
AN1071
IrDA® Standard Stack for Microchip 16-bit and

32-bit Microcontrollers
INTRODUCTION
Infrared communication is a low-cost method of
providing wireless, point-to-point communication
between two devices. The Infrared Data Association,
often referred to as IrDA, was formed in 1994 to
develop standard methods for communicating over
short-range infrared transmissions. These standards
have continued to evolve and gain in popularity. Now, a
wide variety of devices implement the IrDA standard
specification, including computers, printers, PDAs, cell
phones, watches and other instruments.

Microchip’s 16-bit and 32-bit microcontrollers are a
perfect fit for applications wanting to support IrDA
standard communication. These low-cost
microcontrollers, with their built-in IrDA standard
support, provide an inexpensive solution with plenty of
computing power.

IrDA® STANDARD

Overview
The IrDA standard specification is a half-duplex
communication protocol with Serial Infrared (SIR)
transmission speeds similar to those supported by an

RS-232 port (9600 bps, 19.2 kbps, 38.4 kbps,
57.6 kbps and 115.2 kbps). Microchip currently
supports only the SIR transmission speeds.

The half-duplex nature of the communications is due to
the fact that the receiver is blinded by the light of its own
transmitter. The infrared transceiver transmits pulses in
a cone with a half-angle between 15 and 30 degrees
(Figure 1). The pulses must be visible from a distance
of one meter, but must not be so bright that the receiver
is overwhelmed at close distances. In practice, optimal
positioning for a receiver is usually a distance of 5 cm
to 60 cm from the transmitter, in the center of the
transmission cone.

Protocols
The initial specifications developed by the Infrared
Data Association provided a mechanism for converting
existing serial interfaces to infrared interfaces. These
protocols closely mimic standard serial interfaces. As
the infrared communication mechanism gained
popularity, more protocols were created to tailor the
communication format for different types of end
applications.

The infrared communication support is designed as a
Stack. Figure 2 shows the basic structure of the Stack.

FIGURE 1: OPTICAL PORT ANGLES

Author: Kim Otten
Microchip Technology Inc.

15-30 Degrees Half-Angle ≥ 15 Degrees Half-Angle

ReceiverTransmitter
© 2010 Microchip Technology Inc. DS01071B-page 1

AN1071

FIGURE 2: IrDA® STANDARD

PROTOCOL STACK LAYERS

The Stack layers perform the following functions:

• Driver – Provides an interface between the Stack
and the microcontroller.

• Framer – Prepares the IrLAP frame for transmis-
sion over the physical serial medium by wrapping
it within a frame wrapper and encoding control
characters in the data payload (with byte and bit
stuffing) to make them transparent to the frame
receiver. The framer receiver converts the
encoded, transparent bytes back to their original
values before validating and storing the frame in
the receive queue.

• IrLAP (Infrared Link Access Protocol) – Provides
a device-to-device connection for the reliable,
ordered transfer of data. Also provides device
discovery procedures.

• IrLMP (Link Management Protocol) – Provides
fundamental discovery, multiplexing and link
control operations between stations. It supports
multiplexing of multiple applications over a single
IrLAP link along with protocol and service
discovery through the IAS.

• IAS (Information Access Service) – A mini
database of the services provided by the device.

• TinyTP (Tiny Transport Protocol) – Provides flow
control on IrLMP connections with an optional
segmentation and reassembly service.

The current implementation of the Microchip IrDA
Standard Stack allows access to the Stack through one
of three different protocols:

• IrCOMM 3-Wire Raw
This protocol is designed to emulate a simple
serial interface consisting of two wires: a receive
and a transmit line. (The third wire, ground, is not
emulated). This protocol is also known as IrLPT,
designed to emulate a PC parallel port interface.

• IrCOMM 9-Wire Cooked
This protocol is designed to emulate a serial
interface with either hardware or software
handshaking.

• OBEX
A higher level protocol, designed to simplify
sending and receiving data objects.

These protocols and the application interfaces to them
are described below.

Device Types
There are two basic types of devices:

• Client (or Primary)
This device initiates the connection.

• Server (or Secondary)
This device responds only when connected to.

A third type of device, called a Peer device, can act as
a Client or a Server. An example of a Peer device is a
PDA, which can either beam information to another
PDA or receive information from another PDA.
Typically, IrCOMM applications are Clients or Servers.

User Application

Protocol

TinyTP

IrLMP

IrLAP

Framer

Driver

IAS
DS01071B-page 2 © 2010 Microchip Technology Inc.

AN1071

HARDWARE DESIGN
Many members of Microchip’s families of 16-bit and 32-
bit microcontrollers provide native IrDA standard
support through their UART modules. This greatly
simplifies the hardware design (Figure 3).

For demonstration and prototyping purposes,
Microchip has created the IrDA® PICtail™ Plus card
(AC164124) for use with the Explorer 16 Development
Board (DM240001).

FIGURE 3: BLOCK DIAGRAM

SOFTWARE DESIGN

Overview
The Microchip IrDA Standard Stack is distributed as a
set of libraries, with source code provided for the lowest
level drivers (see Appendix A: “Source Code”). This
allows the Stack to be tailored to account for:

• Device family
• Device clock speed
• Protocol
• Device type

Due to the nature of the libraries, some operational
parameters are fixed. These include the following
parameters shown in Table 1.

TABLE 1: FIXED OPERATIONAL PARAMETERS

16/32-bit PIC®
U1TX

U1RX

Infrared
Transmitter/

ReceiverMicrocontroller

Item Value Effect

Internal Timer Timer 2 Timer2 is unavailable to the application and Timer3 may be used only
as a 16-bit timer.

Interrupts vs. Polling Interrupts The UART receive and transmit interrupts are used. Since these
interrupts are vectored, this method provides the quickest, most
reliable method of interfacing with the peripheral.

Window Size 1 Maximum number of information frames that can be transmitted before
an Acknowledge is received. This parameter is set for minimum RAM
usage.

Data Frame Size 64 Maximum LAP frame size. This parameter is set for minimum RAM
usage.
© 2010 Microchip Technology Inc. DS01071B-page 3

AN1071

Generic Stack API
The following function is supported for all Stack protocols and configurations.

DWORD IrDA_GetVersion(void)

This function returns the version of the Stack in a four-byte value. The Most Significant Byte contains the major release
number, followed by the minor release number, dot release and build number. For example, “v1.4.10.16” would be
represented as the value “0x01040A10”.

Syntax
DWORD IrDA_GetVersion(void);

Inputs
None

Outputs
Stack version number in the form:

<major><minor><dot><build>.
DS01071B-page 4 © 2010 Microchip Technology Inc.

AN1071

IrCOMM 3-Wire Raw
This protocol was designed to allow simple conversion
of existing serial interfaces. No emulated flow control is
provided, just data paths for receiving and transmitting
data.

This protocol is nearly identical to IrLPT with the excep-
tion of the connection process. The API allows the
application to specify if it wants to connect using the
IrLPT or the IrCOMM 3-wire raw protocol.

Basic client functionality should be implemented as
shown in Example 1.

EXAMPLE 1: IrCOMM 3-WIRE RAW BASIC
CLIENT FUNCTIONALITY

Basic server functionality should be implemented as
shown in Example 2.

EXAMPLE 2: IrCOMM 3-WIRE RAW BASIC
SERVER FUNCTIONALITY

IrCOMM 3-Wire Raw API
The following function calls are provided for this protocol. Refer to “Demo Applications” section for typical usage
examples.

IrDA_CloseCommClient

This function causes the client application to disconnect from the IrDA COMM server. This function automatically
performs any necessary Stack operations while waiting for the time-out period.

Syntax
BYTE IrDA_CloseCommClient(WORD timeout);

Application Type
Client

Inputs
timeout – The number of milliseconds to wait for the Stack to complete any processing that is in progress

Outputs
Return values:

IRDA_SUCCESS (0x00) – Success

IRDA_ERROR_TIMEOUT – Time-out

Initialize the stack
Establish communications with a server
While running

Perform background stack processing
Exchange data with the server

Endwhile
Close the communications link with the server
Terminate stack operation

Initialize the stack
While running

While client is connected
Perform background stack processing
Exchange data with the client

Endwhile
Endwhile
Terminate stack operation
© 2010 Microchip Technology Inc. DS01071B-page 5

AN1071

IrDA_CloseCommServer

This function causes the server application to disconnect from the IrDA COMM client. This function automatically
performs any necessary Stack operations while waiting for the time-out period.

