
© 2005 Microchip Technology Inc. DS01007A-page 1

AN1007

INTRODUCTION
The MCP3551 delta-sigma ADC is a high-resolution
converter. This application note discusses various
design techniques to follow when using this device.
Typical application circuits are discussed first, followed
by a section on noise analysis. This device has a LSB
size that is smaller than the noise voltage, typical of any
high-resolution ADC. Due to this, the performance of
the device (and system) cannot be analyzed by simply
looking at the binary output stream. Collecting data and
visually analyzing the result is required; when design-
ing circuits it is important to provide a way to get the
data points to a PC. This application note shows how to
use the MCP3551 22-Bit Delta-Sigma ADC PICtail™
Demo Board circuitry and DataView® software to
quickly evaluate sensor or system performance, as well
as how to interface the device to PICmicro®

microcontrollers.

The DataView software allows real-time visual evalua-
tion of system noise performance using histogram and
scope plot graphs pertaining to many of the issues dis-
cussed herein.

Sections on anti-aliasing filter design and input settling
time issues are also included. The serial
communication firmware supplied is written in both
software and hardware SPI™, C and Assembly for the
PICmicro microcontroller. The software SPI™ code
written in C is working code supplied with the MCP3551
22-Bit Delta-Sigma ADC PICtail™ Demo Board.

TYPICAL CONNECTION
A typical application for the MCP3551 device is shown
in Figure 1, with the sensor connected to the MCP3551
22-Bit Delta-Sigma ADC PICtail™ Demo Board for
system noise analysis and debugging.

FIGURE 1: Typical Bridge Sensor Application Showing Connection for System Noise and Debug.

Author: Craig L. King
Microchip Technology Inc.

USB interface to DataView software

PC Running

SPI™ Bus

on PC for noise analysis

2x16 LCD
 (or similar)

0.1 µF
VIN+

VIN-

VREF

PIC18F4550

VDD

VSS

SCK
SDO
CS

MCP3551
MCU

MCP3551 22-Bit ΔΣ

USB

0.1 µF 1.0 µF To VREF

To VDD

DataView®

5,6,7

1
2

3
4

8

3

3

5

8

~0.1-2 kΩ

PICmicro®

Software

ADC PICtail™ Demo Board

Designing with the MCP3551 Delta-Sigma ADC

AN1007

DS01007A-page 2 © 2005 Microchip Technology Inc.

Sensors for temperature, pressure, load or other
physical excitation are most often configured in a
Wheatstone bridge configuration, as shown in Figure 1.
The bridge can have anywhere from one to all four
elements reacting to the physical excitation and should
be used in a radiometric configuration when possible,
with the system reference driving both the sensor and
the ADC voltage reference. One example is General
Electric’s NovaSensor® absolute pressure sensor
(NPP-301), shown in Figure 2 in a four-element vary-
ing bridge.

When designing with the MCP3551 ADC, the initial
step should be to first evaluate the sensor performance
and then determine what steps (if any) should be used
to increase the overall system resolution. In many
situations, the MCP3551 device can be used to directly
digitize the sensor output, eliminating any need for
external signal-conditioning circuitry.

The NPP-301 device has a typical full-scale output of
60 mV when excited with a 3V battery. The pressure
range for this device is 100 kPa. The MCP3551 has an
output noise specification of 2.5 µVRMS.

The following equation is a first-order approximation of
the relationship between pressure in Pascals (P) and
altitude (h) in meters.

Using 60 mV as the full-scale range and 2.5 µV as the
resolution, the resulting resolution from direct
digitization (in meters) is 0.64 meters, or approximately
2 feet.

It should be noted that this is only used as an example
for discussion; temperature effects and the error from a
first-order approximation must be included in final
system design.

FIGURE 2: Example of a direct digitization application. This is a low-power, absolute pressure-
sensing module using the GE NovaSensor (NPP-301) series low-cost, surface-mount pressure sensor
High-resolution ADCs, such as the MCP3551, can also
be used to replace a solution that uses a lower-
resolution ADC and a gain stage. The system block
diagram shown in Figure 3 represents a typical signal-
conditioning circuit. In this example, the required
accuracy is 12 bits. A 12-bit ADC was selected and a
gain stage was required to gain the signal prior to
conversion. To achieve 12-bit accuracy, the entire input
range of the ADC must be used. In this example, the
signal also has a varying Common mode, which
requires some offset adjustment calibration, along with
perhaps a summing amplifier (i.e., the signal must be
centered prior to the gain). FIGURE 3: Example Application Using

Low-Resolution ADC and Signal-Conditioning
Circuitry.

P()log 5 h
15500
---------------–≈

NPP-301

0.1 µF 1.0 µF

VIN
+

VIN
-

VREF VDD

VSS

SCK
SDO

CS

MCP3551

VBAT

To VDD

To SPI™

+

-

3

2 6

5

2

3

1

4

5,6,7

8

Altimeter Watch

Calibration
DAC

MCU/CPU

Low-Res
ADCPGASumming

Amplifier

Input
Signal

OSC VREF

+
-

+
-

© 2005 Microchip Technology Inc. DS01007A-page 3

AN1007
The entire signal-conditioning circuitry can be
eliminated in this situation by using the higher-
resolution MCP3551 device.

FIGURE 4: Use of High-Resolution
ADC, Eliminating Signal-Conditioning Circuitry.
The large dynamic range of a high-resolution ADC
(e.g., 22 bits, in the case of the MCP3551, eliminates
the need for any system gain). In the above example,
12-bit accuracy was required. With 22-bit dynamic
range, 12-bit accuracy exists anywhere within the input
range of the ADC. Figure 4 shows this comparison with
VREF = 2.5V (Note: Not to scale).

FIGURE 5: The Large Dynamic Range
of the MCP3551/3 Compared to that of a 12-bit
ADC.

Bits and Noise Analysis
With higher-resolution converters, the LSB size of the
device is smaller than the device noise (i.e., there will
always be a distribution of codes returned from the
device). This output noise specification is measured by
performing calculations on the output code distribution.
The output code distribution defines what the effective
resolution is, or Effective Number of Bits (ENOB) of the
device. The output code distribution will have some
standard deviation associated with it. This standard
deviation is the RMS noise of the device (σ). The ratio
of RMS noise (smallest signal that can be measured),
to the full-scale input range of the device (largest signal
that can be measured) is the effective resolution of the
ADC. Converting to base 2 yields ENOB, as defined by
Equation 1:

EQUATION 1:

It should be noted that the formula for ENOB (or effec-
tive resolution) used in Equation 1 assumes a purely
DC signal. A sinewave signal has 1.76 dB more AC
power than a random signal uniformly distributed
between the same peak levels.

