
AN1003
USB Mass Storage Device Using a PIC® MCU
INTRODUCTION
In recent years, there has been immense growth in
Universal Serial Bus (USB) based applications,
primarily due to the Plug and Play nature of USB.

This application note describes the design and
implementation of a USB Mass Storage Device (MSD)
using a Secure Digital card, which should prove useful
to developers of USB mass storage solutions. This
application may be used as a stand-alone MSD or as a
Secure Digital/Multimedia Card (SD/MMC) reader/
writer interface.

This design consists of the following components:

• USB V2.0 compliant PIC18F4550 microcontroller
• PICDEM™ FS USB Demonstration Board
• PICtail™ Board for SD™ and MMC Cards
• Windows® operating system compatible

(Me, 2000, XP and Windows Server™ 2003)

Figure 1 shows the hardware configuration of the
MSD. The PICtail™ Board for SD™ and MMC Cards
(check the Microchip web site for availability) is
connected into a socket on the PICDEM™ FS USB
Demonstration Board. For additional details, refer to
the PICDEM FS USB Demonstration Board User’s
Guide (see “References”).

The MSD design has the following features:

• USB V2.0 full-speed compliant.
• No custom drivers required (Windows operating

system built-in driver, usbstor.sys, is used).

• Files created using FAT16, FAT32 or NTFS file
format supported (see “References”).

• SD and MMC cards supported (see “References”).

• Uses the Windows operating system storage
driver, usbstor.sys. The Windows Server 2003,
Windows XP, Windows 2000 and Windows Me
operating systems provide native support for USB
Mass Storage Class devices. Therefore, MSD is
compatible with these operating systems.

Version 1.0 of the MSD has the following limitations
(later revisions will have additional features):

• Does not support the Windows 98 operating
system (see Appendix A: “Frequently Asked
Questions” for details).

• Does not support the FAT12 file system. In
general, small capacity SD cards (i.e., <= 16 MB)
can only be formatted in a FAT12 file system.

• If the SD card is removed, the USB cable must be
disconnected and reconnected after the card has
been reinserted.

• The SD card must be present at power-up.

FIGURE 1: MSD HARDWARE CONFIGURATION

Author: Gurinder Singh
Microchip Technology Inc.

Note: The implementation and use of the FAT file
system, SD card specifications, MMC card
specifications and other third party tools
may require a license from various entities,
including, but not limited to Microsoft®

Corporation, SD Card Association and
MMCA. It is your responsibility to obtain
more information regarding any applicable
licensing obligations. Some third party web
sites have been listed in “References” for
your convenience.
© 2005 Microchip Technology Inc. DS01003A-page 1

AN1003
USB

A device endpoint is defined in the USB V2.0
specification as “a uniquely addressable portion of USB
device that is the source or sink of information in a
communication flow between the host and device” (see
“References”). The unique address required for each
endpoint consists of an endpoint number (which may
range from 0 to 15) and direction (IN or OUT). The
endpoint direction is from the host’s perspective; IN is
towards the host and OUT is away from the host. An
endpoint configured to do control transfers must
transfer data in both directions, so a control endpoint
actually consists of a pair of IN and OUT endpoints that
share an endpoint number. All USB devices must have
Endpoint 0 configured as a control endpoint.

USB V2.0 supports four types of data transfers:
Control, Bulk, Interrupt and Isochronous.

Control transfer is used to configure a device at the
time of plug-in and can be used for other device-
specific purposes, including control of other pipes on
the device.

Bulk data transfers are used when the data is generated
or consumed in relatively large, bursty quantities.

Interrupt data transfers are used for timely, but
reliable, delivery of data. For example, characters or
coordinates with human perceptible echo or feedback
response characteristics.

Isochronous data transfers occupy a pre-negotiated
amount of USB bandwidth with pre-negotiated delivery
latency (also called streaming real-time transfers).

For any given device configuration, an endpoint sup-
ports only one of the types of transfers described
above. In this application, apart from Endpoint 0, we
configure Endpoint 1 IN and OUT as bulk endpoints.

To meet the needs of various applications using USB,
three speeds of operation have been designed in the
USB V2.0 specification: Low-Speed (LS, 1.5 Mbps),
Full-Speed (FS, 12 Mbps) and High-Speed (HS,
480 Mbps).

See “References” for detailed information on USB,
including references to the USB specification and USB
related publications.

The PIC18F4550 used in this application is USB V2.0
compliant and can support LS and FS data transfers.
For more information on the PIC18F4550, refer to the
the device data sheet (see “References”).

Enumeration

Before the applications can communicate with the
device, the host needs to learn about the device and
assign a device driver. Enumeration is defined as the
initial exchange of information that accomplishes this.
During the enumeration process, the device moves
through the following device states as defined by the
USB V2.0 specification: Powered, Default, Address
and Configured. Two other USB device states are:
Attached and Suspend. Exact details of the enumera-
tion process are beyond the scope of this document;
however, the commands and structures used in the
device configuration are briefly described.