Syntax
BYTE IrDA_CloseCommServer(WORD timeout);

Application Type
Server

Inputs
timeout – The number of milliseconds to wait for the Stack to complete any processing that is in progress

Outputs
Return values:

IRDA_SUCCESS (0x00) – Success

IRDA_ERROR_TIMEOUT – Time-out

IrDA_CommBackground

This function processes Stack events as long as the device is connected. It also monitors any time-outs that need to be
checked. The return code indicates if the device is no longer connected.

Syntax
BYTE IrDA_CommBackground(void);

Application Type
Client or Server

Inputs
None

Outputs
Return values:

IRDA_SUCCESS (0x00) – Device is still connected

IRDA_ERROR – Device is no longer connected
DS01071B-page 6 © 2010 Microchip Technology Inc.

AN1071

IrDA_CommInit

This function initializes the Stack and the device peripherals. It must be called before any other Stack functions. Once
called, it does not need to be called again until IrDA_CommTerminate() has been called.

Syntax
BYTE IrDA_CommInit(void);

Application Type
Client or Server

Inputs
None

Outputs
Return values:

IRDA_SUCCESS (0x00) – Success

IRDA_ERROR – Failure

IrDA_CommTerminate

This function terminates the Stack. It also turns off all microcontroller peripherals used by the Stack (timer and UART).

This function should not be called until IrDA_CommBackground() indicates that all Stack tasks are complete. After
calling this function, no other Stack functions can be called until IrDA_CommInit() is called.

Syntax
BYTE IrDA_CommTerminate(void);

Application Type
Client or Server

Inputs
None

Outputs
Return values:

IRDA_SUCCESS (0x00) – Success
© 2010 Microchip Technology Inc. DS01071B-page 7

AN1071

IrDA_OpenCommClient

This function tries to establish a client connection with another device. This is the point where the application requests
either an IrLPT or IrCOMM 3-wire raw connection. The only difference between the two is the class name used during
the discovery process.

Syntax
BYTE IrDA_OpenCommClient(BYTE type);

Application Type
Client

Inputs
type – COMM_LPT or COMM_THREE_WIRE_RAW

Outputs
Return values:

IRDA_SUCCESS (0x00) – Success

IRDA_ERROR_NO_BUFFERS – No buffers available, out of memory

IRDA_ERROR_BAD_COMM_STATE – Bad communication state, connection failed

IrDA_OpenCommServer

This function tries to establish a server connection with another device.

Syntax
BYTE IrDA_OpenCommServer(WORD timeout);

Application Type
Server

Inputs
timeout – The number of milliseconds to try to establish a connection

Outputs
Return values:

IRDA_SUCCESS (0x00) – Success

IRDA_ERROR_LINK_CONNECT – Link connect failed

IRDA_ERROR_APP_CONNECT – Application connection failed
DS01071B-page 8 © 2010 Microchip Technology Inc.

AN1071

IrDA_ReadComm
This function reads data from the IrDA standard port and stores it at the indicated location. If the amount of data exceeds
the maximum size, the remaining data is discarded. This function will terminate when either the maximum number of
characters has been received or when the time-out expires.

Since each IrCOMM data packet may contain multiple data bytes, a single read operation can return multiple bytes of
data. A read request with a time-out of 0 ms will return the data in a single received data packet.

Syntax
BYTE IrDA_ReadComm(BYTE *dataArray, WORD maxSize, WORD timeout, WORD *dataLength);

Application Type
Client or Server

Inputs
*dataArray – Pointer to where to store the data

maxSize – The maximum number of bytes to store at *dataArray

timeout – Number of milliseconds to wait for the data

Outputs
*dataLength – The actual amount of data stored at *dataArray

Return values:

IRDA_SUCCESS (0x00) – Success, some data read

IRDA_ERROR – Not connected

IRDA_ERROR_TIMEOUT – Time-out, no data read

IrDA_ReadInitComm

This function is used if the application wants to perform other processing while waiting for data. This function initiates a
read from the IrDA standard port. The actual read is performed in the background. While the read is in progress,
IrDA_CommServerBackground() must be called to process the Stack events, and IrDA_ReadResultComm()
should be called to monitor the status of the read operation. IrDA_ReadResetComm() should be called after the
application Acknowledges that the read is complete.

Since each IrCOMM data packet may contain multiple data bytes, a single read operation can return multiple bytes of
data. A read request with a time-out of 0 ms will return the data in a single received data packet.

Syntax
BYTE IrDA_ReadInitComm(BYTE *dataArray, WORD maxSize, WORD timeout);

Application Type
Client or Server

Inputs
*dataArray – Pointer to where to store the data

maxSize – The maximum number of characters that can be stored

timeout – The number of milliseconds for the read to terminate

Outputs
Return values:

IRDA_SUCCESS (0x00) – Success

IRDA_ERROR – Not connected

Note: Since the data frame size is set to 64, the received data size will never exceed 64 bytes.

Note: Since the data frame size is set to 64, the received data size will never exceed 64 bytes.
© 2010 Microchip Technology Inc. DS01071B-page 9

AN1071

IrDA_ReadResetComm

This function is used if the application wants to do other processing while waiting for data. This function resets the
variables used to monitor a read operation. It should be called after IrDA_ReadResultComm() indicates the read
operation is complete.

Syntax
BYTE IrDA_ReadResetComm(void);

Application Type
Client or Server

Inputs
None

Outputs
Return values:

IRDA_SUCCESS (0x00)

IrDA_ReadResultComm

This function is used if the application wants to do other processing while waiting for data. This function is called to check
on the status of a read that was initiated by calling IrDA_ReadInitComm(). If the return code indicates that a read is
not currently in progress, then the application can call IrDA_ReadComm() or IrDA_ReadInitComm() to perform a
read. If the return code indicates that the read is not complete, then the application should continue to call
IrDA_CommBackground() until the read is complete. If the return code indicates that the read is complete, then
*dataLength will indicate the number of bytes that were read, and the application should call
IrDA_ReadResetComm() to reset the read operation parameters.

Syntax
BYTE IrDA_ReadResultComm(WORD *dataLength);

Application Type
Client or Server

Inputs
None

Outputs
*dataLength – The actual amount of data stored at the location specified by the user in the call to
IrDA_ReadInitComm()

Return values:

IRDA_COMM_READ_COMPLETE

IRDA_COMM_READ_NOT_IN_PROGRESS

IRDA_COMM_READ_NOT_COMPLETE
DS01071B-page 10 © 2010 Microchip Technology Inc.

AN1071

IrDA_StackIsActive

This function indicates whether or not the Stack is still processing frames.

Syntax
BYTE IrDA_StackIsActive(void);

Application Type
Client or Server

Inputs
None

Outputs
Return values:

False – Stack is not active, all frames have been processed

True – Stack is active, frames are still being processed

IrDA_WriteComm

This function sends data out the IrDA standard port. The data is actually sent during background processing. This
function does not lock the system while the write is in progress.

Syntax
BYTE IrDA_WriteComm(BYTE *prt_buf, WORD buf_size);

Application Type
Client or Server

Inputs
*prt_buf – Pointer to the user data

buf_size – The number of characters to send

Outputs
Return values:

IRDA_SUCCESS (0x00) – Success

IRDA_ERROR_NO_BUFFERS – No buffers, out of memory

IRDA_ERROR_WRITE_MASK – Bad communication state or LM_Data_request error if this bit is set

Note: Since the data frame size is set to 64, each transfer is limited to a total of about 60 bytes. If the output buffer
size exceeds that limit, an error will be returned.
© 2010 Microchip Technology Inc. DS01071B-page 11

AN1071

IrCOMM 9-Wire Cooked
This protocol is similar to the IrCOMM 3-wire raw pro-
tocol, except that hardware and software handshaking
interfaces have been provided to mimic those used by
a wired serial interface. Since there are no separate
wires to carry these interface signals, the serial data
stream is divided into two virtual channels, a control
channel and a data channel. This slightly increases the
complexity of this protocol.

Many devices that advertise or require the IrCOMM
9-wire cooked service do not actually utilize the control
channel, since items like data rate and handshaking
already are provided by the IrDA Standard Stack.
Therefore, to reduce overhead, the Microchip IrDA
Standard Stack provides a minimal interface to the
emulated control signals.

Any required control channel handling must be
performed by the application.

