

AN1061

Efficient Fixed-Point Trigonometry Using CORDIC Functions For PIC16F

Author: Jose Benavides Microchip Technology Inc.

INTRODUCTION

This application note presents an implementation of the following fixed-point math routines for the PIC16F microcontroller families:

- SIN(X), COS(X)
- ATAN(X)

CORDIC is an acronym for COordinate Rotation DIgital Computer and was first developed by Jack Volder in 1959. The CORDIC transforms are a collection of iterative, shift-add algorithms used to compute a wide range of trigonometric and hyperbolic functions on a digital computer.

With proper modification, these routines can also be used to implement the sin⁻¹, cos⁻¹, polar/rectangular coordinate conversion, hyperbolic, and even multiply/ divide functions. More detail on these modifications can be found in a paper titled, "*A Survey of CORDIC Algorithms for FPGA-Based Computers*" by Ray Andraka.

The structure of the CORDIC transform lends itself to hardware implementations. Typical applications of the CORDIC transform include FPGA-based applications. In fact, entire Arithmetic Logic Units have been implemented based on the CORDIC transform. However, the software-based CORDIC algorithm presented in this application note will provide a sufficient performance improvement for most applications.

These fixed-point CORDIC math routines are considerably faster than other more traditional methods based on the Taylor expansion. This makes these routines ideal for real-time applications requiring very fast calculations. The SINCOS function, which simultaneously calculates the sine and cosine values of a given angle using the CORDIC transform, will typically take 370 μ s to compute on a PIC16F microcontroller running at 20 MHz. This is in contrast to 1.9 ms using a sin(x) function call in C using the standard math.h include file. Both the SINCOS and ATAN functions take up 190 bytes of program memory and 11 bytes of data memory. Table 1 shows the CORDIC algorithm having over four times the efficiency as that of a standard C math function.

TABLE 1:SIN(x) FUNCTION CALL
SPECIFICATIONS WITH
PIC16F877A AT 20 MHZ

	CORDIC in asm	Math.h in C
Time	370 μs	1.9 ms
Flash	190 words	1,117 words
RAM	11 bytes	40 bytes

CORDIC THEORY

The CORDIC transform is based on the idea that all the trigonometric functions can be calculated using vector rotations. Equation 1 shows how to do vector rotations. Its derivation is presented in Appendix B.

EQUATION 1: ROTATION OF VECTOR (X, Y) BY ϕ

 $\bar{x} = x\cos\phi - y\sin\phi$ $\bar{y} = y\cos\phi + x\sin\phi$

Figure 1 shows an example of Equation 1 by rotating a vector (70, 19), by 30°.

FIGURE 1: ROTATION OF VECTOR (70.19) BY 30°

The CORDIC transform gives an iterative method for performing vectors rotations using only the shift and the add operations. The CORDIC transform is derived by starting with Equation 1 and re-writing it as Equation 2, remembering that $\tan(\phi) = \sin(\phi)/\cos(\phi)$.

EQUATION 2: ROTATION OF VECTOR (X, Y) BY ϕ

		,
$\bar{x} =$	$\cos\phi [x]$	– y tan ø]
$\bar{y} =$	$\cos\phi$ [y ·	$+x tan \phi$]

If the angle of rotation is restricted such that $\tan(\phi) = +/-2^{-i}$, then multiplication by $\tan(\phi)$ is equivalent to a shift operation. This is shown in Equation 3. The i represents the iteration number of the CORDIC transform.

At the first iteration, when i=0, the input vector is rotated by $\tan^{-1}(2^{-0})=45^{\circ}$. The second iteration rotates by $\tan^{-1}(2^{-1})=26.56^{\circ}$, then 14.03°, and so on.

EQUATION 3: ROTATION OF VECTOR (X, Y) BY TAN⁻¹2⁻¹ DEGREES

$$\bar{x} = \cos\left(\tan^{-1} \ 2^{-i}\right)[x - y \ 2^{-i}]$$

$$\bar{y} = \cos\left(\tan^{-1} \ 2^{-i}\right)[y + x \ 2^{-i}]$$

At each iteration i, a decision is made to rotate in the direction of the desired final angle. The angle of rotation becomes successively smaller at each iteration i until the vector converges to the desired angle. With enough iterations, one can rotate by any arbitrary angle. Equation 4 shows the iterative rotational transform.

EQUATION 4: ITERATIVE ROTATIONS

$$x_{i+1} = k_i \left[x_i - y_i \cdot d_i \cdot 2^{-i} \right]$$

$$y_{i+1} = k_i \left[y_i + x_i \cdot d_i \cdot 2^{-i} \right]$$

$$k_i = \cos\left(\tan^{-1} 2^{-i} \right) = \frac{1}{\sqrt{1 + 2^{-2}i}}$$

$$d_i = \pm 1$$

The d term is always +1 or -1 depending on the direction of rotation for that iteration. A d of +1 will rotate the vector counter clockwise, while a d of -1 will rotate the vector clockwise.