Descriptors are data structures that enable the host to
learn about a device. During enumeration, the host
requests descriptors, starting from high-level device
descriptors to low-level endpoint descriptors, in the
sequence shown in Figure 2. The structure, description
and values of device, configuration and interface
descriptors are detailed in Appendix C: “USB
Descriptor Formats”. A code example of descriptor
structures is provided in Appendix D: “USB
Descriptor Structures”. Details of bulk-only endpoint
descriptors can be found in Appendix F: “Bulk
Endpoint Descriptors”.

FIGURE 2: STANDARD USB
DESCRIPTORS

Device Descriptor

Configuration Descriptor

Interface Descriptor

Endpoint Descriptor
DS01003A-page 2 © 2005 Microchip Technology Inc.

AN1003
ENUMERATION PROCESS

The following summarizes the steps involved in the
enumeration of a USB device and explains how the
device goes from Powered to Default, Address and the
Configured state during the enumeration process.

1. User plugs a USB device into a USB port. The
hub provides power to the port and the device is
in the Powered state.

2. The hub detects the device.
3. The hub uses an interrupt pipe to report the

event to the host.
4. Host sends Get_Port_Status request to

obtain more information about the device.
5. Hub detects whether device is Low-Speed or

Full-Speed operation and sends the information
to the host in response to Get_Port_Status.

6. Host sends a Set_Port_Feature request,
asking the hub to reset the port.

7. Hub resets the device.
8. Host learns if a Full-Speed device supports

High-Speed operation (using Chirp K signal).
9. Host verifies if the device has exited the Reset

state using Get_Port_Status.
10. At this point, the device is in the Default state

(device is ready to respond to control transfers
over the default pipe at Endpoint 0, default
address is 00h and the device can draw up to
100 mA from the bus).

11. Host sends Get_Descriptor to learn the
maximum packet size (Note: eighth byte of the
device descriptor is bMaxPacketSize).

12. The host assigns an address by sending a
Set_Address request. Device is now in the
Address state.

13. Host sends Get_Descriptor to learn more
about the device. The host responds by sending
the descriptor followed by all other subordinate
descriptors.

14. Host assigns and loads a device driver.
15. Host’s device driver selects a configuration by

sending a Set_Configuration request. The
device is now in the Configured state.

16. Host assigns drivers for interfaces in composite
devices.

17. If the hub detects an overcurrent, or if the host
requests the hub to remove power, the device
will be unpowered by the USB bus. In this case,
the device and host cannot communicate and
the device is in the Attached state.

18. If the device does not see any activity on the bus
for 3 ms, it goes into the Suspend state. The
device consumes minimal bus power in this
state.

Control Transfer

Control transfer enables the host and the device to
exchange information about device configuration and
other control messages. Control transfers are ensured
to have 10 percent of the bandwidth at Low-Speed and
Full-Speed operation and 20 percent at High-Speed
operation. A control transfer consists of a Setup stage,
an optional Data stage and a Status stage.

Appendix E: “Standard USB Device Requests”
summarizes the 11 USB standard control transfer
requests, along with a description of each request. All
USB devices must respond to these requests (even
though the response may be just a STALL). Note that
apart from the standard requests, a class may define
requests for devices in its class. A class-specific
request may be required or optional. For example,
Mass Storage Devices may implement the
Get Max LUN (Logical Unit Number) request that is
used by the host to find out the number of logical units
the device supports. The class-specific requests for
the Mass Storage Devices are discussed in “Mass
Storage Class”.

Mass Storage Class

Bulk transfers are useful for transferring data when
time is not a critical factor. Only High-Speed and Full-
Speed devices can do bulk transfers. A bulk transfer
can send large amounts of data without overloading the
bus because it waits for the availability of the bus. The
Mass Storage Class supports two transport protocols
that determine which transfer type the device and host
use to send command, data and status information.
These two types of transport protocols are:

• Bulk-Only Transport (BOT)

• Control/Bulk/Interrupt (CBI) Transport

BOT is a data transport protocol that uses Bulk
transport, whereas CBI transport uses Control transfer,
Bulk transport and Interrupt transfer. CBI is further
subdivided into a data transport protocol that uses
Interrupt transfer and one that does not use Interrupt
transfer. In this application, BOT is used as the data
transport protocol.
© 2005 Microchip Technology Inc. DS01003A-page 3

AN1003
The Mass Storage Class specification (see
“References”) defines two class-specific requests, Get
Max LUN and Mass Storage Reset, that must be
implemented by a Mass Storage Device. Bulk-Only
Mass Storage Reset (bmRequestType = 00100001b
and bRequest = 11111111b) is used to reset the
Mass Storage Device and its associated interface. Get
Max LUN (bmRequestType = 10100001b and
bRequest = 11111110b) request is used to
determine the number of logical units supported by the
device. The value of Max LUN can vary between 0 and
15 (1-16 logical devices). Note that the LUN starts from
0. The device may share multiple logical units that
share the common device characteristics. The host
should not send the Command Block Wrapper (CBW)
to a non-existing LUN.

The interface descriptor fields for configuring an
interface as a Mass Storage Device implementing the
BOT are shown in Appendix C: “USB Descriptor
Formats”. Note that bInterfaceClass = 08h
implies Mass Storage Class. Subclass code,
bInterfaceSubClass = 06h, indicates that SCSI
Primary Command-2 (SPC-2) definitions (see “Ref-
erences”) are supported by the device and the
bInterfaceProtocol = 50h indicates the BOT
implementation.