The Stack maintains the control parameter values that
have been received from the remote device. Macros
have been provided to simplify access to these values,
as described in Appendix C: “IrCOMM 9-Wire
Cooked Control Channel Access Macros”. If
desired, the application may also utilize the control
channel data structures to maintain its own control
parameter values. These data structures are described
in Appendix B: “IrCOMM 9-Wire Cooked Data
Structures”.

Basic client and server functionality is identical to that
of the IrCOMM 3-wire raw protocol. Data transfer is
slightly more complicated, due to the control channel.
When writing to the IrDA standard port, the control
channel must be initialized. When reading from the
IrDA standard port, the received control channel values
are available for the user to check, as described in
Appendix C: “IrCOMM 9-Wire Cooked Control
Channel Access Macros”.

Data transmission is performed as shown in
Example 3.

EXAMPLE 3: IrCOMM 9-WIRE COOKED
DATA TRANSMISSION
ALGORITHM

Note: All raw data received is stored in the user
buffer. XON/XOFF and ENQ/ACK charac-
ters are not filtered out, and must be
processed by the application to emulate
the required handshaking.

Initialize the data packet
If sending control parameters

Initialize the control parameter list
For each control parameter

Add the control parameter
Endfor
Finish the control parameter list

Else
Set the control parameter list to no

parameters
Endif
Send the data
DS01071B-page 12 © 2010 Microchip Technology Inc.

AN1071

IrCOMM 9-Wire Cooked API
The following function calls are provided for this protocol. Refer to “Demo Applications” section for examples of typical
usage.

IrDA_AddControlParam

Use this function to add a control parameter to a data packet being prepared for transmission.

Syntax
BYTE IrDA_AddControlParam(BYTE pi, DWORD pv);

Application Type
Client or Server

Inputs
pi – Parameter identifier

pv – Parameter value

Outputs
Return values:

IRDA_SUCCESS (0x00) – Success

IRDA_ERROR_PACKET_SIZE – Max packet size exceeded

IRDA_ERROR_UNKNOWN_PI – Unknown parameter identifier

Valid values for pi are provided as constants in the file, irdep.h, as described in Table 2.

TABLE 2: IrCOMM 9-WIRE COOKED CONTROL PARAMETER IDENTIFIERS
Parameter Identifier Constant Value Size in Bytes Value Structure

Service Type SERVICE_TYPE 1 IRDA_SERVICE_TYPE

Data Rate (bps) DATA RATE 4 DWORD

Data Format DATA FORMAT 1 IRDA DATA FORMAT

Flow Control FLOW CONTROL 1 IRDA FLOW CONTROL

XON/XOFF Characters XON_XOFF 2 XON (in lower byte),
XOFF (in upper byte)

ENQ/ACK Characters ENQ_ACK 2 ENQ (in lower byte),
ACK (in upper byte)

Line Status LINE STATUS 1 IRDA_LINE_STATUS

Break BREAK 1 None (0 = clear, 1 = set)
DTE Line Settings and
Changes

DTE_LINE 1 IRDA_DTE_LINE_STATUS

DCE Line Settings and
Changes

DCE_LINE 1 IRDA_DCE_LINE_STATUS

Poll for Line Settings POLL_FOR_LINE None None
© 2010 Microchip Technology Inc. DS01071B-page 13

AN1071

IrDA_CloseCommXClient

This function disconnects the IrDA Standard Stack IrCOMM 9-wire cooked client. This function automatically performs
any necessary Stack operations while waiting for the time-out period.

Syntax
BYTE IrDA_CloseCommXClient(WORD timeout);

Application Type
Client

Inputs
None

Outputs
Return values:

IRDA_SUCCESS (0x00) – Success

IRDA_ERROR_TIMEOUT – Time-out

IrDA_CloseCommXServer

This function disconnects the IrDA IrCOMM 9-wire cooked server. This function automatically performs any necessary
Stack operations while waiting for the time-out period.

Syntax
BYTE IrDA_CloseCommXServer(WORD timeout);

Application Type
Server

Inputs
None

Outputs
Return values:

IRDA_SUCCESS (0x00) – Success

IRDA_ERROR_TIMEOUT – Time-out
DS01071B-page 14 © 2010 Microchip Technology Inc.

AN1071

IrDA_CommXBackground

This function processes Stack events as long as the device is connected. It also monitors any time-outs that must be
checked. The return code indicates whether the device is no longer connected.

Syntax
BYTE IrDA_CommXBackground(void);

Application Type
Client or Server

Inputs
None

Outputs
Return values:

IRDA_SUCCESS (0x00) – Device is still connected

IRDA_ERROR – Device is no longer connected

IrDA_CommXInit

This function initializes the Stack and the device peripherals. It must be called before any other Stack functions. Once
called, it does not need to be called again until IrDA_CommXTerminate() has been called.

Syntax
BYTE IrDA_CommXInit(void);

Application Type
Client or Server

Inputs
None

Outputs
Return values:

IRDA_SUCCESS (0x00) – Success

IRDA_ERROR – Failure
© 2010 Microchip Technology Inc. DS01071B-page 15

AN1071

IrDA_CommXTerminate

This function terminates the Stack, turning off the clock and the UART.

This function should not be called until IrDA_CommXBackground() indicates that all Stack tasks are complete. After
this function is called, IrDA_CommXInit() must be called to restart the Stack.

Syntax
BYTE IrDA_CommXTerminate(void);

Application Type
Client or Server

Inputs
None

Outputs
Return values:

IRDA_SUCCESS (0x00) – Success

IrDA_FinishControlParamList

Use this function to finalize a control parameter list. Call IrDA_StartControlParamList() to initialize the
parameter list, IrDA_AddControlParam() to add each parameter, then call IrDA_FinishControlParamList()
to finalize the list. If there are no control parameters, use IrDA_NoControlParameters() instead.

Syntax
BYTE IrDA_FinishControlParamList(void);

Application Type
Client or Server

Inputs
None

Outputs
Return values:

IRDA_SUCCESS (0x00) – Success

IRDA_ERROR_PACKET_SIZE – Maximum packet size exceeded
DS01071B-page 16 © 2010 Microchip Technology Inc.

AN1071

IrDA_InitCommXDataPacket

Use this function to initialize a data packet for transmission.

Syntax
BYTE IrDA_InitCommXDataPacket(void);

Application Type
Client or Server

Inputs
None

Outputs
Return values:

IRDA_SUCCESS (0x00) – Success

IRDA_ERROR_NO_BUFFERS – No buffers available

IrDA_NoControlParameters

Use this function to indicate that there are no control parameters in the data packet.

Syntax
BYTE IrDA_NoControlParameters(void);

Application Type
Client or Server

Inputs
None

Outputs
Return values:

IRDA_SUCCESS (0x00) – Success

IRDA_ERROR_PACKET_SIZE – Maximum packet size exceeded
© 2010 Microchip Technology Inc. DS01071B-page 17

AN1071

IrDA_OpenCommXClient

This function tries to establish a client connection with another device. Before calling this function, IrDA_CommXInit()
must be called and returned with success.

Syntax
BYTE IrDA_OpenCommXClient(void);

Application Type
Client

Inputs
None

Outputs
Return values:

IRDA_SUCCESS (0x00) – Success

IRDA_ERROR_NO_BUFFERS – No buffers available, out of memory

IRDA_ERROR_BAD_COMM_STATE – Bad communication state, connection failed

IRDA_ERROR_COMM_CONNECT – Communication service connect time-out

IRDA_ERROR_BAD_COMM_SERVICE – Communication service disconnected and is unsupported

IRDA_ERROR_SELECTOR_MASK – If these bits are set, the remainder indicates a get remote selector error

IRDA_ERROR_TTP_MASK – If these bits are set, the remainder indicates a TTP connect request error

IrDA_OpenCommXServer

This function tries to establish a server connection with another device. Before calling this function,
IrDA_CommXInit() must be called and returned with success.

Syntax
BYTE IrDA_OpenCommXServer(WORD timeout);

Application Type
Server

Inputs
timeout – Number of milliseconds to wait for a connection

Outputs
Return values:

IRDA_SUCCESS (0x00) – Success

IRDA_ERROR_LINK_CONNECT – Link connect failed

IRDA_ERROR_APP_CONNECT – Application connection failed
DS01071B-page 18 © 2010 Microchip Technology Inc.

AN1071

IrDA_ReadCommX

This function reads data from the IrDA standard port, and stores it at the indicated location. If the amount of data
exceeds the maximum size, the remaining data is discarded. This function will terminate when either the maximum
number of characters has been received or the time-out expires.