If your application deals more with AC signals, the ADC
performance can be viewed in the frequency domain
using AC FFTs. These plots show Signal-to-Noise
Ratio (SNR) or Signal-to-Noise And Distortion
(SINAD). However, these are not typically found in low-
bandwidth, delta-sigma data sheets.

The ENOB is naturally superior for large DC inputs
compared to large AC inputs since, for AC inputs, the
value comes close to 0 when the phase is close to 90°,
which adds more uncertainty to the signal.

To calculate the ENOB using the standard SNR
(dB)_=_6.02n+1.76 (which is derived using
VRMS_=_VPEAK/2√(2), or a pure sine wave as the
signal), Equation 2 should be used. The resulting
ENOB has a difference of 1.76 dB in the calculation, or
a difference of 0.292 bits less ENOB.

EQUATION 2:

For a sensor with a 100 mV full-scale range output, the
ENOB based on the MCP3551 resolution can be
calculated as:

EQUATION 3:

The MCP3551 output noise or effective resolution is
specified with VREF = 5V at 21.9 bits RMS. Predicting
peak noise (or flicker-free) bits relies on statistical
analysis and is discussed in a later section.

It should be noted that lowering the VREF voltage of the
ADC will not improve the output noise or effective
resolution of the device, as this is dominated by the
input thermal noise of the input structure.

In some applications, signal amplification will still be
required to achieve the required system resolution.
Analysis of the signal-conditioning circuitry required in
these applications will not be covered in this application
note.

When determining the sensor and, ultimately, the
system resolution, all errors must be considered. Most
errors can be calibrated out depending on the
application. For example, consider a load cell with a

VREF

PICmicro®
Microcontroller

Input
Signal

MCP3551

0V

2,097,1522.5V

20 bits

8192 12 bits4096

0

ENOB FSR RMS Noise⁄()ln
2()ln

--=

ER in bits rms
20 FSR

RMS Noise
--------------------------⎝ ⎠

⎛ ⎞log•

6.02
--=

ENOB 100mV() 2.5μV()⁄()ln
2()ln

---=

Where:

ENOB = 15.3 bits

AN1007

DS01007A-page 4 © 2005 Microchip Technology Inc.

specified error of 0.01%. With no calibration, the sensor
limits the overall system resolution to 13.2 bits, still
below the MCP3551 resolution with a full-scale sensor
output of 100 mV.

Noise, by definition, is an aperiodic signal not having
any wave or shape. This randomness is best dealt with
in statistical properties, hence, the RMS measurement
of the Gaussian (or normal) distribution. When design-
ing a system and attempting to measure the perfor-
mance, the RMS noise is much more repeatable than
the peak-to-peak noise. Figure 6 shows two different
distributions with different RMS and PEAK values,
representing two different ADC output distributions.

FIGURE 6: Two Normal (Gaussian)
Output Distributions.
The DataView® software tool is a visualization tool
showing real-time histograms using the MCP3551. The
software also calculates the RMS noise of the current
distribution. Additionally, the number of samples in the
distribution is scalable, allowing post-averaging exper-
iments.

FIGURE 7: DataView® software
showing system performance in a histogram
format.
In the above example, the RMS noise was 0.8 ppm and
the voltage reference was 2.5V. In this system, our
ENOB was 21.6 using Equation 1.

The software can also be used for time-based system
analysis using the scope plot window. Any system drift
or other time-based errors can be analyzed using this
visual analysis tool.

FIGURE 8: DataView® Software Scope
Plot View.

DEBUG POLLING AND DATA LOGGING
The DataView software tool also allows the flexibility of
changing the USB polling interval to a wide range of
time periods, from milliseconds to hours. For applica-
tions requiring long-term data analysis, the system
cache can be configured to show performance over
long periods of time. Changing the DataView software’s
USB polling interval allows the designer to easily
investigate long-term drift system issues, typical of
high-resolution systems (shown in Figure 9). See the
MCP3551 22-Bit Delta-Sigma ADC PICtail™ Demo
Board User’s Guide (DS51579) for more information on
this feature.

FIGURE 9: USB Polling Interval Control
for System Drift Analysis

σ
2σ

will supply new figure

© 2005 Microchip Technology Inc. DS01007A-page 5

AN1007
PREDICTING PEAK NOISE AND “NOISE-FREE
BITS”
Peak-to-peak noise is much more difficult to measure,
or predict, than measuring RMS noise. This peak-to-
peak noise is also referred to as “noise-free” or “flicker-
free” bits. Here we are attempting to predict the possi-
bility of an output code occurring at the tips of the
distribution. Based on the fact that the distribution is
normal, or Gaussian (assuming the noise is entirely
random), Table 1 is generated using standard statisti-
cal tables.The multiplier in the first column is the ratio
of peak-to-RMS. This multiple (or ratio) is also known
as a signal’s “crest factor” when analyzing the power
content of a signal. When analyzing noise, however,
the multiplier should be chosen based on your
application requirements.

The “empirical rule” of statistics can also be used as a
general rule of thumb when approaching a good peak-
to-peak window for your system during debug. The
empirical rule states that 68% of normally distributed
data falls within 1 standard deviation of the mean, 95%
falls within 2 standard deviations of the mean and
99.7% falls within 3 standard deviations of the mean.
For digital system designs, the most popular choice is
3.3 standard deviations from the mean, or 99.9% prob-
ability. For more or less rigid system designs, see
Table 1 for other RMS-to-peak ratios or crest factors.

FIGURE 10: n sigma (standard
deviations) from the mean, basis for Table 1.
As an example, let us choose an application that
requires slightly more confidence in noise-ree bits (e.g.,
the feedback loop of a electronic defibrillator for heart
failure).

Using the DataView software too, the characterized
system noise is 0.5 ppm, RMS.

Here, the multiplier of 5 was chosen to be more conser-
vative, with the resulting window having a width of 21
output codes.

