR item in the
flowchart, beginning with the �Read TMR0� block.

Servicing Interrupts: Take a Reading
To obtain the reading of the current sensor which has
just completed its scan, the Timer1 value must be read.
An unsigned integer variable is required to hold the raw
value. The code to obtain a reading is shown in
Example 1:

EXAMPLE 1: READING FREQUENCY

Author: Tom Perme
Microchip Technology Inc.

unsigned int value;
value = TMR1L + (unsigned int)(TMR1H << 8);

Software Handling for Capacitive Sensing



AN1103

DS01103A-page 2 © 2007 Microchip Technology Inc.

The result in value will be the current reading of the
sensor which was set to scan on the previous pass of
the capacitive service routine. The variable, value, will
next be compared to the 16-point average to determine
if a significant drop in frequency count is present.

FIGURE 1: SOFTWARE FLOW
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Servicing Interrupts: Determine if Pressed
In this section, a very simple button press detection
algorithm will be introduced. It is shown in Example 2.

EXAMPLE 2: SIMPLE DETECTION

The variable trip holds a value which is the distance in
counts below the average that the raw must drop
before a button press is detected. For a quick example,
if the running average is 9000 and the trip is set at 800,
the raw must drop to 8200 before a button is
considered pressed.

All the detection schemes operate on the same
fundamental principle that a drop in frequency count
from the running average indicates a button press.
More sophisticated methods are detailed in the �But-
ton Detection Algorithms� section along with some of
the details and compensations which may be required.

Servicing Interrupts: Averaging
Averaging the current reading is a fairly simple step. To
make the averaging efficient, it does not store 16 vari-
ables to do a 16-point average. Instead, the current
reading is given a weight of 1/16th, while the running
average is weighted as 15/16th. The line of code shown
in Example 3 performs the 16-point averaging with
indexed buttons.

EXAMPLE 3: COMPUTE AVERAGE

Using a number which is a power of 2 for the N-point
average, saves processing time because right-shifts
can be used instead of software division. When using
assembly, one should perform right-shifting, but when
using an intelligent C compiler, such as HI-TECH
PICC�, the compiler will recognize division by a power
of 2 and use right-shifts. 

Servicing Interrupts: Preparing Next 
Sensor
Once the Timer0 interrupt has been serviced, the next
sensor to be tested should be set. This involves
indexing the next sensor and setting the appropriate
connections for comparator inputs. 

1. Set Index.
2. Set Comparator Input Channels.
3. (Optional) Set External MUX Lines Control.

Increment the index variable and roll over to zero when
applicable. This assumes that an array of averages is
created to hold the average values for all the buttons.
In Example 4, the use of four buttons is assumed as the
standard unaltered capacity of a PIC® device with an
SR latch.

EXAMPLE 4: INDEX SEQUENCING

Next, configure the comparator inputs using predefined
constants. These constants are derived from the proper
settings for registers, CM1CON0 and CM2CON0. They
hold the proper signal settings and different bit values
on CMxCON0<1:0> for the internal MUX channel to
determine which negative comparator input channel is
used (C12INx-). The predefined constants are shown
in Example 5:

EXAMPLE 5: PREDEFINED CONSTANTS

The comparator registers which must be set to one of
these constants are shown below and are based on the
index variable. The index for the buttons maps directly
to the comparator input channel when using a part�s
four inherent buttons. 

EXAMPLE 6: INDEX FOR BUTTON MAPS

However, when handling many buttons, care must be
taken that the comparator input channel is properly set
based on the index of the button being scanned. This
becomes an important issue when greatly expanding
button capacity with external MUXes because the index
is then detached from which comparator input channel it
represents. For more detailed information on this
specific topic, see AN1104, �Capacitive Multi-Button
Configurations�.

if (raw < average-trip))
// Button pressed

else
//Button not Pressed

average[index] = average[index] + \
(raw – average[index])/16;

Note: When using powers of two, an AND opera-
tion can simplify rolling over from 2n � 1
to zero. Code for 4 buttons:
index = (++index) & 0x03;

if (index < 3)
index++;

else
index = 0;

// C12INx-    0     1     2     3
COMP1[4] = {0x94, 0x95, 0x96, 0x97};
COMP2[4] = {0xA0, 0xA1, 0xA2, 0xA3};

CM1CON0 = COMP1[index]; 
CM2CON0 = COMP2[index];
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Servicing Interrupts: Restart Timers and 
Clear T0IF
Timer0 and Timer1 must be cleared each time a read-
ing is started in order to maintain consistent readings.
Setting TMR1ON re-enables Timer1. Lastly, the T0IF
interrupt flag must be cleared or else the program will
immediately return to the ISR.