Since each IrCOMM data packet may contain multiple data bytes, a single read operation can return multiple bytes of
data. A read request with a time-out of 0 ms will return the data in a single received data packet.

Syntax
BYTE IrDA_ReadCommX(BYTE *dataArray, WORD maxSize, WORD timeout, WORD *dataLength);

Application Type
Client or Server

Inputs
*dataArray – Pointer to the user’s buffer

maxSize – Maximum number of characters that can be stored

timeout – Number of milliseconds to wait for the data

*dataLength – Pointer to return the number of bytes received

Outputs
Return values:

IRDA_SUCCESS (0x00) – Success, some data read

IRDA_ERROR – Not connected

IRDA_ERROR_TIMEOUT – Time-out, no data read

IrDA_ReadInitCommX

This function is used if the application wants to do other processing while waiting for data. This function initiates a read
from the IrDA standard port. The actual read is performed in the background. While the read is in progress,
IrDA_CommXServerBackground() must be called to process the Stack events, and IrDA_ReadResultCommX()
should be called to monitor the status of the read operation. IrDA_ReadResetCommX() should be called after the
application Acknowledges that the read is complete.

Since each IrCOMM data packet may contain multiple data bytes, a single read operation can return multiple bytes of
data. A read request with a time-out of 0 ms will return the data in a single received data packet.

Syntax
BYTE IrDA_ReadInitCommX(BYTE *dataArray, WORD maxSize, WORD timeout);

Application Type
Client or Server

Inputs
*dataArray – Pointer to where to store the data

maxSize – Maximum number of characters that can be stored

timeout – Number of milliseconds for the read to terminate

Outputs
Return values

IRDA_SUCCESS (0x00) – Success

IRDA_ERROR – Not connected

Note: Since the data frame size is set to 64, the received data size will never exceed 64 bytes.

Note: Since the data frame size is set to 64, the received data size will never exceed 64 bytes.
© 2010 Microchip Technology Inc. DS01071B-page 19

AN1071

IrDA_ReadResetCommX

This function is used if the application wants to do other processing while waiting for data. This function resets the
variables used to monitor a read operation. It should be called after IrDA_ReadResultCommX() indicates the read
operation is complete.

Syntax
BYTE IrDA_ReadResetCommX(void);

Application Type
Client or Server

Inputs
None

Outputs
Return values:

IRDA_SUCCESS (0x00) – Success

IrDA_ReadResultCommX

This function is used if the application wants to do other processing while waiting for data. This function is called to check
on the status of a read that was initiated by calling IrDA_ReadInitCommX(). If the return code indicates that a read
is not currently in progress, then the application can call IrDA_ReadCommX() or IrDA_ReadInitCommX() to perform
a read. If the return code indicates that the read is not complete, then the application should continue to call
IrDA_CommXBackground() until the read is complete. If the return code indicates that the read is complete, then
*dataLength will indicate the number of bytes that were read, and the application should call
IrDA_ReadResetCommX() to reset the read operation parameters.

Syntax
BYTE IrDA_ReadResultCommX(WORD *dataLength);

Application Type
Client or Server

Inputs
None

Outputs
*dataLength – The actual amount of data stored at the location specified by the user in the call to
IrDA_ReadInitCommX()

Return values:

IRDA_COMM_READ_COMPLETE

IRDA_COMM_READ_NOT_IN_PROGRESS

IRDA_COMM_READ_NOT_COMPLETE
DS01071B-page 20 © 2010 Microchip Technology Inc.

AN1071

IrDA_StackIsActive

This function indicates whether or not the Stack is still processing frames.

Syntax
BYTE IrDA_StackIsActive(void);

Application Type
Client or Server

Inputs
None

Outputs
Return values:

False – Stack is not active, all frames have been processed

True – Stack is active, frames are still being processed

IrDA_StartControlParamList

Use this function to initialize a control parameter list. Call IrDA_StartControlParamList() to initialize the
parameter list, call IrDA_AddControlParam() to add each parameter, then call
IrDA_FinishControlParamList() when the parameter list is complete. If there are no control parameters, use
IrDA_NoControlParameters() instead.

Syntax
BYTE IrDA_StartControlParamList(void);

Application Type
Client or Server

Inputs
None

Outputs
Return values:

IRDA_SUCCESS (0x00) – Success

IRDA_ERROR_PACKET_SIZE – Maximum packet size exceeded
© 2010 Microchip Technology Inc. DS01071B-page 21

AN1071

IrDA_WriteCommX

Use this function to transmit a data packet. The data to transmit is passed into this function. The control channel must
be set up prior to calling this function. The data is actually sent during background processing. This function does not
lock the system while the write is in progress.

Syntax
BYTE IrDA_WriteCommX(BYTE *prt_buf, WORD buf_size);

Application Type
Client or Server

Inputs
*prt_buf – Pointer to user data

buf_size – Number of characters of user data

Outputs
Return values:

IRDA_SUCCESS (0x00) – Success

IRDA_ERROR_PACKET_SIZE – Data size too large, check control parameters

IRDA_ERROR_APP_CONNECT – Bad communication state

IRDA_ERROR_TTP_DATA_MASK – If these bits are set, the remainder indicates a TTP data request error

Note: Since the data frame size is set to 64, each transfer is limited to a total of about 60 bytes, including control
parameters. If the output buffer size exceeds that limit, an error will be returned.
DS01071B-page 22 © 2010 Microchip Technology Inc.

AN1071

OBEX
Since the OBEX protocol is used to exchange complete
objects, OBEX has the simplest user interface. A single
client function is used to establish a connection, send
data and terminate the connection. Server functionality
is only slightly more complicated. Stack initialization
and termination functions are provided to enable and
disable the required peripherals.

OBEX API
The following function calls are provided for this
protocol. Refer to “Demo Applications” section for
examples of typical usage.

IrDA_InitServerOBEX

This function initializes the OBEX server.

Syntax
WORD IrDA_InitServerOBEX(void);

Application Type
Server or Peer

Inputs
None

Outputs
Return values:

IRDA_SUCCESS (0x00) – Success

IRDA_ERROR – LAP link failed
© 2010 Microchip Technology Inc. DS01071B-page 23

AN1071

IrDA_ReceiveOBEX

This function receives an OBEX file from another device. The file can be stored either in RAM or in a user-defined
memory area. If the file is to be stored in RAM, set the *fptrUserStore parameter to NULL. If the file requires
application-specific code to store the bytes, such as writing to external memory, create a callback function with the
following prototype:

void myDataStore(UINT32 index, UINT32 maxLength, UBYTE ch);

This function should take the byte, ch, and store it to the location index. The function should check that index has not
exceeded maxLength before storing the data byte. When calling IrDA_ReceiveOBEX(), set the *fptrUserStore
parameter to the callback function, and set *dataArray to NULL.

Syntax
BYTE IrDA_ReceiveOBEX(BYTE *fileDescription, BYTE *fileName, void *fptrUserStore,

BYTE *dataArray, DWORD maxLength, DWORD *dataLength, WORD timeout);

Application Type
Server or Peer

Inputs
*fileDescription – Pointer to a text description of the file

*fileName – Name of the file to transfer

*fptrStore – Pointer to a user function to store received data; must be NULL if *dataArray is not NULL

*dataArray – Pointer to the characters to send; must be NULL if *fptrStore is not NULL

timeout – Operation time-out in milliseconds

maxLength – Maximum number of characters that can be stored

Outputs
*dataLength – Number of bytes received

Return values:

IRDA_SUCCESS (0x00) – Success

IRDA_ERROR_USER_EXIT – Terminated by the user

IRDA_ERROR_LINK_TIMEOUT – Link connect time-out

IRDA_ERROR_TIMEOUT – OBEX connect time-out
DS01071B-page 24 © 2010 Microchip Technology Inc.

AN1071

IrDA_SendOBEX

This function sends an OBEX file to another device. This function contains the entire OBEX transfer, including initializing
the Stack, establishing a connection to the other device, sending the data and terminating the connection and the Stack.
The file can be located either in RAM or in a user-defined memory area. If the file is in RAM, set the *fptrUserRead
parameter to NULL. If the file requires application-specific code to extract the bytes, such as reading from external
memory, create a callback function with the following prototype:

void myDataRead(BYTE *destination, DWORD startIndex, WORD size);

This function should take size bytes starting with the byte at index startIndex, and copy them to the RAM location
specified by *destination. When calling IrDA_SendOBEX, set the *fptrUserRead parameter to the callback
function, and set *dataArray to NULL.