The cos[tan⁻¹(2⁻ⁱ)] term from Equation 3 becomes a constant for each iteration which is now called k_i. Each iteration's k_i term is independent of that iterations direction of rotation because cosine is an even function, $cos(\phi)=cos(-\phi)$. In fact, if the total number of iterations is fixed, the k_i terms can be factored out entirely. The product of all the k_i terms is represented as K_n, with n being the total number of iterations counting from 0. Equation 5 shows how to calculate K_n by multiplying together all the k_i terms from 0 to n. For a sufficiently large number of iterations n, (like 15) K_n will converge

to approximately 0.607253. The rotational algorithm calculated without the $k_{\rm i}$ terms will have a total gain of $1/K_{\rm n}$ or $A_{\rm n}.$

EQUATION 5: THE ROTATIONAL ALGORITHM GAIN

n	
<u> </u>	. 1
$K_n = \prod \frac{1}{2}$	$A_n = \frac{1}{n}$
ⁿ II \int_{1} \int_{2} $-2i$	K_n
$i = 0^{\sqrt{1+2}}$	71

A third difference equation is added to track the composite angle of rotation. This is shown in Equation 6.

EQUATION 6: TOTAL ANGLE OF ROTATION

$$z_{i+1} = z_i - d_i \tan^{-1} (2^{-i})$$

This iterative rotational transform is normally used in one of two modes, Rotational mode or Vectoring mode.

In Rotational mode, the input vector is rotated by a given input angle z_0 . The sign of z_i determines the direction of rotation at each iteration, such that its absolute value is diminished after each iteration. The full Rotational mode is presented in Equation 7. x_n and y_n represent the final values of x and y.

EQUATION 7: ROTATIONAL MODE

$$\begin{split} x_{i+1} &= x_i - y_i \cdot d_i \cdot 2^{-i} \\ y_{i+1} &= y_i + x_i \cdot d_i \cdot 2^{-i} \\ z_{i+1} &= z_i - d_i \cdot \tan^{-1} 2^{-i} \\ d_i &= -1 \text{ if } z_i < 0, +1 \text{ otherwise} \\ A_n &= \prod_{i=0}^n \sqrt{1+2^{-2i}} \\ x_n &= A_n [x_0 \cos(z_0) - y_0 \sin(z_0)] \\ y_n &= A_n [x_0 \cos(z_0) + y_0 \sin(z_0)] \end{split}$$

An example of its use is shown in Table 2 with the vector (70,19) being rotated by 30° is initialized to the desired angle. At each iteration, a rotational direction (d) is chosen that will minimize the angle accumulator z. This means d is equal to the sign of the previous z

value. In other words, if the angle accumulator is positive, then the vector is rotated counter clockwise. If z is negative, the vector is rotated clockwise. Notice that the final values of x and y must be de-scaled by A_n because the K_i terms were left out of the algorithm.

i	х	Y	Z	d	tan ⁻¹ (2 ⁻ⁱ)	tan ⁻¹ (y/x)
0	70.00000	19.00000	30.00000	1	45.00000	15.19
1	51.00000	89.00000	-15.00000	-1	26.56505	60.19
2	95.50000	63.50000	11.56505	1	14.03624	33.62
3	79.62500	87.37500	-2.47119	-1	7.12502	47.66
4	90.54688	77.42188	4.65382	1	3.57633	40.53
5	85.70801	83.08105	1.07749	1	1.78991	44.11
6	83.11172	85.75943	-0.71242	-1	0.89517	45.90
7	84.45172	84.46081	0.18275	1	0.44761	45.00
8	83.79187	85.12059	-0.26486	-1	0.22381	45.45
9	84.12437	84.79328	-0.04105	-1	0.11191	45.23
10	84.28998	84.62897	0.07085	1	0.05595	45.11
11	84.20733	84.71129	0.01490	1	0.02798	45.17
12	84.16597	84.75240	-0.01307	-1	0.01399	45.20
13	84.18666	84.73185	0.00091	1	0.00699	45.18
14	84.17632	84.74213	-0.00608	-1	0.00350	45.19
15	84.18149	84.73699	-0.00258	-1	0.00175	45.19
Descaled:	84.1/An = 51.11	84.7/An = 51.45				

TABLE 2: FIRST ROTATIONAL MODE EXAMPLE

The SINCOS function utilizes the Rotational mode to calculate the sine and cosine functions directly by initializing y_0 to zero and x_0 to the inverse of A_n . Figure 2 shows this in block form. By initializing x_0 to the inverse of A_n , the final values are correct without need for de-scaling.