EXAMPLE 7: SERVICING INTERRUPTS

The next sensor is now prepared, and on the next inter-
rupt caused by Timer0, the capacitive service routine
will be run again and complete the scan for that sensor.

SCAN RATE
At this point, each button is being scanned sequentially.
A pertinent question to ask is, �How long does it take?�
The scan rate for a single button is primarily defined by
the equation below:

EQUATION 1:

This is the time it takes for Timer0 to roll over and
create an overflow interrupt. The three chief parame-
ters are the number of counts to overflow Timer0 (256),
the instruction cycle time of each (4 x TOSC) and the
Timer0 Prescalar amount (PS). For a prescalar of 1:4,
the value, PS, would be 4. This equation is ideal as it
assumes that there are no overhead losses. For
instance, when using a computation intensive method,
such as the percentage method described later, an
additional overhead will be added to this time.

BUTTON DETECTION ALGORITHMS
The first action to create a good system prior to writing
firmware is to enable easier detection by creating a
sensor with small parasitic capacitance so that a bigger
change is detectable. This will make a system function
with more ease and less development time.

With a reasonable system, even a very small change
can be detected. Being able to control how a change is
detected becomes a finer point regarding how the
application should behave. A couple of common things
desired for systems are simple buttons and sensing a
person at a distance. 

Microchip has developed several software techniques to
detect a button press which work through window glass,
Plexiglas® or other non-conductive surfaces. As stated

in the introduction, an average is always used, and it is
usually helpful to slow this average down because the
microprocessor can average in a finger approaching the
pad before the finger touches the pad; in which case, a
button press never occurs. This is accomplished by
averaging every 2nd time through the service routine, or
every 4th for example; that is done while each and every
pass the if-statement to check if a button is pressed is
executed for immediate detection.

The three button detection algorithms are:

� Method 1: Explicit Trip, Fixed Hysteresis
� Method 2: Percentage Trip
� Method 3: Percentage One at a Time, Always 

Average

Method 1: Explicit Trip, Fixed Hysteresis
This button detection algorithm is the fastest in terms of
execution cycles and deals with raw values directly. It
relies on three key items: slowing the averaging down,
providing a small hysteresis beyond which averaging
stops and knowing a good threshold to set for the trip
value. Knowing a good threshold must be determined
experimentally, but given a known system, it does not
vary greatly. Microchip provides an mTouch Diagnostic
Tool to aid in analyzing your capacitive system. This tool
can communicate with your system via I2C�, using the
PICkit� Serial Analyzer, and it displays real-time data to
characterize your system. It can be very helpful in pro-
viding a more intuitive understanding of what is going on
in your capacitive sensing system. 

To determine the trip threshold and an acceptable
amount of hysteresis, the following exercise using the
mTouch Diagnostic Tool will demonstrate how to pick
good values for a Microchip demo board.

Figure 2 shows Sensor 6 with a finger pressed on the
button. The gold bar near 16,400 is the average and the
red bar just below the 16,000 tick mark indicates the cur-
rent raw value. The average has ceased to track the raw
value because it has crossed the trip threshold, although
it is not shown on the diagnostic tool. The blue and green
bars on Sensors 2 and 3 are informational bars which
may be set by the user to help visualize trip levels (they
do not write or read values to or from the microcontroller).