TABLE 1: CONFIDENCE TABLE TO
PREDICT “NOISE FREE”
BITS

ANALOG FRONT-END (AFE) DESIGN

Before looking at anti-aliasing and settling time issues,
the input structure and operation of the device must
first be evaluated. The input pins of the MCP3551
device are switched-capacitor-type inputs. The input
pins go directly into the delta-sigma modulator, which
oversamples the input at a frequency equivalent to the
internal oscillator divided by four (fINT/4). The result is
a four-phase sampling scheme between the reference
and input. During the sample time tCONV, the ADC is
constantly comparing the differential input voltage to
the voltage reference and transferring this charge to
the input capacitors. Figure 11 illustrates this timing
using the MCP3551 device.

σ

2σ

Distribution Window
Around Mean

(Peak-to-Peak Window)

Probability
of Output

Codes
Within

Window

Probability
of Output

Codes NOT
Within

Window

2.0 x RMS or 1 sigma 68% 32%
3.0 x RMS or 1.5 sigma 87% 13%
4.0 x RMS or 2 sigma 95.4% 4.6%

5.0 x RMS or 2.5 sigma 98.8% 1.2%
6.0 x RMS or 3 sigma 99.73% 0.27%

6.6 x RMS or 3.3 sigma 99.9% 0.10%
8.0 x RMS or 4 sigma 99.954% 0.046%

10.0 x RMS or 5 sigma 99.994% 0.006%

eN RMS() 0.5ppm=

eN p p–() eN RMS() K•=

0.5ppm() 10()•=

5.0ppm=

1ppm 2Ncodes
1000000
--------------------- 222

1000000
---------------------= =

4.194 codes=

eN p p–() 5ppm 20.97 codes= =

21 codes=

AN1007

DS01007A-page 6 © 2005 Microchip Technology Inc.

FIGURE 11: Internal timings of the MCP3551 device. For settling time issues, charge transfer
frequency must be observed. For aliasing issues, the oversampling frequency of 28.16 kHz is the focus.

ANTI-ALIASING FILTER DESIGN
Regardless of the ADC architecture, an anti-aliasing
filter is sometimes required. The delta-sigma ADC is no
exception. Based on the SINC filter response in
Figure 12, a simple, low-cost RC filter is all that is
required to eliminate unwanted signals around the
oversampling frequency.

The MCP3551 device has an oversampling frequency
of 28.16 kHz. The MCP3553 device has an
oversampling frequency of 30.72 kHz, with a lower
Oversampling Ratio (OSR) for higher data rate or
Nyquist frequency. The Nyquist or output data rate of
the MCP3551 and MCP3553 devices are 13.75 Hz and
60 Hz, respectively.

The SINC filter response of the MCP3551 has lobes
that give increasing attenuation with frequency, as
shown in Figure 12. The anti-aliasing filter require-
ments should be selected with the attenuation of the
SINC filter in mind.

FIGURE 12: MCP3551's modified SINC
filter.
Keep in mind that the ill-used components will not be at
full-scale, and will typically be at a smaller amplitude.
From Figure 12, the largest SINC lobe is down approx-
imately 60 dB (the aliasing components are at -20 dB),
so an additional 20 dB is required from the anti-lasing
filter to get to 100 dB.

Microchip’s free FilterLab® filter design tool can be
used to easily estimate the single-pole RC attenuation
for specific filter cut-off frequencies and aliased signal
frequency components. Figure 13 shows a RC
designed with a 1 kHz cut-off frequency, giving greater
than 30 dB at the sampling frequency of 30.72 kHz.

It should be noted that at integer multiples of the
sampling frequency, the SINC filter response will
repeat, in which the SINC filter response will be zero.

FIGURE 13: FilterLab® filter design tool
showing RC response.

INPUT IMPEDANCE
In Figure 11, the switching frequency at the inputs of
the devices is equivalent to the internal oscillator
frequency in every phase. The input pin resistance is
calculated to be the switching frequency multiplied by
the capacitance and the equivalent capacitance (CEQ).
The resulting RC defines the settling time required at
the input to the device.

Any additional RC added to the input will cause the
input signal to not be completely settled during the
oversampling internal to the device. It is important to
note that, due to the oversampling and averaging
performed by the delta-sigma architecture, the addi-
tional RC added here will be consistent across each
oversampled charge. The resulting effect on the device
output will be an error in conversion offset and gain.

tDATA = 72.72 ms

Filter Order 1 Filter Order 2 Filter Order 3 Filter Order 4

X 512
28.16 kHz

112.64 kHz 112.64 kHz 112.64 kHz 112.64 kHz
Transfer ChargeSample Input

X 512X 512

Transfer ChargeSample Reference

X 512

-120
-110
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10

0

0 10 20 30 40 50 60 70 80 90 100 110
Frequency (Hz)

A
tte

nu
at

io
n

(d
B

)

© 2005 Microchip Technology Inc. DS01007A-page 7

AN1007
The linearity of the device will not be compromised.
The output noise performance will also not be compro-
mised, assuming the thermal noise added by the input
resistance does not exceed the output noise specifica-
tion

If analysis of the offset/gain effect is desired, analysis
of the settling time curve of the internal RC, compared
to the desired system accuracy, should be performed.
Figure 14 shows the RC charging curve for the internal
resistance and capacitance only (RSW and CEQ).

FIGURE 14: Standard RC curve. The
time required for the input signal to settle to within
x ppm must be considered.

The amount to which the internal charge must settle for
absolute measurement accuracy (i.e., a system with no
offset or gain adjustment can be defined as a percent-
age of the final charge). For example, if the target
absolute accuracy percentage is 1 ppm, the following
settling time must exist, represented by a multiple of
the RC time constant (T).

EQUATION 4:

In this example, for 1 ppm absolute accuracy, 14 time
constants are required to complete the settling. Using
Equation 4, the same calculation can be used for other
accuracy requirements. Again, in calibrated systems
where offset and gain errors are removed, the settling
time analysis is not necessary due to the delta-sigma
oversampling and averaging of each sample.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 0.005 0.01 0.015

Time (t)

Vo
lta

ge
 (V

)

VC VF 1 e
t–

τ

–
⎝ ⎠
⎜ ⎟
⎛ ⎞

=

t nτ=

Ve 1
VC
VF
-------–=

VC VF 1 e n––()=

e n– 1
VC
VF
------- Ve=–=

n ln– Ve()=

-ln 1ppm()=
13.8=

AN1007

DS01007A-page 8 © 2005 Microchip Technology Inc.