AN1061

FIGURE 2: SINCOS FUNCTION

Many applications for the sine and cosine functions use them to modulate a magnitude value. By initializing x_0 to that magnitude value divided by A_n , this routine will do that modulation without ever having to use a separate multiplier. Table 3 presents an example of modulating or scaling the value 3 by the sine of 30° and the cosine of 30°. x_0 is initialized to $3/A_n = 1.8219$. x_n equals $3^*\cos(30^\circ) \approx 2.59821$ and y_n equals $3^*\sin(30^\circ) \approx 1.50023$.

The example in Table 3 shows one way to use the SIN-COS function. This is in contrast to the example in Table 2 that simply rotated the (70, 19) vector by 30°.

i	x	Y	Z	d	atan(2^ ⁻ⁱ)	tan ⁻¹ (y/x)
0	1.82190	0.00000	30.00000	1	45.00000	0.00
1	1.82190	1.82190	-15.00000	-1	26.56505	45.00
2	2.73285	0.91095	11.56505	1	14.03624	18.43
3	2.50511	1.59416	-2.47119	-1	7.12502	32.47
4	2.70438	1.28102	4.65382	1	3.57633	25.35
5	2.62432	1.45005	1.07749	1	1.78991	28.92
6	2.57900	1.53206	-0.71242	-1	0.89517	30.71
7	2.60294	1.49176	0.18275	1	0.44761	29.82
8	2.59129	1.51210	-0.26486	-1	0.22381	30.26
9	2.59720	1.50197	-0.04105	-1	0.11191	30.04
10	2.60013	1.49690	0.07085	1	0.05595	29.93
11	2.59867	1.49944	0.01490	1	0.02798	29.99
12	2.59794	1.50071	-0.01307	-1	0.01399	30.01
13	2.59830	1.50007	0.00091	1	0.00699	30.00
14	2.59812	1.50039	-0.00608	-1	0.00350	30.01
15	2.59821	1.50023	-0.00258	-1	0.00175	30.00

|--|

In Vectoring mode, the input angle will be rotated by any angle necessary to align the vector to the x-axis such that the y component is zero. The direction of rotation for each iteration is determined by the sign of y such that its absolute value is diminished after each iteration until it's nearly zero. The resulting traversed angle is stored in z. The following difference equations describe Vectoring Mode.

EQUATION 8: VECTORING MODE

$$\begin{split} x_{i+1} &= x_i - y_i \cdot d_i \cdot 2^{-i} \\ y_{i+1} &= y_i + x_i \cdot d_i \cdot 2^{-i} \\ z_{i+1} &= z_i - d_i \cdot \tan^{-1} 2^{-i} \\ d_i &= +1 \text{ if } y_i < 0, -1 \text{ otherwise} \\ A_n &= \prod_{i=0}^n \sqrt{1+2^{-2i}} \\ x_n &= A_n \sqrt{x_0^2 + y_0^2} \\ y_n &= 0 \quad z_n &= z_0 + \tan^{-1} \left(\frac{y_0}{x_0}\right) \end{split}$$

The arctangent function is directly computed using the Vectoring mode. The initial angle z_0 is set to zero. The arctangent function operates on the ratio of $y \phi / x \phi$. Figure 3 shows the ATAN function block diagram.

It is important to note that the CORDIC algorithm as presented in this application note will only work for angles between $+90^{\circ}$ and -90° .

EXCEL

The Excel workbook has four worksheets. The first worksheet lists the relevant difference equations for reference purposes. The second worksheet, COR_SIM, is the CORDIC transform simulated in both Rotational and Vectoring mode. It shows two examples. The first example is a sin/cos computation and the second is an tan⁻¹ computation. The third worksheet,

Cor_bitSIM_SINCOS, simulates the bit-for-bit CORDIC transform as it would be computed on a PIC[®] microcontroller. The bit manipulation functions were implemented in Visual Basic using Excel's Integrated Visual Basic Editor. This "bit-accurate" simulation allows for very detailed testing verification of the algorithm once it's on the PIC microcontroller. Also in the third worksheet is a plot of many possible inputs and outputs to show graphically its operation. The fourth worksheet, COR_bitSIM_ATAN, contains a similar layout for the Vectoring mode of the transform.

© 2007 Microchip Technology Inc.

This workbook uses circular references with multiple iterations to implement the CORDIC algorithms. The operation of the algorithms can be better analyzed when the iterations are advanced one at a time manually. This is done by selecting "Options" under the tools menu and setting the max iterations under the "Calculation" tab to 1. Pressing the F9 key advances each iteration of the circular references.

PIC16F IMPLEMENTATION

The included demo code was written for the PIC16F877A on the PICDEMTM 2 Plus Development Board. The potentiometer is used for angle input and the results are displayed on both the two line LCD and through the serial connector at 9600 baud. These results can be viewed on a PC using the hyper terminal. The main program will take the input angle Z1 and use the SINCOS function to calculate the SIN and COS values. It will then take those values and use the ATAN function to determine the output angle Z2. The display will show Z1 (the input angle in degrees), the calculated SIN and COS values (Y and X, respectively), and Z2 (the ATAN output angle in degrees).