TMR1L = 0;
TMR1H = 0;
TMR1ON = 1;
TMR0 = 0;
T0IF   = 0;

TSCAN = 256 x (4 x TOSC) x PS
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FIGURE 2: mTouch DIAGNOSTIC TOOL SCREENSHOT

Now, for the system which is being tested, Sensor 6
has a normal unpressed value of about
Average = 16397. This value can be read below the
graph. The pressed value is Raw = 15936. The differ-
ence from the average value is 461. So, a good trip
threshold would be 80% of that or roughly 370. 

Choose:

trip = 370

Setting it exactly to 461 would not allow any tolerance
for environmental changes or unknown changes. It
could result in being unable to cause a press. Setting it
too small would make it extremely sensitive, and then it
might fire before the button is physically touched. If set
too sensitive, adjacent buttons may also unintentionally
trigger the button. 

Now, there is only 1 large choice remaining: namely,
how much hysteresis to provide. Only a little hysteresis
is needed and it be determined experimentally. The
hysteresis that is required is simply to prevent button
jitter. A small hysteresis is desirable to prevent �stuck�
buttons. The simplest example is to assume after a
press that the raw value must rise all the way to the pre-

vious average. If another button is being pressed, or
metal, water or other environmental factors change,
including large current draw through the microcontrol-
ler, the reading may sag and the raw value may not rise
fully to its previous average. Jitter in a reading due to a
finger being wiggled while on the button is reasonably
small and usually the jitter is within 16 counts if a finger
is held still. So, a hysteresis of 64 will provide between
48 to 64 counts of hysteresis for a shaky finger press
(or other source of jitter).

Choose:

hysteresis = 64

A final check for the hysteresis is that it is not greater
than the average. This would happen in a system which
has a very small change due to a finger press. The cur-
rent system has a mediocre change of 461, and with
the trip at 370, the hysteresis takes 64 away, leaving an
average range of 306 within the running average. The
design is ready to be implemented. Example 8 shows
the implementation in code of the key concepts. 
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EXAMPLE 8: CODE FOR METHOD 1: EXPLICIT TRIP
// Assume the sensor we designed for has an index 6 and there are 16 buttons.
unsigned int average [16];
unsigned int trip [16];

CapInit() 
{

// Initializations not shown complete

trip[6] = 370; // Set sensor’s trip level
}

CapISR() 
{

GetReading();

// Example for index = 6
if (raw < (average[index] – trip[index]) ) {

// Button Pressed
// 1. Set Button Flag for Sensor # index
// 2. Do not average (requires no action)

// 1
switch(index) {

case 0: Buttons.BTN0 = 1; break;
case 1: Buttons.BTN1 = 1; break;

…
case 6: Buttons.BTN6 = 1; break;

…
default : break;

}
} else if (raw > (average[index] – trip[index] + 64)){

// Button unpressed

// 1. Clear Button Flag for Sensor # index
// 2. Perform Slow Average

// 1
switch(index) {

case 0: Buttons.BTN0 = 0; break;
case 1: Buttons.BTN1 = 0; break;

…
case 6: Buttons.BTN6 = 0; break;

…
default : break;

}

// 2
if (AvgIndex < 2) AvgIndex++;
else AvgIndex = 0;

if (AvgIndex == 2)
average[index] = average[index] + ((long)raw-(long)average[index])/16;

}

SetNextSensor();
RestartTimers();

}
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Method 2: Percentage Trip
A good way to abstract from the absolute values of the
average and raw is to base detection on a percentage
change from the average. Doing so makes tuning a
capacitive system easier and can provide more
reliability. It requires more processing time to do the
necessary computations, but it also can reduce mem-
ory usage in comparison to Method 1 by not storing an
array of trip values unique to each button. The other
tasks, such as slow averaging and setting up sensors,
are still the same.

When doing mathematical computations to find the
average, the result is usually a fractional number, such
as 0.05. Instead, it is easier to work in the micro-
controller with whole numbers, therefore the result will
be multiplied by 100 to achieve 5 for 5%. Multiplying by
1000 can include the first tenth of a percent and would
represent 5.2% with 52. Code that performs the
percentage follows in Example 10. 

Note that if the percentage is negative, the raw value is
greater than the average. This range should be
included in setting the average, and so, negative val-
ues are ignored and set to zero for making averaging
logic simple.