A device implementing BOT shall support at least three
endpoints: Control, Bulk-In and Bulk-Out. The USB
V2.0 specification defines a control endpoint
(Endpoint 0) as the default endpoint that does not
require a descriptor. The Bulk-In endpoint is used for
transferring data and status from the device to the host,
and the Bulk-Out endpoint is used for transferring
commands and data from the host to the device. The
endpoint descriptor values for configuring a Bulk-In and
Bulk-Out endpoint are shown in Appendix F: “Bulk
Endpoint Descriptors”.

Bulk-Only Transport (BOT)

Like Control transfer, BOT also consists of a Command
stage, an optional Data stage and a Status stage. The
Data stage may or may not be present for all command
requests. Figure 3 shows the flow of Command trans-
port, Data-In, Data-Out and Status transport for BOT.
The CBW is a short packet of exactly 31 bytes in length.
The CBW and all subsequent data and Command Sta-
tus Wrapper (CSW) start on a new packet boundary. It
is important to note that all CBW transfers are ordered
little-endian with LSB (byte 0) first.

Appendix G: “CBW and CSW” shows the format of a
CBW packet. In the CBW, the dCBWSignature value,
“43425355h” (little-endian), identifies a CBW packet.
dCBWTag is the command block tag that is echoed
back in CSW to associate the CSW with the
corresponding CBW. dCBWDataTransferLength
indicates the number of bytes the host expects to trans-
fer on a Bulk-In or Bulk-Out endpoint (as indicated by
the Direction bit). Only bit 7 of bmCBWFlags is used
to indicate the direction of data flow, with a ‘1’ signifying
Data-In (i.e., from device to host). The field, bCBWLUN,
specifies the device LUN to which the command block
is being sent. The field, bCBWCB, defines the valid
length of the command block. The CBWCB is the
command block to be executed by the device.

The size of a CSW is 13 bytes in length. A
dCSWSignature value of “54425355h” (little-endian)
identifies a CSW packet. The field, dCSWTag, echoes
the dCSWTag value from the associated CBW. For
Data-Out, dCSWDataResidue is the difference
between the data expected and the actual amount of
data processed by the device. For Data-In, it is the dif-
ference between the data expected and the actual
amount of relevant data sent by the device. The value
of dCSWDataResidue is always less than or equal to
the value of dCBWDataTransferLength. The value
of bCSWStatus indicates the success or failure of the
command. The bCSWStatus value of 00h indicates
command success, 01h indicates command failure,
whereas 02h indicates phase error.

FIGURE 3: COMMAND/DATA/STATUS
FLOW IN BULK-ONLY
TRANSPORT

Ready

Command

Data-In
(to host)

Data-Out
(from host)

Transport
(CBW)

Status
Transport
(CSW)
DS01003A-page 4 © 2005 Microchip Technology Inc.

AN1003
Secure Digital (SD) Card

A Secure Digital card is the most common storage
media used in portable devices, such as PDAs, Digital
Cameras and MP3 Players, among others. SD cards
can be purchased with storage sizes ranging from
16 MB to 2 GB. Both SD cards and the MMC support
the SPI™ transfer protocol and have an almost identi-
cal electrical interface. While the form factor and the
shape of the SD card and the MMC are identical, SD
cards can be operated up to four times faster, have a
write-protect switch and may include cryptographic
security for protection of copyrighted data. Due to these
features, SD cards are more popular than MMC and
are the focus of this design. However, MMC have been
tested and found to be fully functional with the MSD
design.

The SD card can be operated in SD Bus mode or SPI
mode. In this application, the SD card is connected to
the Serial Peripheral Interface (SPI) bus of the
PIC18F4550 and operated in the SPI mode. In the SPI
mode, only one data line is used for data transmission
in each direction. The data transfer rate in this mode is
therefore the same as the SD Bus mode with one data
line (up to 25 Kbits per second).

Apart from the Power and Ground, the SPI bus consists
of Chip Select (CS), Serial Data Input (SDI), Serial Data
Output (SDO) and Serial Clock (SCLK) signals. The SD
card and MMC sample data input on the rising clock
edge and set data output on the falling clock edge. On
power-up, an SD card wakes up in the SD Bus mode.
Therefore, an initialization routine is required to operate
the SD card in SPI mode. This can be achieved by
asserting the CS signal (logic low) during the reception
of the Reset command, CMD0. Unlike the SD Bus
mode, in SPI mode, the selected card always responds
to the command. In case of a data retrieval problem,
the card responds with an error response instead of a
time-out as in the SD Bus mode. See “References” for
information on the SD card specification.

COMMUNICATION OVERVIEW

This section provides a general overview of the com-
munication between the SD card and the Personal
Computer (PC) application and system hardware.