Program operation can also be verified using the MPLAB[®] simulator and Data Monitor and Control Interface (DMCI) tool, which permits one to monitor arrays and buffers. The simulator stimulus files are included that will simulate a sinusoidal input. The demo code continuously records its output into RAM. The DMCI tool, when loaded with the included DMCI file, graphs the values recorded in RAM. A screen capture is shown below with Figure 4. When using the simulator, one must uncomment the "simulating" define statement and re-compile. This is so that the LCD routines don't cause problems for the simulation.

FIGURE 4: DMCI

References

- Andraka, Ray. A survey of CORDIC Algorithms for FPGA-based computers. Andraka Consulting Group, Inc. Copyright 1998.
- Crenshaw, Jack. Real Time Tool Kit for Embedded Systems. CMP Books. Copyright 2000. ISBN: 1-929629-09-5.
- Turkowski, Ken. Fixed-Point Trigonometry with CORDIC Iterations. Apple Computer. January 17, 1990.
- Testa, Frank J. AN575, AN617, and AN660.

APPENDIX A: THE COS(TAN⁻¹X) TRIG IDENTITY

EQUATION A-1:

$$COS \left[\tan^{-1} (X) \right] = \sqrt{\frac{1}{X^2 + 1}}$$

$$COS^2 \left[\tan^{-1} (X) \right] = \frac{1}{X^2 + 1}$$

$$\frac{1}{2} + \frac{COS \left[2 \cdot \tan^{-1} (X) \right]}{2} = \frac{1}{X^2 + 1}$$

$$cos(2 \cdot \mu) = \frac{2}{X^2 + 1} - 1 \quad (\text{set } \mu = \tan^{-1} (X))$$

$$\frac{1 - \tan^2(\mu)}{1 + \tan^2(\mu)} = \frac{2}{X^2 + 1} - 1$$

$$\frac{1 - X^2}{1 + X^2} = \frac{2}{X^2 + 1} - 1$$

$$1 - X^2 = 2 - (1 + X^2) = 1 - X^2$$

APPENDIX B:ROTATION BYANGLE ϕ

In an effort to show where the rotational transform comes from, a derivation for Equation 1 is presented below. It is important to remember the following identities of a right triangle.

FIGURE B-1: RIGHT ANGLE IDENTITIE

c h	$COS(\phi) = \frac{a}{c} \Rightarrow C \bullet COS(\phi) = a$
ø d	$SIN(\phi) = \frac{b}{c} \Rightarrow C \bullet SIN(\phi) = b$

In a Cartesian plane, the vector P has coordinates (X, Y), and is shown in Figure B-2. The figure shows coordinate X is equal to line segment OA and coordinate Y is equal to line segment AP. Rotating the vector P counter clockwise by the angle ϕ is equivalent to rotating it's frame of reference by the same angle ϕ in the clockwise direction. This is shown in Figure B-2. The new coordinates of P under the new frame of reference are \overline{X} =0B and \overline{Y} =BP.

 FIGURE B-2:
 ROTATION OF VECTOR P BY

 ANGLE φ

Equation B-1 relates the old coordinates X and Y to the new coordinates \overline{X} and \overline{Y} , effectively rotating the vector P by angle ϕ . Equation B-1 can also be shown in matrix form as shown in Equation B-1.

EQUATION B-1: DERIVATION OF THE ROTATIONAL TRANSFORM

AN1061

NOTES:

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002

Trademarks

The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, PowerSmart, rfPIC, and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, Linear Active Thermistor, Mindi, MiWi, MPASM, MPLIB, MPLINK, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB, rfPICDEM, Select Mode, Smart Serial, SmartTel, Total Endurance, UNI/O, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2007, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona, Gresham, Oregon and Mountain View, California. The Company's quality system processes and procedures are for its PIC[®] 8-bit MCUs, KEELO0[®] code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://support.microchip.com Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Kokomo Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Habour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Fuzhou Tel: 86-591-8750-3506 Fax: 86-591-8750-3521

China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Shunde Tel: 86-757-2839-5507 Fax: 86-757-2839-5571

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7250 Fax: 86-29-8833-7256

ASIA/PACIFIC

India - Bangalore Tel: 91-80-4182-8400 Fax: 91-80-4182-8422

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Gumi Tel: 82-54-473-4301 Fax: 82-54-473-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Penang Tel: 60-4-646-8870 Fax: 60-4-646-5086

Philippines - Manila Tel: 63-2-634-9065

Fax: 63-2-634-9069 Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-572-9526 Fax: 886-3-572-6459

Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-536-4803

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820