Now the trip level will be a percentage �ON� that the
button is pressed, PCT_ON. This threshold, like the trip
from Method 1, also comes from experimental data, but
can be anywhere between 1% for a weak press to 25%
for a very strong press. A separate value for the per-
centages which is less than a percentage �OFF�,
PCT_OFF must also be set, and making it different
than PCT_ON provides hysteresis. Lastly, a slowed
average is performed as done before until the average
reaches the button off threshold.

For an example, assume the following values. These
values are made to be nice even numbers, but they are
realistic numbers.

Unpressed Average 15000

Pressed Reading 13500

Difference 1500

Percentage Difference 10%

So, to apply a safe percentage on, a good PCT_ON
value would be about 8%, or 80% of the 10% change.
A 1% hysteresis is plenty for the percentage off,
because the absolute charge is of good size; a
1 percent hysteresis is 150 counts for this example.
This is typically the case for using the percentage-
based method and only differs for very low-frequency
count readings. So, PCT_OFF should be 7%. If more
hysteresis were desired, choose 6% or 5%.

Choose:

PCT_ON = 8

PCT_OFF = 7

EXAMPLE 9: PERCENTAGE CALCULATION

Note: Using the PC software, mTouch Diagnostic
Tool and a PICkit Serial Analyzer does
introduce marginal capacitance, but as
long as the system is not operating near the
limits, the effect is insignificant. When pos-
sible, always test the system using the true
system components instead of simulated
tests.

long percent;

CapISR()
{
...

percent = ((long)average[index] - (long)raw[index]);
if (percent < 0){

percent = 0;
} else {

percent = percent * 100;
percent = percent / average[index];

}
...
}
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The design is now ready to be implemented and is
done so by the code shown in Example 10:

EXAMPLE 10: PERCENTAGE 
IMPLEMENTATION

Method 3: Percentage Voting
A third suggested method exists to counter drastic
environmental changes, such as the sustained appear-
ance of water near a button. In this method, only one
button may be pressed at a time, and the most pressed

button is the one that is chosen. It is �voted� most
pressed. If enough water is spilled on a surface of sen-
sors, it will increase the dielectric to nearby ground and
cause a false button press. It is because of water�s high
dielectric, that it creates a strong capacitive link over
the entire surface on which it is present.

FIGURE 3: WATER ON SENSOR GLASS 
w/FIELD LINES

There is no perfect capacitive solution to the problem of
water splashing on the sensing surface simply due to
physics. A water drop splashing on the surface can
look just like a finger press, but to attempt to combat
standing water, this third method was developed.

When water splashes on a surface and stays there,
often a finger press can still be detected through the
water. In this case, the running average must be set
based on the conditions experienced, having water on
the sensing surface. This requires the average to be
run all the time and button presses have only a finite
duration until a new average settles to the lower
pressed value.

When water spans more than one button, the most
pressed button is often the correct button. For example,
assume water spans three buttons, called 1, 2 and 3,
as in Figure 4. The system has averaged to its state
with water on the surface and a person presses button
3. All three buttons will drop in frequency even more
due to the water making capacitive connections to all
three pads. However, the frequency count on button 3
will likely drop more than those of the other buttons 1
and 2. Now, the algorithm dictates the button with the
highest percentage, as described in Method 2, should
be selected from all buttons.

COMPARISONS
The three methods each have pros and cons, but all are
suitable for use. If program and RAM memory are lim-
ited, as on a PIC16F610, the percentage or percentage
voting methods may or may not fit, and will consume a
lot of device resources. Using a larger part, such as a
part from the PIC16F887 family or the PIC16F690 family
will provide more RAM to enable use of the percentage
methods. Table 1 shows some comparative trade-offs
between the three methods.