Figure 4 shows the functional block diagram of the
entire system. A device driver is defined as “any code
that handles communication details for a hardware
device that interfaces to a CPU”. In the layered driver
model used in USB communications, each layer
handles one part of the communication process. In this
application, the MSD is enumerated as a Mass Storage
Device implementing BOT. Therefore, the host uses
the USB storage device driver (usbstor.sys) as the
functional driver. The host loads Disk.sys,
PartMgr.sys and VolSnap.sys as filter drivers to
communicate between the end application and the
device driver (usbstor.sys). The root hub driver
(usbhub.sys) manages the port initialization and, in
general, manages the communications between
device drivers and the bus class driver. The bus class
driver (usbd.sys) manages bus power, enumeration,
USB transactions and communications between the
root hub driver and the host controller driver.

On the MSD application side, the Serial Interface
Engine (SIE) of the PIC18F4550 handles the low-level
USB communications. USB data moves between the
microcontroller core and the SIE through a memory
space known as the USB RAM. The PIC18F4550
provides the capability to configure and control up to
16 bidirectional endpoints. In this application, two
bidirectional endpoints are used. Endpoint 0 is required
for all USB devices for control transfers and does not
require configuration. The mass storage application
configures Endpoint 1 IN and OUT as bulk endpoints
for Bulk-Only Transport. It also communicates with the
SD card’s SPI bus to read the data from and write the
data to the SD card.
© 2005 Microchip Technology Inc. DS01003A-page 5

AN1003
Hardware

The PICDEM FS USB Demonstration Board is used as
the platform for developing the USB MSD application.
The PICtail™ Board for SD™ and MMC Cards is
connected on the expansion headers, J6 and J7, on the
PICDEM FS USB Demonstration Board. The USB V2.0
compliant PIC18F4550 microcontroller forms the heart
of the PICDEM FS USB Demonstration Board. The
PIC18F4550 has an on-chip USB voltage regulator,
transceivers and pull-up resistors to minimize the

number of external components and enable a low-cost
design. On a side note, the PICDEM FS USB
Demonstration Board also features a potentiometer,
simulating analog input for the controller and a digital
temperature sensor. While not being used in the USB
SD card mass storage application, these features may
be useful in developing other USB applications. More
details of the PICDEM FS USB Demonstration Board
can be found in the PICDEM FS USB Demonstration
Board User’s Guide (see “References”).

FIGURE 4: PC, MSD COMMUNICATION BLOCK DIAGRAM

PC Application
(e.g., file explorer)

Win32 Subsystem

Function
Drivers

(usbstor.sys)

Bus Drivers (usbd.sys)

Win32® API Calls

Hardware (Root Hub)

USB Hub Driver (usbhub.sys)

Disk Drivers
(disk.sys,

PartMgr.sys)

Storage Volume
Driver

(VolSnap.sys)

SPI™
Bus

USB Port

USB Serial Interface Engine (SIE)

SD Card Interface
(sdcard.c, sdcard.h)

USB Endpoint 0
Control
Transfer

(usbdrv.c,
usb9.c,

usbctrltrf.c)

USB Endpoint 1
Bulk Transfer

(msd.c, msd.h)

PIC18F4550

 EP0 USB Control, EP1 SCSI Commands

PICtail™ Board for
SD™ and MMC Cards
DS01003A-page 6 © 2005 Microchip Technology Inc.

AN1003
The SD card operates in the 2.7-3.6V range, whereas the
PIC18F4550 on the PICDEM FS USB Demonstration
Board requires a 5V VDD. The voltage regulation from 5V
to 3V is achieved using Microchip’s TC1186-3.3VCT713.
Appendix J: “Schematic” shows the schematic for the
PICtail™ Board for SD™ and MMC Cards (Part No.
AC164122). Pin 7 (RA5) of the PIC18F4550 is connected
to the SHDN (Shutdown input) pin of the TC1186 via
jumper JP4 (position 2-3). This enables the user to turn
off the SD card power using firmware (setting RA5 turns
the power on). Alternately, by changing the jumper JP4
setting (position 1-2), the user may turn the SD card
power on permanently. The PICtail™ Board for SD™
and MMC Cards also implements two MC74VHCT125A
devices as signal level translators for translating 5V DC
signals on the microcontroller side to 3.3V DC signals on
the SD card side and vice versa. The MC74VHCT125A
is a high-speed CMOS quad buffer fabricated with silicon
gate CMOS technology. Since it has a full 5.0V CMOS
level output swing, this device is ideal for signal level
translation between 3.0V and 5.0V levels. For 5V to 3.3V
signal translation, a supply voltage of 3.3V is applied to
U1 and corresponding OE pins are enabled (active-low).
Similarly, 3.3V to 5V translation is achieved by applying a
5V supply to U2 and enabling the corresponding OE
pins. Further details on the MC74VHCT125A can be
found in its respective data sheet (see “References”).

The PICtail™ Board for SD™ and MMC Cards also
features a power LED (D1), an SD card activity LED
(D2) and test points for monitoring the SPI bus. LED D1
indicates that power is available at the output of the
TC1186. LED D2 indicates SD card activity (based on
Chip Select signal, CS). The Serial Data Input (SDI),
Serial Clock (SCK), Serial Data Output (SDO), Chip
Select (CS) and Ground (GND) signals of the SPI bus
can be monitored on the test points. The PICtail™
Board for SD™ and MMC Cards is designed to operate
with a multitude of demonstration boards, including all
demonstration boards having PICtail signals, Explorer
16 development board having card edge connectors
and demonstration boards with non-standard PICtail
signals. The following jumper settings must be used for
operating the PICtail™ Board for SD™ and MMC
Cards with different demonstration boards.