Communication Firmware
The MCP3551 ADCs are serial SPI™ devices. This
application note includes code written in both C and
assembly languages. The MCP3551 22-Bit Delta-
Sigma ADC PICtail™ Demo Board connects with the
DataView software through the PIC18F4550 via USB
and is supplied with code written using Microchip’s C18
compiler. An overview of the SPI communication
protocol used is shown here:

As long as the system has been put into the Acquire
Data mode from the DataView software (by sending an
ASCII “S” via USB to the PIC18F4550), the Acquire-
Data flag will be set. During this time, the MCP3551 is
constantly converting, with the read data being sent
back up to the PC via USB.

The code used on the PIC18F4550 sends CS low
pulses to the MCP3551 every 10 ms. The Timer1 flag
and the TimerCounter variable are used to set this
time. This low pulse effectively puts the device into
Single Conversion mode, as the rising edge is less than
the conversion time. During the CS pulse low time, the
state of the SDO is tested to determine if the conver-
sion is complete. If the pin is low, the firmware will
retrieve the data using the Read3551 subroutine. The
Read3551() routine calls three separate ReadSPI
routines and retrieves the three bytes of data contain-
ing the 22-bit word and the 2 overflow bits. Once the 3
bytes of data are returned, the Sample flag is reset and
the process starts over.

void Read3551(char *data)
{
 unsigned char n;
 data[2] = ReadSPI();
 data[1] = ReadSPI();
 data[0] = ReadSPI();
}

 //MCU checks every 10 ms if conversion is
finished
 if(AquireData & gSampleFlag)
 {
 CS_PTBoard_LOW(); //
 for(n=0;n<5;n++);
 if (SDIpin == 0)
 Read3551(outbuffer);
 CS_PTBoard_HIGH(); //
 gSampleFlag = 0; //clear
timeout indicator

 if(!mHIDTxIsBusy())
 HIDTxReport(outbuffer,3);
 }

© 2005 Microchip Technology Inc. DS01007A-page 9

AN1007

FIGURE 15: PIC18F4550 flowchart. USB TX buffer is sent to the DataView® software for visual
analysis.

Start

RX

Clear

flag
ASCII

character?

Increment
‘TimerCounter’

Did
TimerCounter

rollover?

Set ‘gSampleFlag’
TimerCounter =

FEh

Is

and
gSampleFlag

set?

Sample data line
to check if

conversion is
complete

Is conversion
complete?

Read MCP3551
and place data in

USB TX buffer

No

Clear TMR0IF

PS

C

No

Yes

Yes

No

Yes

End

No

Yes

No

Yes

from
USB?

‘AquireData’
Set

flag
‘AquireData’

Is

Set
 Flag

(TMR0IF)

Timer0

?

‘AquireData’

AN1007

DS01007A-page 10 © 2005 Microchip Technology Inc.

REFERENCES
[1] “Delta-Sigma Data Converters Theory, Design and

Simulation”, Steven R. Norsworthy, Richard
Schreier, Gabor C. Temes, IEEE Press, 1997,
pp. 4-9.

[2] AN9504, “A Brief Introduction to Sigma Delta
Conversion”, David Jarman, Intersil®, 1995.

[3] “Modern Business Statistics”, Ronald L. Iman, W.J.
Conover, Second Edition, John Wiley & Sons, Inc.,
1989.

APPENDIX A: OVERSAMPLING
ANALYSIS

The delta-sigma ADC is an oversampling device with
many up-sides. High resolution, excellent line
frequency rejection, limited external component
requirements and low power are a few examples of its
benefits. The high-resolution benefit is not a product of
simple oversampling, which is sometimes confused.

WHY NOT JUST OVERSAMPLE WITH A
PICmicro® MCU SAR ADC?
The answer is easy: noise shaping. Simply oversam-
pling with a fast Successive Approximation Routine
(SAR) ADC and averaging the results will not achieve
the resolution performance of a delta-sigma ADC.
Oversampling and averaging will only increase
accuracy by 1/2 bit for each doubling of the sample
frequency. The theory behind this comparison is
presented here by comparing the noise power of both
approaches.

SIMPLE OVERSAMPLING
For a generic quanitized unit (or LSB), the noise within
this quanta is assumed to be entirely random, or
assumed to be white-noise. Therefore, the quantization
noise power and RMS quantization voltage for an
digital or quantized output (ADC) can be given by the
following equations:

EQUATION 5:

For example, for a 16-bit converter with a VREF of 5V,
the RMS quantization noise would be 22 µV.

Taking this noise and folding it into the frequency band
from 0 to fs/2, due to Nyquist, we can determine what
the spectral density of the noise is in V/√(Hz):

EQUATION 6:

To determine the noise power within a bandwidth of
interest (fo), we must now square, and then integrate,
the noise over that bandwidth of interest.

e2rms 1
q
--- e2deq–

2

q
2

∫ q2

12
------= =

rmse q
12

----------= (V)

(V2)

E f() rmse() 2
fs
---= V

Hz
-----------⎝ ⎠

⎛ ⎞

© 2005 Microchip Technology Inc. DS01007A-page 11

AN1007
EQUATION 7:

Recalling that fs/2fo is the OSR, we now have the well
established result that increasing the OSR reduced the
noise by the square root of the OSR [1]. Therefore,
each doubling of the sampling frequency only yields
3 dB better performance, or only 0.5 bits of resolution.

The delta-sigma modulator will increase the perfor-
mance of oversampling by pushing the low-frequency
noise towards the higher frequencies, see Figure 17.
This benefit of delta-sigma modulation is referred to as
noise shaping. A first-order delta-sigma modulator will
increase accuracy by 9 dB, or 1.5 bits of resolution, for
every doubling of the OSR.

The output of the accumulator is the input signal plus
the error introduced by the quanitzation error, as well
as the quantized signal, represented by the following
figure and equation:

FIGURE 16: Representation of a first-
order delta-sigma modulator in its sampled-data
equivalent form [1].