// Define Percentage on/off 
// presses for all buttons
#define PCT_ON 8
#define PCT_OFF 7

CapISR() 
{
GetReading();

// GetPercentage() is the code 
// from the previous example.
percent = GetPercentage(); 

if (percent < PCT_OFF) {

// 1. Clear Button’s Flag
// 2. Perform Slow Averaging

// 1 (just like Method 1)
switch(index) {
case 0: Button.BTN0 = 0; break;

...
default: break;

}

// 2 (just like Method 1)
if (AvgIndex < 2) AvgIndex++;
else AvgIndex = 0;

} else if (percent > PCT_ON) {

//  1. Set Button’s Flag
//  2. Do not average (take no
//     action)

// 1 (as before)
switch (index) {
case 0: Button.BTN0 = 1; break;

...
default: break;

}
}

SetNextSensor();
RestartTimers();

}

Field Lines
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TABLE 1: SOFTWARE METHODS COMPARISON

The percentage-based routines use more math to
determine if a button is pressed or not, so they require
more memory. The percentage voting system addition-
ally requires two arrays to sort which button is the most
pressed, which requires more memory on top of the
percentage math routines.

They key benefit of the percentage-based routines is
ease of setup. By abstracting one step away from the
raw values, it is easier to have good working percent-
age values for several boards, or even across designs.
Where the abstract values may change significantly
across designs, or even on different buttons of a
specific design, the percentage changes are roughly
the same. Therefore, it helps to get to a working solu-
tion quicker than determining proper trip values as
required for Method 1: Explicit Trip.

Additionally, using the percentage voting system can
help with conductive foreign objects in the proximity of
the sensing area. It is very helpful with thin films of
water, where the other methods are prone to detect
presses on all covered buttons, but when pooled water
occurs, or metal, or another highly dielectric or conduc-
tive material is nearby, it will lose its reliability like the
other two methods.

The first two methods, Explicit Trip and Percentage
Trip, are intended to be good starting points to use as
initial methods which may be customized for the given
application. Other features, such as time-outs on but-
tons, activate a button on the press and release of a
pad, and other application desired features can be
integrated into these methods.

FIGURE 4: FINGER THROUGH WATER

Determining a button press like this is not ensured,
though, but it provides reasonable reliability with only
small to medium amounts of water on the board. For a
small film of water on the sensing surface, this works
well; likewise for condensation or dew. However, when
the surface is heavily flooded, the method loses its
reliability.

The best way to counter water problems is to design
the physical system such that water has a hard time hit-
ting, running over or standing on the sensing surface.
For example, mount the button surface at an angle so
that water can not stand on the surface; then, only a
water film might be present. Reliability is improved
greatly when standing water is not a factor, and then
only splashes of water drops can cause false detection
problems.

Code to implement the capacitive service routine of
Method 3 is provided in the software in addition to this
application note. The code is more involved than the
code in the other methods, and the key considerations
are that the average is always performed and that the
most pressed button, determined by a percentage for
each, is considered the pressed button when any of
them are above a percentage on threshold.

PRECAUTIONS

Timer1 Overflow
Since the principle measurement is read from the
TMR1 value, Timer0 must overflow and cause an inter-
rupt to read Timer1 before Timer1 can overflow. This is
determined by the Timer0 prescalar and the oscillating
frequency of the system. A typically safe and good
prescalar to start with is PS<2:0> = 0x2 in the OPTION
register. A longer Timer0 period will allow more counts,
and a steadier reading than an extremely fast period,
but it does so at the expense of the longer period to
scan an individual button. 

Timer1 is a 16-bit timer, so as long as the frequency
count readings are well below the unsigned integer
maximum of 65,535, then Timer0 and the prescalar bits
are acceptable.

Stuck Buttons
A stuck button, as described here, is a button that turns
on but does not turn off when released. �Stuck� buttons
often come in a form of two varieties. The first is a
poorly tuned button which tends to cause some current
draw. The second type is due to large abrupt current
draw, and this variety is discussed in the �Large
Abrupt Current Draw� section.

RAM/PGM Memory Ease of Setup Foreign Objects (H20)

 Explicit + - -
 Percentage - + -
 Percentage Voting - - + +

1 2 3
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As a designer, constantly tuning trip thresholds is not
preferable, and so it is desirable to keep it to a mini-
mum, or better, non-existent. With an established
production design, once the system�s optimal
configurations have been found for trip values or per-
cent thresholds, they often do not need to be changed
for each system produced. Both the trip and percent
threshold button detection schemes described earlier
can suffer from poor settings, although it is more
problematic with absolute trip thresholds.