1. If the demonstration board has standard PICtail
signals, connect JP1-JP2 and JP5 on the PICtail
side (default setting).

2. If the demonstration board provides card edge
signals, connect JP2-JP3 and JP5 on the card
edge side.

3. If the demonstration board does not provide
standard PICtail signals, open J3, jump signals
from J5 and J11 to appropriate signals on J2.

SCSI Commands

After the successful enumeration of the target USB
device, the host initiates commands according to the
bInterfaceSubClass specified in the interface
descriptor during the enumeration process.

The USB MSD application specifies bInterface-
SubClass = 06h, indicating that the device will support
SCSI Primary Commands-2 (SPC-2) or later. A
bInterfaceProtocol value of 0x50 in the interface
descriptor indicates that the BOT protocol is being
used. As shown in Figure 3, a BOT transfer begins with
a CBW. The device indicates the successful transport
of a CBW by accepting (ACKing) the CBW. If the host
detects a STALL of the Bulk-Out endpoint during Com-
mand transport, the host shall respond with a Reset
recovery. The host shall attempt to transfer an exact
number of bytes to or from the device as specified by
the dCBWDataTransferLength and the Direction
bit. The device shall send each CSW to the host via the
Bulk-In endpoint.

In this section, we briefly describe the SCSI commands
that are supported in the MSD implementation. The
reader may refer to SCSI Primary Commands-3 (SPC-3)
and SCSI Block Commands-2 (SBC-2) specifications for
further details (see “References”). The first byte of the
command block, CBWCB, is always the operation code or
opcode in short.

• INQUIRY (Opcode 12h)

The INQUIRY command requests that the informa-
tion regarding the logical unit and SCSI target device
be sent to the application client (host). The SPC-3
specification requires that the INQUIRY data should
be returned even though the device server is not
ready for other commands. Moreover, the standard
INQUIRY data should be available without incurring
any media access delays. The standard INQUIRY
data is at least 36 bytes.

• READ CAPACITY (Opcode 25h)

The READ CAPACITY command requests that the
device server transfer bytes of parameter data
describing the capacity and medium format to the
Data-In buffer. The response to the READ CAPACITY
command is 4 bytes of returned Logical Block
Address and 4 bytes of block length in bytes.
Returned Logical Block Address (LBA) is the
LBA of the last logical block on the direct access
block device. If the number of logical blocks exceeds
the maximum value that can be specified in the
returned Logical Block Address field, the
device shall set the returned Logical Block
Address field to FFFFFFFFh.

Note: The user application may not require the
signal translation if the PIC microcontroller
is operated at 3V.
© 2005 Microchip Technology Inc. DS01003A-page 7

AN1003
• READ (10) (Opcode 28h)

The READ (10) command specifies that the device
server read the specified logical block(s) and transfer
them to the Data-In buffer. The READ (10) com-
mand is a 10-byte CBWCB with the eighth and ninth
bytes specifying the TRANSFER LENGTH (see
Appendix I: “SCSI Command and Data Format”).
The TRANSFER LENGTH field specifies the number
of contiguous logical blocks of data that shall be read
and transferred to the Data-In buffer, starting with the
logical block specified by the Logical Block
Address field (bytes 3-6). A TRANSFER LENGTH
field set to zero specifies that no logical blocks shall
be read.

• WRITE (10) (Opcode 2Ah)

The WRITE (10) command requests that the device
server transfer the specified logical blocks from the
Data-Out buffer and write them. The CBWCB format
for the WRITE (10) command is the same as the
READ (10) command with TRANSFER LENGTH
specifying the number of contiguous logical blocks of
data that shall be transferred from the Data-Out
buffer and written, starting with the logical block
specified by the Logical Block Address field. A
TRANSFER LENGTH field set to zero specifies that no
logical blocks shall be written.

• REQUEST SENSE (6) (Opcode 03h)

The REQUEST SENSE (6) command requests that
the device server transfer the sense data to the
application client. Appendix H: “SCSI Command
Set” shows the fixed format sense data response.
The contents of the RESPONSE CODE field indicate
the error type and format of the sense data. The
RESPONSE CODE 70h signifies the current error,
RESPONSE CODE 71h signifies the deferred error in
the fixed format sense data and code values, 72h
and 73h, indicate the current and deferred error code
in the descriptor format sense data. The SENSE
KEY, ADDITIONAL SENSE CODE (ASC) and
ADDITIONAL SENSE CODE QUALIFIER (ASCQ)
fields provide a hierarchy of information. The SENSE
KEY field indicates the generic information describing
an error or exception condition, ASC indicates further
information related to the error reported in the SENSE
KEY field, whereas the ASCQ field indicates the
detailed information related to the ADDITIONAL
SENSE CODE. Refer to Table 27 and Table 28 of the
SPC-3 specification (see “References”) for a list of
SENSE KEY error codes and ASC and ASCQ error
code assignments. This application implements the
fixed format, current error code sense data response
(defined in ~\system\usb\class\msd\msd.h).