Syntax
WORD IrDA_SendOBEX(BYTE *fileDescription, BYTE *fileName, void *fptrUserRead, BYTE

*dataArray, DWORD dataLength);

Application Type
Server or Peer

Inputs
*fileDescription – Pointer to a text description of the file

*fileName – Name of the file to transfer

*fptrUserRead – Pointer to a user function to obtain bytes of the file; should be NULL if *dataArray is not NULL

*dataArray – Pointer to the characters to send from RAM; should be NULL if *fptrUserRead is not NULL

dataLength – Number of characters in *dataArray to send

Outputs
Return values:

IRDA_SUCCESS (0x00) – Success

IRDA_ERROR_OBEX_MAKE – OBEX make failed

IRDA_ERROR_OBEX_SAR_TX – OBEX SAR TX failed

IRDA_ERROR_OBEX_SERVER_TO – Wait for server response time-out

IRDA_ERROR_OBEX_SERVER_RSP – Unknown server response

IRDA_ERROR_LAP_LINK – LAP link initialization failed

IRDA_ERROR_REMOTE_SEL – Get remote selector failed

IRDA_ERROR_NO_BUFFERS – No buffers

IRDA_ERROR_OBEX_CONNECT – OBEX connect failed

IRDA_ERROR_OBEX_TIMEOUT – Connection time-out

IRDA_ERROR_NO_BUF_DISCONN – No buffers available at disconnect

IRDA_ERROR_OBEX_SERVER – OBEX server connection failed
© 2010 Microchip Technology Inc. DS01071B-page 25

AN1071

IrDA_TerminateOBEX

This function terminates the IrDA Standard Stack functioning.

Syntax
void IrDA_TerminateOBEX(void);

Application Type
Server or Peer

Inputs
None

Outputs
None
DS01071B-page 26 © 2010 Microchip Technology Inc.

AN1071
STACK INSTALLATION
The Microchip IrDA Standard Stack libraries are
available for download from the Microchip web site
(see Appendix A: “Source Code”). Download and
execute the installation file. Before the software is
installed, you must accept the software license
agreement.

By default, the libraries will be installed in the directory
structure shown in Figure 4.

The name of the top-level folder, Microchip Solutions,
may be changed during the installation process. The
Microchip subfolder contains Microchip created
libraries, source code, documentation and other
support files. The other subfolders contain various
demo projects.

When you create your own application, create a new
subfolder for it at this level.

FIGURE 4: INSTALLATION DIRECTORY STRUCTURE
© 2010 Microchip Technology Inc. DS01071B-page 27

AN1071
DEMO APPLICATIONS

16-bit Microcontrollers
The following items are required in order to fully utilize
the demonstration projects for 16-bit microcontrollers:

• Explorer 16 Development Board with a
PIC24FJ128GA010 PIM (two are recommended
for the IrCOMM 3-wire raw and IrCOMM 9-wire
cooked demonstrations)

• IrDA® PICtail™ Plus (two are recommended for
the IrCOMM 3-wire raw and IrCOMM 9-wire
cooked demonstrations)

• MPLAB® IDE, version 7.42 or newer
• MPLAB ICD 2 or MPLAB REAL ICE (device

programmer)
• MPLAB C30 C Compiler, version 2.04 or newer

Each project can be built and programmed into the
Explorer 16 by following these general steps:

1. Start MPLAB IDE.
2. Select Project > Open….
3. Locate the .mcp project file in the desired

demonstration directory. Select it and then click
Open.

4. Select Project > Build All to build the project.
5. Select Programmer > Select Programmer. If the

desired device programmer is not checked,
select it.

6. Connect the device programmer to the PC using
the USB cable.

7. Install the PIC24F PIM and the IrDA PICtail Plus
into the Explorer 16.

8. Connect the device programmer to the Explorer
16. Then connect the power supply to the
Explorer 16.

9. If using MPLAB ICD 2 as the device
programmer, select Programmer > Connect to
connect to the MPLAB ICD 2.

10. Select Programmer > Program to program the
Explorer 16.

32-bit Microcontrollers
The following items are required in order to fully utilize
the demonstration projects for 32-bit microcontrollers:

• Explorer 16 Development Board with a
PIC32MX460F512L PIM (two are recommended
for the IrCOMM 3-wire raw and IrCOMM 9-wire
cooked demonstrations) or PIC32MX795F512L
PIM

• IrDA® PICtail™ Plus (two are recommended for
the IrCOMM 3-wire raw and IrCOMM 9-wire

cooked demonstrations)
• MPLAB® IDE, version 8.46 or newer
• MPLAB ICD 2 or MPLAB REAL ICE (device

programmer)
• MPLAB C32 C Compiler, version 1.11 or newer

Each project can be built and programmed into the
Explorer 16 by following these general steps:

1. Start MPLAB IDE.
2. Select Project > Open….
3. Locate the .mcp project file in the desired

demonstration directory. Select it and then click
Open.

4. Select Project > Build All to build the project.
5. Select Programmer > Select Programmer. If the

desired device programmer is not checked,
select it.

6. Connect the device programmer to the PC using
the USB cable.

7. Install the PIC32 PIM and the IrDA PICtail Plus
into the Explorer 16.

8. Connect the device programmer to the Explorer
16. Then connect the power supply to the
Explorer 16.

9. If using MPLAB ICD 2 as the device
programmer, select Programmer > Connect to
connect to the MPLAB ICD 2.

10. Select Programmer > Program to program the
Explorer 16.

The demonstration programs are designed to output
information over the RS-232 connection so it can be
displayed on a terminal program. Using a serial cable,
connect the Explorer 16 Development Board’s DB9
connector to a PC, and start a terminal emulation pro-
gram, such as Microsoft® HyperTerminal, to monitor the
output. Communication settings for the connection are:
57600 baud, 8 data bits, no parity, 1 Stop bit and no flow
control.

The demonstration program on the Explorer 16 can
now be executed. If using the MPLAB® REAL ICE™ in-
circuit emulator, execution will begin as soon as
programming is complete. If using the MPLAB ICD 2,
begin execution by either removing the MPLAB ICD 2
cable from the Explorer 16 or by selecting Programmer
> Release from Reset.

When running the demonstration projects, be sure that
the infrared transceivers of the two communicating
devices are properly aligned.

Note: Do not attempt to use the device
programmer to power the Explorer 16
Development Board.

Note: Do not attempt to use the device
programmer to power the Explorer 16
Development Board.
DS01071B-page 28 © 2010 Microchip Technology Inc.

AN1071

IrCOMM 3-Wire Raw
Two IrCOMM 3-wire raw demonstration projects are pro-
vided: a client demo and a server demo. The two projects
are designed to work together utilizing two Explorer 16
Development Boards with IrDA PICtail Plus.

Follow the procedure described previously to set up
one Explorer 16 Development Board using the project
found in the irCOMM Server Demo directory. Allow
the server application to execute. A brief banner will be
displayed on the terminal emulation program.

The server will now wait until a client tries to establish
a connection with it. The server will periodically print
dots to the terminal, indicating that it is still waiting for a
connection.

Next, set up a second Explorer 16 Development Board
using the project found in the irCOMM Client Demo
directory. Align the two boards so their infrared
transceivers are pointed toward each other, and allow
the client application to execute.

The client will establish a connection with the server,
send the server a character string and disconnect from
the server (Example 4 and Example 5). The server will
display the received string and continue monitoring the
client for more data until the client disconnects. Then,
the server will shut down.

EXAMPLE 4: IrCOMM 3-WIRE RAW
SERVER TERMINAL OUTPUT

EXAMPLE 5: IrCOMM 3-WIRE RAW
CLIENT TERMINAL OUTPUT

Note that the server has two methods of reading data
from the client. Switch between the two methods by either
defining or not defining USE_SINGLE_STEP_READ at the
top of the server source file. The affects of these methods
are displayed on the terminal. When a single step read
utilizing the IrDA_ReadComm() is used, the program
is simpler, but execution is locked until either
the read is complete or the read times out. A read
that utilizes the IrDA_ReadInitComm(),

IrDA_ReadResultComm(), IrDA_ReadResetComm()
and IrDA_CommBackground() functions is more
complicated to implement, but gives the user more con-
trol over how the read is performed. To simply read the
contents of a single data transfer, either method with a
time-out of ‘0’ could be used.