The typical cause is that on a button press, a reaction
to the press causes extra current to draw through the
part, such as an LED, which pulls down the frequency
count. When the button is released, even though the
person�s finger is gone, the current still pulls the
frequency down some. If the trip is set too small, such
that a very easy press turns on the button (and the cur-
rent drawing reaction), the amount of pull down on the
frequency may be enough to keep the frequency count
below the trip threshold. Also, if the trip threshold is too
small, an adjacent button press may trigger a false
press on the button next to it.

The fix is to make the largest trip threshold possible
without losing reliability that a touch is detected. In a
previous example, it was suggested to use 80% of the
change in frequency count caused by a finger press.
This is done because a lighter finger press causes less
change than a harder one. So, the lightest press
desired should be tested, and then some margin of
safety should be provided for that press; any harder
press will be detected.

Stuck buttons under normal, non-abusive use can be
easily prevented. The �Large Abrupt Current Draw�
section covers issues regarding large and abrupt cur-
rent draws through the microcontroller, which create
more problems, and require more than good settings to
fix.

Large Abrupt Current Draw
A significant increase in current draw through the PIC
MCU can cause the oscillator frequency to slow down
slightly. If unexpected, this can potentially create a stuck
button condition. Unlike some competitors, Microchip
can, however, supply current to numerous LEDs while
performing capacitive sensing, a simple example of
high-current draw. If a very large current must be
switched on, increase current consumption gradually if
possible. The amount of current draw is not a problem,
but rather the abrupt change in current draw is.

Interleaving periods of time for button press scanning
and separate current draw times is a good way to
separate the two tasks. 

Without interleaving, often no compensation is
required, but for some objects, such as sliders which
have many buttons in close proximity, the combination
of capacitive �cross-talk� between adjacent buttons and
driving LEDs can create stuck buttons. A button press
will drag down the frequency of an adjacent button
slightly which is also undesirable. 

When current consumption compensation is required
for a single button and a large abrupt current usually
appears, one idea is to manually adjust the average to
a point closer to the trip threshold than it currently is
resting. It is application-dependent if this is an accept-
able thing to do, but in many cases, an abrupt current
change can be expected from looking at the design. If
a 50 mA load is expected instantaneously in response
to a button press, it can be accounted for. Lowering the
average artificially allows the button to be released
more easily. 

For buttons where one button creates a situation that
causes another button to become stuck like the slider, if
it is ok to do so in the application, reset the average of
the stuck button to its current raw reading. The previ-
ously stuck button will now be calibrated for the system�s
current configuration with LEDs drawing current, and/or
a finger still pressed, etc., and it will then be easier to
press another button to change the level of the slider. 

Lastly, if the current draw of the device being switched
on is too great, an external driver may be used to avoid
the current going through the microcontroller. 

Insufficient Hysteresis 
If very little hysteresis is given, a capacitive button that
switches a current load, like an LED, may enter an
oscillatory state. Typically the button is successfully
pressed, but with the load drawing current, there is
enough variation to continue switching between the on
and off thresholds for the button. The simple fix is to
provide more hysteresis between the threshold for on
and the release threshold.
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Kitchen Condiments
The household kitchen environment has a set of issues
other environments are unlikely to have. A measure of
safety and quality is for a kitchen appliance to receive a
splash of ketchup and not indicate a false button press.
Throughout this section, ketchup will be discussed, but
keep in mind it applies to other condiments.

A large splash of ketchup, like squirting a bottle on an
interface panel, will likely trigger a drop in frequency in
a capacitive system. Appliance safety measures
require that this not indicate a false trigger, since it is
ketchup and not a person's finger. Hoping the splash
will be a small enough quantity is not a good solution.
There is no way to change physics; so the task is to
create firmware that will properly detect or not detect a
ketchup splash given the hardware setup.