• MODE SENSE (6) (Opcode 1Ah)

The MODE SENSE (6) command provides a means
for a device server to report parameters to an appli-
cation client. It is a complementary command to the
MODE SELECT (6) command. The mode parameter
header that is used by the MODE SENSE (6) and the
MODE SELECT (6) command is shown in Appen-
dix H: “SCSI Command Set”. The MEDIUM TYPE
and DEVICE SPECIFIC PARAMETER fields are
unique for each device type. In this application, the
MEDIUM TYPE field is set to 00h, indicating a direct
access block device. This value is the same as the
value of the PERIPHERAL DEVICE TYPE field in the
standard INQUIRY data.

• PREVENT ALLOW MEDIUM REMOVAL
(Opcode 1Eh)

The PREVENT ALLOW MEDIUM REMOVAL command
requests that the logical unit enable or disable the
removal of the medium. The prevention of medium
removal shall begin when an application client issues
a PREVENT ALLOW MEDIUM REMOVAL command
with a PREVENT field (fifth byte, bits 0-1 of CBWCB) of
01b or 11b (i.e., medium removal prevented). Since
in an SD card, there is no way to prevent card
removal, the firmware decodes the command and
prepares to notify the host PC that the operation has
been successfully completed. If the medium is inac-
cessible, the command is specified as Fail
(bCSWStatus = 0x01) with the SENSE KEY set to
Not Ready.

• TEST UNIT READY (Opcode 00h)

The TEST UNIT READY command provides a means
to check if the logical unit is ready. This is not a request
for self-check. If the logical unit is able to accept an
appropriate medium access command, without return-
ing a Check Condition status, this command shall
return a Good status. Otherwise, the command is
terminated with the Check Condition status and the
SENSE KEY is set to reflect the error condition.

• VERIFY (10) (Opcode 2Fh)

The VERIFY (10) command requests that the
device server verify the specified logical block(s) on
the medium. If the BYTCHK bit is set to ‘0’, the device
shall perform medium verification with no data com-
parison and not transfer any data from the Data-Out
buffer. If the BYTCHK bit is set to ‘1’, the device server
shall perform a byte-by-byte comparison of user data
read from the medium and user data transferred from
the Data-Out buffer. The firmware decodes the
command and then prepares to notify the host PC
that the command has been successfully completed.
If the medium is inaccessible, the command is
specified as Fail, with the SENSE KEY set to Not
Ready.
DS01003A-page 8 © 2005 Microchip Technology Inc.

AN1003
• START/STOP (Opcode 1Bh)

The START/STOP command requests that the
device server change the power condition of the log-
ical unit, or load, or eject the medium. This includes
specifying that the device server enable or disable
the direct access block device for medium access
operations by controlling power conditions and tim-
ers. The POWER CONDITION field (fifth byte, bit 7-4)
is used to specify that the logical unit be placed into
a power condition or to adjust a timer. If the value of
this field is not equal to 0h, the START (fifth byte,
bit 0) and LOEJ (Load Eject, fifth byte, bit 1) bits are
ignored. If the POWER CONDITION field is Active
(1h), Idle (2h) or Standby (3h), then the logical unit
shall transition to the specified power. If POWER
CONDITION = 0h (START_VALID), then the START,
LOEJ = (0,0) signifies that the logical unit shall
transition to the stopped power condition; START,
LOEJ = (0,1) signifies the logical unit shall unload
the medium; START, LOEJ = (1,0) signifies that
the logical unit shall transition to the active power
condition. If START, LOEJ = (1,1), then the
logical unit shall load the medium.

UNSUPPORTED COMMANDS

If the command opcode field in the CBWCB is not
supported, the SENSE KEY is set to Illegal Request,
indicating that there was an illegal parameter in the
CDB with ASC and ACSQ codes set corresponding to an
invalid command opcode.

MASS STORAGE DEVICE (MSD)
FIRMWARE

This firmware implements a USB-based Mass Storage
Device using an SD card. When plugged into the USB
port, the firmware enumerates the SD card as a remov-
able disk drive and allows the user to exercise all
standard features of a disk drive. The user can write,
read, edit and delete files on the MSD just like any other
removable disk media. This application also allows the
user to format the SD card in any of the following FAT file
formats: FAT16, FAT32 or NTFS (Windows drivers han-
dle the format, firmware is only required to implement
the SCSI commands). The firmware calculates the
capacity of the SD card based on the Card Specific Data
(CSD) register read from the SD card. This information
is conveyed to the PC host in response to the READ
CAPACITY command. The exact size of the disk can be
seen in the disk properties on the PC. Further details on
firmware and SCSI command implementation can be
found in “SCSI Commands”.

The project framework is organized under a single root
directory with each subdirectory containing files for
each category or class of source code. If the SD card is
not found, or not initialized, the 4 LEDs (D1, D2, D3 and
D4) on the demonstration board are turned on
permanently.