IrCOMM 9-Wire Cooked
Two IrCOMM 9-wire cooked demonstration projects
are provided: a client demo and a server demo. The
two projects are designed to work together utilizing two
Explorer 16 Development Boards with IrDA PICtail
Plus.

Follow the procedure described on the previous page
to set up one Explorer 16 Development Board using the
project found in the irCOMMX Server Demo directory.
Allow the server application to execute. A brief banner
will be displayed on the terminal emulation program.

The server will now wait until a client tries to establish
a connection with it. The server will periodically print
dots to the terminal, indicating that it is still waiting for a
connection.

Next, set up a second Explorer 16 Development Board
using the project found in the irCOMMX Client Demo
directory. Align the two boards so their infrared
transceivers are pointed toward each other, and allow
the client application to execute.

The client will establish a connection with the server,
send the server a character string and disconnect from
the server. The server will display the received string
and continue monitoring the client for more data until
the client disconnects. Then, the server will shut down
(Example 6 and Example 7).

EXAMPLE 6: IrCOMM 9-WIRE COOKED
SERVER TERMINAL OUTPUT

EXAMPLE 7: IrCOMM 9-WIRE COOKED
CLIENT TERMINAL OUTPUT

irCOMM 3-wire Raw Server Demo

Waiting for client...
Receiving...
This is a test string!
This is a test string!
This is a test string!
This is a test string!
This is a test string!
Disconnected
Demonstration complete!

irCOMM 3-wire Raw Client Demo

Sending the test string...
Sending the test string...
Sending the test string...
Sending the test string...
Sending the test string...
Demonstration complete!

irCOMM 9-wire Cooked Server Demo

Waiting for client...
Receiving...
This is a test string!
This is a test string!
This is a test string!
This is a test string!
This is a test string!
Disconnected
Demonstration complete!

irCOMM 9-wire Cooked Client Demo

Sending the test string...
Sending the test string...
Sending the test string...
Sending the test string...
Sending the test string...
Demonstration complete!
© 2010 Microchip Technology Inc. DS01071B-page 29

AN1071

Note that the server has two methods of reading
data from the client. Switch between the two
methods by either defining or not defining
USE_SINGLE_STEP_READ at the top of the server
source file. The affects of these methods are displayed
on the terminal. When a single step read, utilizing the
IrDA_ReadCommX() is used, the program is simpler,
but execution is locked until either the read is complete
or the read times out. A read that utilizes the
IrDA_ReadInitCommX(), IrDA_ReadResultCommX(),
IrDA_ReadResetCommX() and IrDA_CommXBackground()
functions is more complicated to implement, but gives
the user more control over how the read is performed.
To simply read the contents of a single data transfer,
either method with a time-out of ‘0’ could be used.

Also, note that the procedure for the client to send data
is different than for the IrCOMM 3-wire raw example.
Before the data is written, the control channel must be
initialized. The general procedure to send a packet is
shown in Example 8.

EXAMPLE 8: IrCOMM 9-WIRE COOKED
DATA TRANSMISSION
PROCEDURE

OBEX
Three OBEX demonstration projects are provided. The
client demo and server demo projects are designed to
either work together utilizing two Explorer 16 Develop-
ment Boards with IrDA PICtail Plus or work with
another OBEX device, such as a PDA or cell phone.

The following descriptions are for using a single
Explorer 16 with a PDA. To perform the demonstration
with two Explorer 16 boards, simply program one as
the client and one as the server, align the two boards
and allow them to execute.

To experiment with receiving OBEX data, set up the
Explorer 16 Development Board using the project
found in the OBEX Server Demo directory. Allow the
server application to execute. A brief banner will be
displayed on the terminal emulation program.

The server will now wait until a client tries to establish
a connection with it. Align the PDA’s infrared trans-
ceiver with the transceiver of the IrDA PICtail Plus,
select a contact from the PDA’s address book and
beam it to the Explorer 16. The PDA will transmit the
contact information as a vCard, and the Explorer 16 will
send the raw data contained in the OBEX transfer to
the terminal for display (Example 9 and Example 10).

To experiment with sending OBEX data, set up the
Explorer 16 Development Board using the project
found in the OBEX Client Demo directory. Align the
PDA’s infrared transceiver with the IrDA PICtail Plus’s
transceiver, and allow the client application to execute.

The client will establish a connection with the PDA,
send a vCard to the PDA, and disconnect from the
PDA. To view the vCard, allow the PDA to accept the
transfer, and then view the entry in the PDA’s address
book (Example 11).

The third demonstration project is an OBEX peer,
designed to mimic a PDA. While powered, the
Explorer 16 will enter Server mode and periodically see
if any devices are trying to establish a connection with
it. If a device does establish a connection with it and
sends it information, the received information will be
displayed on the terminal emulation program. If the
user pressed the RD6 button on the Explorer 16 Devel-
opment Board, the application will switch to client
mode, try to establish a connection with a server and
send a vCard to the server. It will then return to Server
mode.

EXAMPLE 9: OBEX SERVER TERMINAL OUTPUT FOR 16-BIT MICROCONTROLLERS

IrDA_InitCommXDataPacket()
if sending control parameters

IrDA_StartControlParamList()
for each control parameter

IrDA_AddControlParam()
endfor
IrDA_FinishControlParamList()

else
IrDA_NoControlParameters()

endif
IrDA_WriteCommX()

OBEX Server.
Receiving... ----
BEGIN:VCARD
N:Microcontroller;PIC24F
ADR;DOM;WORK:;;2355 W. Chandler Blvd.;Chandler;AZ;85224;USA
ORG:Microchip Technology, Inc.
TITLE:16-bit Microcontroller
TEL;PREF;WORK;VOICE:(480) 792-7200
URL;WORK:www.microchip.com/16bit
BDAY:20060418
DS01071B-page 30 © 2010 Microchip Technology Inc.

AN1071

EXAMPLE 10: OBEX SERVER TERMINAL OUTPUT FOR 32-BIT MICROCONTROLLERS

EXAMPLE 11: OBEX CLIENT TERMINAL OUTPUT

OBEX Server.
Receiving... ----
BEGIN:VCARD
N:Microcontroller;PIC32MX
ADR;DOM;WORK:;;2355 W. Chandler Blvd.;Chandler;AZ;85224;USA
ORG:Microchip Technology, Inc.
TITLE:32-bit Microcontroller
TEL;PREF;WORK;VOICE:(480) 792-7200
URL;WORK:www.microchip.com/32bit
BDAY:20060418

OBEX Client.
Sending vCard...
vCard sent.
© 2010 Microchip Technology Inc. DS01071B-page 31

AN1071
MICROCHIP’S IrDA® STACK TOOL
The simplest way to start a new project using an IrDA
standard protocol is to use Microchip’s IrDA Standard
Stack tool, which is installed with the libraries and
source files associated with this application note (see
Appendix A: “Source Code”). Refer to the README
file installed with the Stack for information regarding
any updates to the Stack tool.
1. In the installation subdirectory, locate and start

the IrDA Standard Stack tool (MIST.EXE).
This tool will create project files required to use
the Microchip IrDA Standard Stack. It will also
indicate which library file to include in your proj-
ect, based on the selected protocol and device
type.

2. Select the IrDA Device tab and complete the
following fields:
a) Device Name: The string that your device

will report as its identifier during the discovery
process. Maximum of 23 characters.

b) IrDA Protocol: The IrDA standard protocol
that your application will use.

c) Stack Configuration: Your application’s
device type.

d) Service Hints: Service hints for your
application.

e) PIC Device Family: Select the device
family for your application’s target PIC
microcontroller device

f) PIC Device Header File: Enter the header
file for your application’s target PIC
microcontroller device.

g) UART: Select the UART that will be used for
IrDA communication. Confirm that the
selected UART exists on the target device.

h) Oscillator Frequency (Hz): Enter your
application’s oscillator frequency in hertz,
and then click Select.
The baud rates that your application can
support are displayed. Use these baud
rates for reference when selecting
supported baud rates on the Negotiation
Field Parameters tab.

3. Remove the PIC device header file.

FIGURE 5: SELECTING AND CONFIGURING THE IrDA® DEVICE

Note: If PIC32 is selected as the PIC Device
Family, Peripheral Bus (Fpb) is dis-
played as a selection within the Available
Baud Rates, which can be used to select
the peripheral bus speed divider.
DS01071B-page 32 © 2010 Microchip Technology Inc.