EQUATION 8:

Taking spectral density of the noise (ei-ei-1) and then
again converting this to noise power by squaring it and
integrating it over the bandwidth of interest eventually
yields:

EQUATION 9:

The delta-sigma modulator decreases in-band noise by
9 dB (or 1.5 bits) for every doubling of the OSR. Three
times better than simple oversampling.

Improving noise-shaping performance can be achieved
using a higher-order delta-sigma modulator design.
The noise power for higher-order modulators is
summarized with the following equation:

EQUATION 10:

In this case, the noise falls 3 (2M - 1) dB for every
doubling of the sampling frequency for an Mth-order
modulator. As an example, for M = 3 (MCP3551/3
devices are third-order modulators), for each doubling
of the sampling frequency we have an increase in 2.5
bits of resolution. It is this architecture that allows
< 3 µV of noise performance using devices such as the
MCP3551/3. Figure 17 presents the noise-shaping in
the frequency domain. The noise has been pushed to
the higher frequencies, around the oversampling
frequency (fs). It should also be noted that thermal
noise follows the standard averaging rule of 3 dB (1/2
bit) improvement with every doubling of the OSR, as it
is taken and processed as part of the signal.

FIGURE 17: Noise-shaping from a delta-
sigma modulator achieving lower noise floor in
the bandwidth of interest. This is not possible by
simply oversampling and averaging with a faster
SAR ADC.

no
2 e f()()= V2()

no erms()
2fo
fs

-------⎝ ⎠
⎛ ⎞

1 2/
= V()

Where:

fo < fs/2

Delay+-

QuantizationAccumulation
xi yi

ei

+

yi xi 1– ei ei 1––()+=

no eRMS
π
3

2fo
fs

-------⎝ ⎠
⎛ ⎞

3
2

=

no eRMS
πM

2M 1+

2fo
fs

-------⎝ ⎠
⎛ ⎞

M 1
2
---+

=

0 f0

Digital
Filter

2f0
Nyquist

fs
Oversampling

frequency

M
ag

ni
tu

de STF

AN1007

DS01007A-page 12 © 2005 Microchip Technology Inc.

APPENDIX B: SOFTWARE - SPI™ COMMUNICATION IN C

TABLE B-1: SPI _ PIC18F252.ASM
;===
; Software License Agreement
;
; The software supplied herewith by Microchip Technology Incorporated
; (the “Company”) for its PICmicro(r) microcontroller is intended and
; supplied to you, the Company’s customer, for use solely and
; exclusively on Microchip PICmicro Microcontroller products. The
; software is owned by the Company and/or its supplier, and is
; protected under applicable copyright laws. All rights are reserved.
; Any use in violation of the foregoing restrictions may subject the
; user to criminal sanctions under applicable laws, as well as to
; civil liability for the breach of the terms and conditions of this
; license.
;
; THIS SOFTWARE IS PROVIDED IN AN “AS IS” CONDITION. NO WARRANTIES,
; WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED
; TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
; PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT,
; IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL OR
; CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
;
;===
; Filename: 840DSM.asm
;===
; Author: Craig L. King
; Company: Microchip Technology Inc.
; Revision: 1.00
; Date: July 21, 2004
; Assembled using MPASM(tm) WIN compiler
;===
; Include Files: p18f252.inc V1.3
;===
;
;===

list p=18f252;list directive to define processor
#include <p18f252.inc>;processor specific definitions

; Change the following lines to suit your application.

__CONFIG _CONFIG1H, _OSCS_OFF_1H & _HS_OSC_1H
__CONFIG _CONFIG2L, _BOR_ON_2L & _PWRT_OFF_2L
__CONFIG _CONFIG2H, _WDT_OFF_2H
__CONFIG _CONFIG3H, _CCP2MX_OFF_3H
__CONFIG _CONFIG4L, _STVR_OFF_4L & _LVP_OFF_4L & _DEBUG_OFF_4L
__CONFIG _CONFIG5L, _CP0_OFF_5L & _CP1_OFF_5L & _CP2_OFF_5L & _CP3_OFF_5L
__CONFIG _CONFIG5H, _CPB_OFF_5H & _CPD_OFF_5H
__CONFIG _CONFIG6L, _WRT0_OFF_6L & _WRT1_OFF_6L & _WRT2_OFF_6L & _WRT3_OFF_6L
__CONFIG _CONFIG6H, _WRTC_OFF_6H & _WRTB_OFF_6H & _WRTD_OFF_6H
__CONFIG _CONFIG7L, _EBTR0_OFF_7L & _EBTR1_OFF_7L & _EBTR2_OFF_7L & _EBTR3_OFF_7L
__CONFIG _CONFIG7H, _EBTRB_OFF_7H

;--
;Constants

SPBRG_VAL EQU .64 ;set baud rate 19.2 for 20Mhz clock

;--

© 2005 Microchip Technology Inc. DS01007A-page 13

AN1007

;Bit Definitions

GotNewData EQU 0 ;bit indicates new data received

#define do 0 ;transmit bit
#define di 1 ;transmit bit
#define CLK PORTC,2 ;clock
#define ADCS PORTC,3 ;chip select
#define DIN PORTC, 4 ;data in / READY
#define BITCOUNT 0x08

;--
;Variables

CBLOCK 0x000
Flags ;byte to store indicator flags
RxData ;data received
TxData ;data to transmit
ParityByte ;byte used for parity calculation
ParityBit ;byte to store received parity bit

COUNT
COUNT2
COUNT3
DLYCNT
DLYCNT1
DLYCNT2
byte2
byte1
byte0

ENDC

;--
;This code executes when a reset occurs.

ORG 0x0000 ;place code at reset vector

ResetCode: bra Main ;go to beginning of program

;--
;This code executes when a high priority interrupt occurs.

ORG 0x0008 ;place code at interrupt vector

HighIntCode: ;do interrupts here

reset ;error if no valid interrupt so reset

;--
;This code executes when a low priority interrupt occurs.

ORG 0x0018 ;place code at interrupt vector

LowIntCode: ;do interrupts here

reset ;error if no valid interrupt so reset
;

TABLE B-1: SPI _ PIC18F252.ASM (CONTINUED)

AN1007

DS01007A-page 14 © 2005 Microchip Technology Inc.