Using the PICtail™ Board for SD™ and
MMC Cards

First, connect the demonstration board to the MPLAB®

ICD 2 and program the device. The following steps are
required to run the MSD application:

1. Connect the PICtail™ Board for SD™ and MMC
Cards to the PICDEM FS USB Demonstration
Board as shown in Figure 1.

2. Insert the SD card in the reader slot, making
sure that write-protect is disabled on the SD
card.

3. Apply power to the demonstration board.

4. Observe the LEDs (D1, D2, D3 and D4) on the
demonstration board. If all of the LEDs are ON,
this indicates an SD card initialization failure.

5. If no errors have occurred, connect a USB cable
from the PC to the USB connector on the
demonstration board.

6. Observe under Control Panel > System >
Hardware > Device Manager (for Windows XP
system) that USB Mass Storage Device gets
enumerated under Universal Serial Bus
controllers. Verify that the Microchp Mass
Storage USB Device is enumerated under Disk
drive and Generic volume is enumerated
under Storage volumes, as shown in Figure 5.

7. Look for a removable drive under My
Computer.

8. Use the removable drive icon to access the SD
card as a MSD.

9. Before removing the USB cable from the demo
board, click the “Safely Remove Hardware”
icon in the Windows task bar.

The four LEDs on the PICDEM FS USB Demonstration
Board have been implemented as follows:

1. LED D1 turns ON after successfully responding
to the INQUIRY command.

2. LED D2 toggles ON after each successful TEST
UNIT READY command execution.

3. LED D3 blinks during read operation (turns ON
while a read from the SD card is taking place).

4. LED D4 blinks during write operation (turns ON
while a write to the SD card is taking place).
© 2005 Microchip Technology Inc. DS01003A-page 9

AN1003
FIGURE 5: DEVICE MANAGER Directory Structure

The file structure consists of a collection of sub-
directories containing specific files under a root project
directory. The user may create the root project directory
in any location with a valid directory name. The subdi-
rectories structure should always be maintained. The
basic directory structure is similar to the PICDEM FS
USB demonstration code. This backward compatibility
has been maintained to ensure that users already
familiar with PICDEM FS USB demonstration code can
easily integrate this mass storage application.

Figure 6 shows the directory structure for the MSD
application.

Function Description

Table 1 and Table 2 provide brief descriptions of the
functions contained in files msd.c and sdcard.c,
respectively.

FIGURE 6: MSD DIRECTORY
STRUCTURE
DS01003A-page 10 © 2005 Microchip Technology Inc.

AN1003
TABLE 1: msd.c FUNCTIONS

TABLE 2: sdcard.c FUNCTIONS

Function Name Description

USBCheckMSDRequest Handles the class-specific requests received on Endpoint 0.

ProcessIO() Handles MSD requests on Endpoint 1.

MSDInitEP Initializes Bulk-In and Bulk-Out endpoints (MSD_BD_IN, MSD_BD_OUT).

SDCardInit Initializes the SD card in SPI™ mode.

MSDCommandHandler Decodes and processes the received SCSI command.

MSDInquiryHandler Executes the INQUIRY command.

MSDReadCapacityHandler Executes the READ CAPACITY command.

MSDReadHandler Executes the READ (10) command.

MSDWriteHandler Executes the WRITE (10) command.

MSDModeSenseHandler Executes the MODE SENSE (6) command.

MSDMediumRemovalHandler Executes the PREVENT ALLOW MEDIUM REMOVAL command.

MSDRequestSenseHandler Executes the REQUEST SENSE (6) command.

MSDTestUnitReadyHandler Executes the TEST UNIT READY command.

MSDVerifyHandler Executes the VERIFY (10) command.

MSDStopStartHandler Executes the START/STOP command.

IsMeaningfulCBW Checks if the received CBW is meaningful.

IsValidCBW Checks if the received CBW is valid.

PrepareCSWData Prepares CSW data (Tag and Signature).

SendData(byte* Y, byte X) Sends X bytes of data starting at location Y.

SendCSW Sends the CSW and sets MSD_State to MSD_WAIT.

ResetSenseData Initializes the sense response data.

MSDDataIn Sends data to the host.

MSDDataOut Reads data from the host.

Function Description

SDC_Error MediaInitialize(SDCSTATE*) Initializes the SD card in SPI™ mode and reads its first
sector.

SocketInitialize Initializes card select, detect signals and socket
interface.

SDC_Error SectorRead(dword SN, byte* buff) Reads the specified sector SN into buffer
(msd_buffer).

SDC_Error SectorWrite(dword SN, byte* buff) Writes the data pointed to by buffer into sector SN.

SDC_Error CSDRead Reads the CSD register from SD card.

MediaDetect Returns True if SD card is detected.

SDC_Response SendSDCCmd(byte, dword) Sends SDC command packet on SPI interface.