AN1071

4. Select the Negotiation Field Parameters tab.

Use this tab to enter the desired connection
parameters to be used during the negotiation
process. Common default settings are provided.

a) Supported Baud Rates: Select the baud
rates that your application will support.

b) Additional BOF’s: Select the number of
additional flags needed at the beginning of
each frame (BOF = Beginning of Frame).

c) Minimum Turnaround Time: Select the
minimum communication turnaround time.

d) Maximum Turnaround Time: Select the
maximum communication turnaround time.

e) Window Size: Select the application
window size. The maximum window size is
fixed by the library.

f) Data Size: Select the data frame size. The
maximum data size is fixed by the library.

g) Link Disconnect Time: Select the
supported link disconnect times.

5. After entering all information, click Generate to
create the project files, IrDA_def.h and
myIrDA.c.

If the information contains any errors, a
message will be displayed and the files will not
be created. Otherwise, you will be prompted for
the project directory.

6. Select the project directory for the files, and then
click OK.

FIGURE 6: CONFIGURING THE NEGOTIATION FIELD PARAMETERS
© 2010 Microchip Technology Inc. DS01071B-page 33

AN1071

7. Select the Find Fosc tab.

Use this optional tab to find the best oscillator
frequency value. Common default settings are
provided.

a) Max Desired Baud Rate: Specify the
maximum desired baud rate.

b) Max Baud Error(%): Specify the maximum
baud error percentage.

c) Fosc Range (Hz): Specify the frequency
range of the oscillator.

d) Increment by: Specify the increment value.
e) Interrupt Handler: Select Qualify with

Interrupt Processing to input the
maximum instructions inside the interrupt
handler and the maximum interrupt frame
usage in percentage.

f) Instructions in Interrupt Handler: Specify
the maximum instructions inside the
interrupt handler.

g) Maximum Interrupt Frame Usage (%):
Specify the maximum interrupt frame usage
percentage.

h) First Fit: Select the desired first fit check to
be performed.

i) Find: Click Find to calculate the value.
j) Stop: Select Stop to stop searching for the

next value.
k) Find Next: Click Find to locate the next

nearest value.
l) Use This: Click Use This to apply these

values into the generated header files.

FIGURE 7: CONFIGURING THE FIND FOSC PARAMETERS
DS01071B-page 34 © 2010 Microchip Technology Inc.

AN1071
CONCLUSION
The Microchip IrDA Standard Stack provides a modu-
lar, easy-to-use set of libraries to add support for an
IrDA standard protocol to your application. The low-
level drivers allow the Stack to be tailored to the target
hardware, while the libraries keep the Stack interface
simple. The Microchip IrDA Standard Stack will allow
you to add a valuable connectivity aspect to your
embedded design.

REFERENCES
• Infrared Data Association web site:

http://www.irda.org

• Microchip Technology, Inc. web site:

http://www.microchip.com
© 2010 Microchip Technology Inc. DS01071B-page 35

http://www.irda.org
http://www.microchip.com

AN1071
APPENDIX A: SOURCE CODE

The libraries and source code files associated with this
application note are available for download as a single
archive file from the Microchip corporate web site, at:

www.microchip.com

Software License Agreement
The software supplied herewith by Microchip Technology Incorporated (the “Company”) is intended and supplied to you, the
Company’s customer, for use solely and exclusively with products manufactured by the Company.
The software is owned by the Company and/or its supplier, and is protected under applicable copyright laws. All rights are reserved.
Any use in violation of the foregoing restrictions may subject the user to criminal sanctions under applicable laws, as well as to civil
liability for the breach of the terms and conditions of this license.
THIS SOFTWARE IS PROVIDED IN AN “AS IS” CONDITION. NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATU-
TORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
DS01071B-page 36 © 2010 Microchip Technology Inc.

http://www.microchip.com

AN1071
APPENDIX B: IrCOMM 9-WIRE
COOKED DATA
STRUCTURES

The following data structures are used to store control
parameter values that have been received from the
remote device. It is recommended that the application
utilize the macros described in Appendix C: “IrCOMM
9-Wire Cooked Control Channel Access Macros” to
access the value of these parameters rather than
accessing the variables directly.

The application may also use these data structures to
maintain its own control parameters. Refer to the file,
irdep.h, for constants that can be used when utilizing
these structures.

EXAMPLE B-1: SERVICE TYPE
PARAMETER STRUCTURE

EXAMPLE B-2: DATA FORMAT
PARAMETER STRUCTURE

EXAMPLE B-3: CONTROL INDICATIONS
PARAMETER STRUCTURE

EXAMPLE B-4: FLOW CONTROL
PARAMETER STRUCTURE

EXAMPLE B-5: LINE STATUS PARAMETER
STRUCTURE

EXAMPLE B-6: DTE LINE STATUS
STRUCTURE

EXAMPLE B-7: DCE LINE STATUS
STRUCTURE

typedef union _IRDA_SERVICE_TYPE
{

BYTE Val;
struct _IRDA_SERVICE_TYPE_bits
{

unsigned int : 1;
unsigned int b3Wire : 1;
unsigned int b9Wire : 1;
unsigned int bCentronics : 1;

} bits;
} IRDA_SERVICE_TYPE;

typedef union _IRDA_DATA_FORMAT
{

BYTE Val;
struct_IRDA_DATA_FORMAT_bits
{

unsigned int characterLength : 2;
unsigned int stopBits : 1;
unsigned int parity : 2;

} bits;
} IRDA_DATA_FORMAT;

typedef union _IRDA_CONTROL_INDICATIONS
{

BYTE Val;
struct _IRDA_CONTROL_INDICATIONS_bits
{

unsigned int breakIndication : 1;
unsigned int pollLineSettings : 1;

} bits;
} IRDA_CONTROL_INDICATIONS;

typedef union _IRDA_FLOW_CONTROL
{

BYTE Val;
struct _IRDA_FLOW_CONTROL_bits
{

unsigned int XON_XOFF_input : 1;
unsigned int XON_XOFF_output : 1;
unsigned int RTS_CTS_input : 1;
unsigned int RTS_CTS_output : 1;
unsigned int DSR_DTR_input : 1;
unsigned int DSR_DTR_output : 1;
unsigned int ENQ_ACK_input : 1;
unsigned int ENQ_ACK_output : 1;

} bits;
} IRDA_FLOW_CONTROL;

typedef union _IRDA_LINE_STATUS
{

BYTE Val;
struct _IRDA_LINE_STATUS_bits
{

unsigned int : 1;
unsigned int OverrunError : 1;
unsigned int ParityError : 1;
unsigned int FramingError : 1;

} bits;
} IRDA_LINE_STATUS;

typedef union _IRDA_DTE_LINE_STATUS
{

BYTE Val;
struct _IRDA_DTE_LINE_STATUS_bits
{

unsigned int deltaDTR : 1;
unsigned int deltaRTS : 1;
unsigned int DTR : 1;
unsigned int RTS : 1;

} bits;
} IRDA_DTE_LINE_STATUS;

typedef union _IRDA_DCE_LINE_STATUS
{

BYTE Val;
struct _IRDA_DCE_LINE_STATUS_bits
{

unsigned int deltaCTS : 1;
unsigned int deltaDSR : 1;
unsigned int deltaRI : 1;
unsigned int deltaCD : 1;
unsigned int CTS : 1;
unsigned int DSR : 1;
unsigned int RI : 1;
unsigned int CD : 1;

} bits;
} IRDA_DCE_LINE_STATUS;
© 2010 Microchip Technology Inc. DS01071B-page 37

AN1071
APPENDIX C: IrCOMM 9-WIRE
COOKED CONTROL
CHANNEL ACCESS
MACROS

The following macros are available to access the
control parameters that are received from the remote
device. Note that they cannot be used to access control
channel variables declared by the application.

TABLE C-1: FLOW CONTROL VALUE MACROS
Macro Name Description

IrDA_GetCommStatus_DataRate() Data rate of the remote device as an unsigned 32-bit
value

IrDA_GetCommStatus_DataSize() Character Length:
5 bits = 0x00
6 bits = 0x01
7 bits = 0x02
8 bits = 0x03

IrDA_GetCommStatus_StopBits() Stop bits:
1 stop bit = 0
2 stop bits = 1

IrDA_GetCommStatus_Parity() Parity Enable and Type:
No parity = 0x00
Odd parity = 0x01
Even parity = 0x03
Mark parity = 0x05
Space parity = 0x07

IrDA_GetCommStatus_XON() XON character
IrDA_GetCommStatus_XOFF() XOFF character
IrDA_GetCommStatus_ENQ() ENQ character
IrDA_GetCommStatus_ACK() ACK character
IrDA_GetCommStatus_Break() Break:

Clear break = 0
Set break = 1

IrDA_GetCommStatus_PollLineSettings() Sender requests line settings and changes = 1
No request = 0

IrDA_ClearPollLineSettings() Clear poll line settings state; must be done after
responding to the request
DS01071B-page 38 © 2010 Microchip Technology Inc.