; MAIN ROUTINE
;--
;Main routine calls the receive polling routines and checks for a byte
;received. It then calls a routine to transmit the data back.
;
;
;This routine sets up the USART and then samples the MCP3551, and sends the 3 bytes out
;on the USART, THEN REPEAT
;
;--

Main: rcall SetupSerial ;set up serial port

;do other initialization here
movlw b’11010000’
movwf TRISC

MainLoop:

;go get the 3551 data

rcall Sample3551

movff byte2,TxData

bsf TXSTA,TX9D
rcall TransmitSerial ;go transmit the data

movff byte1,TxData

bcf TXSTA,TX9D
rcall TransmitSerial ;go transmit the data

movff byte0,TxData

bcf TXSTA,TX9D
rcall TransmitSerial ;go transmit the data

DoOtherStuff:;do other stuff here

bra MainLoop ;go do main loop again

;--

TABLE B-1: SPI _ PIC18F252.ASM (CONTINUED)

© 2005 Microchip Technology Inc. DS01007A-page 15

AN1007

;Check if data received and if so, place in a register and check parity.

ReceiveSerial: btfss PIR1,RCIF ;check if data received
return ;return if no data

btfsc RCSTA,OERR ;if overrun error occurred
bra ErrSerialOverr ;then go handle error
btfsc RCSTA,FERR ;if framing error occurred
bra ErrSerialFrame ;then go handle error

movf RCSTA,W ;get received parity bit
movwf ParityBit ;and save
movf RCREG,W ;get received data
movwf RxData ;and save

rcall CalcParity ;calculate parity
movf ParityBit,W ;get received parity bit
xorwf ParityByte,F ;compare with calculated parity bit
btfsc ParityByte,0 ;check result of comparison
bra ErrSerlParity ;if parity is different, then error
bsf Flags,GotNewData ;else indicate new data received
return

;error because OERR overrun error bit is set
;can do special error handling here - this code simply clears and continues

ErrSerialOverr:bcf RCSTA,CREN ;reset the receiver logic
bsf RCSTA,CREN ;enable reception again
return

;error because FERR framing error bit is set
;can do special error handling here - this code simply clears and continues

ErrSerialFrame:movf RCREG,W ;discard received data that has error
return

;error because parity bit is not correct
;can do special error handling here - this code simply clears and continues

ErrSerlParity: return ;return without indicating new data

;--
;Transmit data in WREG with parity when the transmit register is empty.

TransmitSerial:btfss PIR1,TXIF ;check if transmitter busy
bra $-2 ;wait until transmitter is not busy

movf TxData,W ;get data to be transmitted

movf TxData,W ;get data to transmit
movwf TXREG ;transmit the data
return

;--

TABLE B-1: SPI _ PIC18F252.ASM (CONTINUED)

AN1007

DS01007A-page 16 © 2005 Microchip Technology Inc.

;Calculate even parity bit.
;Data starts in working register, result is in LSB of ParityByte

CalcParity: movwf ParityByte ;get data for parity calculation
rrncf ParityByte,W ;rotate
xorwf ParityByte,W ;compare all bits against neighbor
movwf ParityByte ;save
rrncf ParityByte,F ;rotate
rrncf ParityByte,F ;rotate
xorwf ParityByte,F ;compare every 2nd bit and save
swapf ParityByte,W ;rotate 4
xorwf ParityByte,F ;compare every 4th bit and save
return

;--
;Set up serial port.

SetupSerial: movlw 0xc0 ;set tris bits for TX and RX
iorwf TRISC,F
movlw SPBRG_VAL ;set baud rate
movwf SPBRG
movlw 0x64 ;enable nine bit tx and high baud rate
movwf TXSTA
movlw 0xd0 ;enable serial port and nine bit rx
movwf RCSTA
clrf Flags ;clear all flags
return

;***
;***
;---
;
;Sample3551
;
;This is where you sample the MCP3551 and put your 22-bit
;answer into the following bytes:

; byte 2 -- byte 1 -- byte 0
; MSB LSB
;
; This routine returns the data
;---

TABLE B-1: SPI _ PIC18F252.ASM (CONTINUED)

© 2005 Microchip Technology Inc. DS01007A-page 17

AN1007

Sample3551

clrf byte2 ; reset input buffer
clrf byte1 ; reset input buffer
clrf byte0 ; reset input buffer

bsf CLK ; clock idle high
bcf ADCS ;INITIATE THE CONVERSION

movlw .6
call VAR1000TcyDELAY ; delay 1ms

bsf ADCS ;CS HIGH (Single Conversion mode)

movlw .160 ; total delay 110ms (GREATER THAN TCONV, CAN BE REDUCED)
call VAR1000TcyDELAY ; delay 160k Tcy
call VAR1000TcyDELAY ; delay 250k Tcy
call VAR1000TcyDELAY ; delay 250k Tcy

bcf ADCS ; GET THE CONVERSION DATA

movlw BITCOUNT
movwf COUNT ; FIRST BYTE

FIRST_BYTE
bcf CLK ; drop clock for next bit
bsf CLK ; set clock to latch bit
bcf STATUS,C ; pre-clear carry
btfsc DIN ; check for high or low bit
bsf STATUS,C ; set carry bit
rlcf byte2, f ; roll the carry bit left into position
decfsz COUNT, f ; decrement bit counter
goto FIRST_BYTE ; get next bit

movlw BITCOUNT
movwf COUNT ; SECOND BYTE

SECOND_BYTE
bcf CLK ; drop clock for next bit
bsf CLK ; set clock to latch bit
bcf STATUS,C ; pre-clear carry
btfsc DIN ; check for high or low bit
bsf STATUS,C ; set carry bit
rlcf byte1, f ; roll the carry bit left into place
decfsz COUNT, f ; decrement bit counter
goto SECOND_BYTE ; get next bit
movlw BITCOUNT
movwf COUNT ; THIRD BYTE

THIRD_BYTE
bcf CLK ; drop clock for next bit
bsf CLK ; set clock to latch bit
bcf STATUS,C ; pre-clear carry
btfsc DIN ; check for high or low bit
bsf STATUS,C ; set carry bit
rlcf byte0, f ; roll the carry bit left into place
decfsz COUNT, f ; decrement bit counter
goto THIRD_BYTE ; get next bit
bsf CLK ;clock idles high

TABLE B-1: SPI _ PIC18F252.ASM (CONTINUED)

AN1007

DS01007A-page 18 © 2005 Microchip Technology Inc.

bsf ADCS ;deselect A/D converter
retlw 0 ; We’re finished - Return!