Since it is not always possible to prevent the drop in fre-
quency, watching for a press and release in a certain time
period is a viable solution. This requires that a person
press and release the button within a fixed time, say one
second. In firmware, this is seen as a drop of frequency
and an increase of frequency within the allowed period. If
a ketchup splash occurs, it will stick and linger on the sur-
face, and a release will not occur. The firmware can even
be more advanced, requiring the button to be held for a
certain time before it can be released to prevent a very
rapid press.

Smaller splatter effects, such as grease from a pan or
stir-frying, will have a much lesser effect. Usually, these
splatters have no appreciable effect on the system, and
only the large changes, which significantly increase the
capacitance over the button, present possible concerns.
These items are typically a water-based item, like
ketchup, mustard, and of course, water itself. All of these
items have very high dielectric constants, which is the
physical reason for the capacitance increasing when it is
introduced on the panel surface.

CONCLUSIONS
Software is provided with this application note to aid in
understanding and expediting design. The software to
drive capacitive sensing can be either very simple or
can handle complex algorithms for button detection.
Since the software may be easily changed, the user
has more ability to define how their capacitive system
should operate.

Additional reference materials include:

AN1101, �Introduction to Capacitive Sensing�

AN1102, �Layout and Physical Design Guidelines for
Capacitive Sensing�

AN1104, �Capacitive Multi-Button Configurations�
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APPENDIX A: REGISTER SETTINGS 
FOR THE PIC16F88X 
FAMILY

The following registers can be found in the
�PIC16F882/883/884/886/887 Data Sheet� (DS41291).
Detailed explanations of each bit may be found in a
part's Data Sheet. These register settings provide a
guideline for setting the other families' registers.

REGISTER 8-1: CM1CON0: COMPARATOR C1 CONTROL REGISTER 0

REGISTER 8-2: CM2CON0: COMPARATOR C2 CONTROL REGISTER 0

REGISTER 8-3: CM2CON1: COMPARATOR C2 CONTROL REGISTER 1

REGISTER 8-4: SRCON: SR LATCH CONTROL REGISTER

REGISTER 8-5: VRCON: VOLTAGE REFERENCE CONTROL REGISTER

REGISTER 3-3: ANSEL: ANALOG SELECT REGISTER

R/W-0 R-0 R/W-0 R/W-0 U-0 R/W-0 R/W-0 R/W-0
C1ON C1OUT C1OE C1POL � C1R C1CH1 C1CH0

bit 7 bit 0
1 0 0 1 � 1 0 0

R/W-0 R-0 R/W-0 R/W-0 U-0 R/W-0 R/W-0 R/W-0
C2ON C2OUT C2OE C2POL � C2R C2CH1 C2CH0

bit 7 bit 0
1 0 1 0 � 0 0 0

R-0 R-0 R/W-0 R/W-0 U-0 U-0 R/W-1 R/W-0
MC1OUT MC2OUT C1RSEL C2RSEL � � T1GSS C2SYNC

bit 7 bit 0
0 0 1 1 � � 1 0

R/W-0 R/W-0 R/W-0 R/W-0 R/S-0 R/S-0 U-0 R/W-0
SR1(2) SR0(2) C1SEN C2REN PULSS PULSR � FVREN

bit 7 bit 0
1 1 1 1 0 0 � 0

2: To enable an SR latch output to the pin, the appropriate CxOE and TRIS bits must be properly configured.

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
VREN VROE VRR VRSS VR3 VR2 VR1 VR0

bit 7 bit 0
1 0 0 0 0 1 1 1

R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1
ANS7(2) ANS6(2) ANS5(2) ANS4 ANS3 ANS2 ANS1 ANS0

bit 7 bit 0
0 0 0 0 0 1 1 1

2: Not implemented on PIC16F883/886.
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REGISTER 3-4: ANSELH: ANALOG SELECT HIGH REGISTER

ANSEL bits selected enable all four comparator inputs.

U-0 U-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1
� � ANS13 ANS12 ANS11 ANS10 ANS9 ANS8

bit 7 bit 0
� � 0 0 0 1 1 0
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NOTES:
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