AN1071

TABLE C-2: FLOW CONTROL SIGNAL MACROS

TABLE C-3: DTE LINE SETTINGS AND CHANGES MACROS

TABLE C-4: DCE LINE SETTINGS AND CHANGES MACROS

Macro Name Description

IrDA_GetCommStatus_XON_XOFF_input() XON/XOFF on input
IrDA_GetCommStatus_XON_XOFF_output() XON/XOFF on output
IrDA_GetCommStatus_RTS_CTS_input() RTS/CTS on input
IrDA_GetCommStatus_RTS_CTS_output() RTS/CTS on output
IrDA_GetCommStatus_DSR_DTR_input() DSR/DTR on input
IrDA_GetCommStatus_DSR_DTR_output() DSR/DTR on output
IrDA_GetCommStatus_ENQ_ACK_input() ENQ/ACK on input
IrDA_GetCommStatus_ENQ_ACK_output() ENQ/ACK on output

Macro Name Description

IrDA_GetCommStatus_deltaDTR() DTR has not changed = 0
DTR has changed = 1

IrDA_GetCommStatus_deltaRTS() RTS has not changed = 0
RTS has changed = 1

IrDA_GetCommStatus_DTR() DTR state
IrDA_GetCommStatus_RTS() RTS state

Macro Name Description

IrDA_GetCommStatus_deltaCTS() CTS has not changed = 0
CTS has changed = 1

IrDA_GetCommStatus_deltaDSR() DSR has not changed = 0
DSR has changed = 1

IrDA_GetCommStatus_deltaRI() RI has not changed = 0
RI has changed = 1

IrDA_GetCommStatus_deltaCD() CD has not changed = 0
CD has changed = 1

IrDA_GetCommStatus_CTS() CTS state
IrDA_GetCommStatus_DSR() DSR state
IrDA_GetCommStatus_RI() RI state
IrDA_GetCommStatus_CD() CD state
© 2010 Microchip Technology Inc. DS01071B-page 39

AN1071
APPENDIX D: REVISION HISTORY

Revision A (March 2007)
This is the initial released version of this document.

Revision B (December 2010)
This revision includes the following updated:

• References to 32-bit microcontrollers were added
throughout the document

• Added “32-bit Microcontrollers”
• Added Example 10
• Updated Figure 5 and Figure 6
• Added an additional step that details usage of the

optional FOSC tab in the IrDA Stack tool (see
step 7 in “Microchip’s IrDA® Stack Tool”)
DS01071B-page 40 © 2010 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:
• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.
© 2010 Microchip Technology Inc.
Trademarks

The Microchip name and logo, the Microchip logo, dsPIC,
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,
PIC32 logo, rfPIC and UNI/O are registered trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,
MXDEV, MXLAB, SEEVAL and The Embedded Control
Solutions Company are registered trademarks of Microchip
Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard,
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial
Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified
logo, MPLIB, MPLINK, mTouch, Omniscient Code
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,
PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance,
TSHARC, UniWinDriver, WiperLock and ZENA are
trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2010, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

 Printed on recycled paper.

ISBN: 978-1-60932-736-1
DS01071B-page 41

Microchip received ISO/TS-16949:2002 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

DS01071B-page 42 © 2010 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260
Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445
Toronto
Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500
China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431
China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130
China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513
Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122
Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934
Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859
Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850
Taiwan - Hsin Chu
Tel: 886-3-6578-300
Fax: 886-3-6578-370
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Fax: 886-7-330-9305
Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820

Worldwide Sales and Service

08/04/10

http://support.microchip.com
http://www.microchip.com

	Introduction
	IrDA® Standard
	Overview
	Protocols
	FIGURE 1: Optical Port Angles
	FIGURE 2: IrDA® Standard Protocol Stack Layers

	Device Types

	Hardware Design
	FIGURE 3: Block Diagram

	Software Design
	Overview
	TABLE 1: Fixed Operational Parameters

	Generic Stack API
	DWORD IrDA_GetVersion(void)

	IrCOMM 3-Wire Raw
	EXAMPLE 1: IrCOMM 3-wire Raw Basic Client Functionality
	EXAMPLE 2: IrCOMM 3-Wire Raw Basic Server Functionality

	IrCOMM 3-Wire Raw API
	IrDA_CloseCommClient
	IrDA_CloseCommServer
	IrDA_CommBackground
	IrDA_CommInit
	IrDA_CommTerminate
	IrDA_OpenCommClient
	IrDA_OpenCommServer
	IrDA_ReadComm
	IrDA_ReadInitComm
	IrDA_ReadResetComm
	IrDA_ReadResultComm
	IrDA_StackIsActive
	IrDA_WriteComm

	IrCOMM 9-Wire Cooked
	EXAMPLE 3: IrCOMM 9-Wire Cooked Data Transmission Algorithm

	IrCOMM 9-Wire Cooked API
	IrDA_AddControlParam
	TABLE 2: IrCOMM 9-Wire Cooked Control Parameter Identifiers

	IrDA_CloseCommXClient
	IrDA_CloseCommXServer
	IrDA_CommXBackground
	IrDA_CommXInit
	IrDA_CommXTerminate
	IrDA_FinishControlParamList
	IrDA_InitCommXDataPacket
	IrDA_NoControlParameters
	IrDA_OpenCommXClient
	IrDA_OpenCommXServer
	IrDA_ReadCommX
	IrDA_ReadInitCommX
	IrDA_ReadResetCommX
	IrDA_ReadResultCommX
	IrDA_StackIsActive
	IrDA_StartControlParamList
	IrDA_WriteCommX

	OBEX
	OBEX API
	IrDA_InitServerOBEX
	IrDA_ReceiveOBEX
	IrDA_SendOBEX
	IrDA_TerminateOBEX

	Stack Installation
	FIGURE 4: Installation Directory Structure

	Demo Applications
	16-bit Microcontrollers
	32-bit Microcontrollers
	IrCOMM 3-Wire Raw
	EXAMPLE 4: irCOMM 3-Wire Raw Server Terminal Output
	EXAMPLE 5: irCOMM 3-Wire Raw Client Terminal Output

	IrCOMM 9-Wire Cooked
	EXAMPLE 6: irCOMM 9-Wire Cooked Server Terminal Output
	EXAMPLE 7: irCOMM 9-Wire Cooked Client Terminal Output
	EXAMPLE 8: IrCOMM 9-Wire Cooked Data Transmission Procedure

	OBEX
	EXAMPLE 9: OBEX Server Terminal Output for 16-bit Microcontrollers
	EXAMPLE 10: OBEX Server Terminal Output for 32-bit Microcontrollers
	EXAMPLE 11: OBEX Client Terminal Output

	Microchip’s IrDA® Stack Tool
	FIGURE 5: Selecting and Configuring the IrDA® Device
	FIGURE 6: Configuring the Negotiation Field Parameters
	FIGURE 7: Configuring the Find Fosc Parameters

	Conclusion
	References
	Appendix A: Source Code
	Appendix B: IrCOMM 9-Wire Cooked Data Structures
	EXAMPLE B-1: Service Type Parameter Structure
	EXAMPLE B-2: Data Format Parameter Structure
	EXAMPLE B-3: Control Indications Parameter Structure
	EXAMPLE B-4: Flow Control Parameter Structure
	EXAMPLE B-5: Line Status Parameter Structure
	EXAMPLE B-6: DTE Line Status Structure
	EXAMPLE B-7: DCE Line Status Structure

	Appendix C: IrCOMM 9-Wire Cooked Control Channel Access Macros
	TABLE C-1: Flow Control Value Macros
	TABLE C-2: Flow Control Signal Macros
	TABLE C-3: DTE Line Settings And Changes Macros
	TABLE C-4: DCE Line Settings And Changes Macros

	Appendix D: Revision History
	Revision A (March 2007)
	Revision B (December 2010)