;******************* VARIABLE DELAY SUBROUTINES *******************
; DLYCNT1 = F9h = 249d DLYCNT2 = W
; DELAY = T((4 DLYCNT1 + 4) DLYCNT2 + 4)
;
; ex. To create a 300ms delay when using a 4Mhz osc, 300-250 = 50
; movlw .50 ;load .50 into WREG
; call VAR1000TcyDELAY ;call VAR1000TcyDELAY = 50ms delay w/4MHz Osc
; call VAR1000TcyDELAY ;call VAR1000TcyDELAY = 250ms delay w/4MHz Osc
; ;total = 300ms delay
;************
; The value in W at the time of the CALL = x. Delay = 1000Tcy*x
VAR1000TcyDELAY

movwf DLYCNT2 ;LOADS CONTROLLING DLY # INTO PRIMARY COUNTER
DLOOP2 movlw .249 ;MAXIMIZES THE SECONDARY DLY COUNTER

movwf DLYCNT1 ;
DLOOP1 clrwdt ;or NOP

decfsz DLYCNT1,f ; DECREMENT AND TEST SECONDARY LOOP FOR ZERO
goto DLOOP1 ; CONTINUE SECONDARY LOOP
decfsz DLYCNT2,f ; DECREMENT AND TEST PRIMARY DLY COUNTER
goto DLOOP2 ; CONTINUE PRIMARY LOOP
retlw .250 ; preload W for the next CALL VAR1000TcyDELAY

;************
; VARIABLE 5 Tcy DELAY UP TO 256*5Tcy+5Tcy
; DLYCNT1 = W
; DELAY = T(1 + 5 DLYCNT1 - 1) + CALL + RETLW
;
; ex. To create a 250us delay, (250/5)-1 = 49
; movlw .49 ;load .49 into WREG
; call VAR5TcyDELAY ; call VAR5TcyDELAY
;************
; The value in W at the time of the CALL = x. Delay = 5*Tcy + 5Tcy
VAR5TcyDELAY

movwf DLYCNT1 ; LOADS CONTROLLING DLY # INTO PRIMARY COUNTER
DLOOP3 clrwdt ;or NOP

nop
decfsz DLYCNT1,f ; DECREMENT AND TEST ZERO
goto DLOOP3 ; CONTINUE LOOP
retlw .250 ; preload W for the next CALL VAR5TcyDELAY

;**

H
END

TABLE B-1: SPI _ PIC18F252.ASM (CONTINUED)

© 2005 Microchip Technology Inc. DS01007A-page 19

AN1007

APPENDIX C: HARDWARE - SPI™ COMMUNICATION IN ASSEMBLY
TABLE C-1: MCP3551.C
/***
 *
 * Microchip USB C18 Firmware - MCP3551 PICtail(tm) Demo
 *

 * FileName: MCP3551.c
 * Dependencies: See INCLUDES section below
 * Processor: PIC18
 * Compiler: C18 2.30.01+
 * Company: Microchip Technology Inc.
 *
 * Software License Agreement
 *
 * The software supplied herewith by Microchip Technology Incorporated
 * (the Company) for its PICmicro(r) microcontroller is intended and
 * supplied to you, the Company’s customer, for use solely and
 * exclusively on Microchip PICmicro(r) microcontroller products. The
 * software is owned by the Company and/or its supplier, and is
 * protected under applicable copyright laws. All rights are reserved.
 * Any use in violation of the foregoing restrictions may subject the
 * user to criminal sanctions under applicable laws, as well as to
 * civil liability for the breach of the terms and conditions of this
 * license.
 *
 * THIS SOFTWARE IS PROVIDED IN AN ”AS IS” CONDITION. NO WARRANTIES,
 * WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED
 * TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
 * PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT,
 * IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL OR
 * CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
 *
 * Author Date Comment
 *~~
 * Pat Richards xx/xx/xx Original.
 **/

/** I N C L U D E S **/
#include <p18cxxx.h>
#include <usart.h>
#include <spi.h>
#include "system\typedefs.h"
#include "system\usb\usb.h"

#include "io_cfg.h" // I/O pin mapping
#include "user\MCP3551.h"

/** V A R I A B L E S **/
#pragma udata
//byte old_sw2,old_sw3;

BOOL emulate_mode;
rom signed char dir_table[]={-4,-4,-4, 0, 4, 4, 4, 0};
byte movement_length;
byte vector = 0;

byte AquireData = 1; //0 = STOP; 1 = Aquire
char buffer[3];

char inbuffer[BUF_SIZE]; // 8 byte input to USB device buffer
char outbuffer[BUF_SIZE]; // 8 byte output to USB device buffer
byte TimerCounter = 0xF0;
static unsigned char gSampleFlag;

AN1007

DS01007A-page 20 © 2005 Microchip Technology Inc.

/** P R I V A T E P R O T O T Y P E S ***************************************/
void Read3551(char *data);
unsigned char ReadSPI(void);
void CheckBoardConnect(void);

/** D E C L A R A T I O N S **/
#pragma code
void UserInit(void)
{
 byte i;

 CS_PTBoard_HIGH(); //Drive high
 tris_CS = 0; //Output

OpenSPI(SPI_FOSC_16, MODE_11, SMPMID);

 TRISBbits.TRISB0 = 1; //SDI
 TRISBbits.TRISB1 = 0; //SCK

 //-------------------------
 // initialize variables
 //-------------------------
 for (i=0; i<BUF_SIZE; i++) // initialize input and output buffer to 0
 {
 inbuffer[i]=0;
 outbuffer[i]=0;
 }

//Timer 0
 TMR0H = 0; //clear timer
 TMR0L = 0; //clear timer

T0CONbits.PSA = 0; //Assign prescaler to Timer 0
T0CONbits.T0PS2 = 1; //Setup prescaler
T0CONbits.T0PS1 = 1; //Will time out every 51 us based on
T0CONbits.T0PS0 = 1; //20 MHz Fosc
T0CONbits.T0CS = 0; //Increment on instuction cycle

}//end UserInit

/**

 * Function: void ProcessIO(void)
 *
 * PreCondition: None
 *
 * Input: None
 *
 * Output: None
 *
 * Side-Effects: None
 *
 * Overview: This function is a place holder for other user routines.
 * It is a mixture of both USB and non-USB tasks.
 *
 * Note: None
 ***/

TABLE C-1: MCP3551.C (CONTINUED)

© 2005 Microchip Technology Inc. DS01007A-page 21

AN1007

void ProcessIO(void)
{
 char n;
 // User Application USB tasks
 if((usb_device_state < CONFIGURED_STATE)||(UCONbits.SUSPND==1)) return;

 if (HIDRxReport(inbuffer, 1)) // USB receive buffer has data
 {
 switch(inbuffer[0]) // interpret command
 {
 case START_ACQUISITION: // 'S' START aquisition of data
 AquireData = 1;
 CS_PTBoard_LOW(); //Start conversion
 TimerCounter = 0xFF;
 break;

 case STOP_ACQUISITION: // 'T' STOP aquisition of data
 AquireData = 0;
 break;

 case CHANNEL_SELECTION: // 'C' A/D Channel Selection
 break;

 default: // unrecognized or null command
 ;
 }// END switch(inbuffer[0])
 }//END if (HIDRxReport(inbuffer, 1)

 //Inst. cycle = 200 ns; TMR0IF sets every 51 us
 if(INTCONbits.TMR0IF)
 {
 TimerCounter++;
 if (!TimerCounter) //if rolled over, set flag. User code will handle the rest.
 {
 TimerCounter = 0xFE;
 gSampleFlag = 1;
 }
 INTCONbits.TMR0IF = 0;
 }

 //MCU checks every 10 ms if conversion is finished
 if(AquireData & gSampleFlag)
 {
 CS_PTBoard_LOW(); //
 for(n=0;n<5;n++);
 if (SDIpin == 0)
 Read3551(outbuffer);
 CS_PTBoard_HIGH(); //
 gSampleFlag = 0; //clear timeout indicator

 if(!mHIDTxIsBusy())
 HIDTxReport(outbuffer,3);
 }
}//end ProcessIO

TABLE C-1: MCP3551.C (CONTINUED)

AN1007

DS01007A-page 22 © 2005 Microchip Technology Inc.

/**
 * Function: void Read3551(char *data)
 *
 * PreCondition: None
 *
 * Input: Pointer to a string; must be three bytes min
 *
 * Output: None
 *
 * Side-Effects: None
 *
 * Overview:
 *
 * Note:
 ***/
void Read3551(char *data)
{
 unsigned char n;
 data[2] = ReadSPI();
 data[1] = ReadSPI();
 data[0] = ReadSPI();
}

/**
 * Function: CheckBoardConnect(void)
 *
 * PreCondition: None
 *
 * Input: None
 *
 * Output: None
 *
 * Overview: Checks if the Stimulus Board is attached. Future expansion.
 *
 * Side-Effects: None
/**/
void CheckBoardConnect(void)
{
}

/** EOF MCP3551.c**/

TABLE C-1: MCP3551.C (CONTINUED)

© 2005 Microchip Technology Inc. DS01007A-page 23

Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR WAR-
RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED,
WRITTEN OR ORAL, STATUTORY OR OTHERWISE,
RELATED TO THE INFORMATION, INCLUDING BUT NOT
LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE,
MERCHANTABILITY OR FITNESS FOR PURPOSE.
Microchip disclaims all liability arising from this information and
its use. Use of Microchip’s products as critical components in
life support systems is not authorized except with express
written approval by Microchip. No licenses are conveyed,
implicitly or otherwise, under any Microchip intellectual property
rights.

Trademarks

The Microchip name and logo, the Microchip logo, Accuron,
dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART,
PRO MATE, PowerSmart, rfPIC, and SmartShunt are
registered trademarks of Microchip Technology Incorporated
in the U.S.A. and other countries.

AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB,
PICMASTER, SEEVAL, SmartSensor and The Embedded
Control Solutions Company are registered trademarks of
Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, dsPICDEM,
dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR,
FanSense, FlexROM, fuzzyLAB, In-Circuit Serial
Programming, ICSP, ICEPIC, Linear Active Thermistor,
MPASM, MPLIB, MPLINK, MPSIM, PICkit, PICDEM,
PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo,
PowerMate, PowerTool, rfLAB, rfPICDEM, Select Mode,
Smart Serial, SmartTel, Total Endurance and WiperLock are
trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2005, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

 Printed on recycled paper.

Note the following details of the code protection feature on Microchip devices:
• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Microchip received ISO/TS-16949:2002 quality system certification for
its worldwide headquarters, design and wafer fabrication facilities in
Chandler and Tempe, Arizona and Mountain View, California in
October 2003. The Company’s quality system processes and
procedures are for its PICmicro® 8-bit MCUs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

DS01007A-page 24 © 2005 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com
Atlanta
Alpharetta, GA
Tel: 770-640-0034
Fax: 770-640-0307
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260
Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
San Jose
Mountain View, CA
Tel: 650-215-1444
Fax: 650-961-0286
Toronto
Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104
China - Chengdu
Tel: 86-28-8676-6200
Fax: 86-28-8676-6599
China - Fuzhou
Tel: 86-591-8750-3506
Fax: 86-591-8750-3521
China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760
China - Shunde
Tel: 86-757-2839-5507
Fax: 86-757-2839-5571
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xian
Tel: 86-29-8833-7250
Fax: 86-29-8833-7256

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-2229-0061
Fax: 91-80-2229-0062
India - New Delhi
Tel: 91-11-5160-8631
Fax: 91-11-5160-8632
India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513
Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122
Korea - Gumi
Tel: 82-54-473-4301
Fax: 82-54-473-4302
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934
Malaysia - Penang
Tel: 604-646-8870
Fax: 604-646-5086
Philippines - Manila
Tel: 632-634-9065
Fax: 632-634-9069
Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850
Taiwan - Hsin Chu
Tel: 886-3-572-9526
Fax: 886-3-572-6459
Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803
Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE
Austria - Weis
Tel: 43-7242-2244-399
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Spain - Madrid
Tel: 34-91-352-30-52
Fax: 34-91-352-11-47
UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820

DS01007A

WORLDWIDE SALES AND SERVICE

08/24/05