ReadMedia Reads in one byte of data from SPI port while sending
out 0xFF to SD card.
© 2005 Microchip Technology Inc. DS01003A-page 11

AN1003
Memory Organization

Data banks 4 through 7 of the data memory are
mapped to special dual port RAM (see Example 2).
When the USB module is disabled, the General
Purpose Registers (GPRs) in these banks are used like
any other GPRs in the data memory space. When the
USB module is enabled, the memory in these banks is
allocated as buffer RAM for USB operation. This area
is shared between the microcontroller core and the SIE
and is used to transfer data directly between the two.
Note that the linker script has been modified to define
MSD as a single data bank of 512 bytes. The 512-byte
msd_buffer has been defined in the MSD data bank
(see Example 1). Figure 7 shows the entire memory
map including the endpoint buffers.

EXAMPLE 1: BUFFERS FOR MSD
(usbmmap.c)

FIGURE 7: COMPLETE MEMORY
ORGANIZATION (INCLUDING
ENDPOINT BUFFERS)

EXAMPLE 2: MODIFIED LINKER SCRIPT

#if defined(USB_USE_MSD)
volatile far USB_MSD_CBW msd_cbw;
volatile far USB_MSD_CSW msd_csw;
#pragma udata myMSD=0x600
volatile far char msd_buffer[512];
#endif

60h
5Fh

1FFh

100h
FFh

00h
Access RAM

GPR0

GPR1

2FFh

200h

3FFh

300h

400h

5FFh

7FFh

600h

GPR2

GPR3

ep0Bo
(Endpoint 0,

ep0Bi
(Endpoint 0,

ep15Bo
(Endpoint 15,

ep15Bi
(Endpoint 15,

msd_buffer

•

•

•

* The ep<n>Bo and ep<n>Bi actually declared are
dependant on the number of endpoints used in the
application.

BD Out)

BD In)

BD Out)

BD In)

[0]

[511]

•
•
•

ACCESSBANK NAME=accessram START=0x0 END=0x5F
DATABANK NAME=gpr0 START=0x60 END=0xFF
DATABANK NAME=gpr1 START=0x100 END=0x1FF
DATABANK NAME=gpr2 START=0x200 END=0x2FF
DATABANK NAME=gpr3 START=0x300 END=0x3FF
DATABANK NAME=usb4 START=0x400 END=0x4FF PROTECTED
DATABANK NAME=usb5 START=0x500 END=0x5FF PROTECTED

// Combine usb6 and usb7 banks to define a 512 byte msd bank
//DATABANK NAME=usb6 START=0x600 END=0x6FF PROTECTED
//DATABANK NAME=usb7 START=0x700 END=0x7FF PROTECTED

DATABANK NAME=msd START=0x600 END=0x7FF PROTECTED
DS01003A-page 12 © 2005 Microchip Technology Inc.

AN1003
Firmware Description

Figure 8 shows the relationship between various files in
this firmware. The details of the USB framework files
can be found in the user’s guide for the PICDEM FS
USB Demonstration Board. This application note
focuses on the USB mass storage application and
communication with the SD card.

A USB request can be either standard or class-specific.
A standard request is serviced by the
USBCheckStdRequest() which handles the standard
requests as specified in Chapter 9 of the USB V2.0 spec-
ification. A Mass Storage Class specific request is han-
dled by the firmware in msd.c. If the

USBCheckStdRequest() cannot process the
requests, it calls USBCheckMSDRequest().
USBCheckMSDRequest() checks if it is a class-specific
request (SetupPkt.RequestType == CLASS) and
SetupPkt.bRequest == FFh (Bulk-Only Mass Storage
Reset) or FEh (Get Max LUN). If a Bulk-Only Mass
Storage Reset request is received, the firmware disables
Endpoint 1, clears the STALL and reinitializes Endpoint
1. The response to the Get Max LUN request is one byte
that consists of the maximum LUN supported by the
device. For example, if the device supports three LUNs,
then the LUNs would be numbered from 0 to 2 and the
return value would be ‘2’. In our case, the number of
LUNs is 1, so the return value is ‘0’.

FIGURE 8: RELATIONSHIP BETWEEN USB FRAMEWORK DEMONSTRATION FILES AND THE
MSD APPLICATION

Initialize
System()
while(1)
{
}

main.c

USBDriverService()

usbdrv.c

USBCtrlEPService()

usbctrltrf.c

USBCheckStdRequest()

 USBStdSetCfgHandler()

usb9.c

MSDInitEP()
USBCheckMSDRequest()

SDCardInit()
ProcessIO()

MSDCommandHandler()

 MSDReadHandler()

 MSDWriteHandler()

MSDReadCapacityHandler()

msd.c

SocketInitialize()
MediaInitialize()

SectorRead()

SectorWrite()

CSDRead()

sdcard.c

USB RAM Mapping

usbmmap.c

USB Configuration

usbcfg.c Data Memory

VID and PID,

usbdsc.c

Descriptor Strings
© 2005 Microchip Technology Inc. DS01003A-page 13

AN1003
The USB enumeration process is handled mainly in
usb9.c. The SET_CONFIGURATION request is han-
dled by USBStdSetCfgHandler(). This function
calls the function, MSDInitEP(). The function,
MSDInitEP(), configures and initializes a Bulk-In and
a Bulk-Out endpoint.

The main() function in file main.c is an infinite loop
that services different tasks – USB or mass storage
application tasks. USB tasks are handled by
USBDriverService() which handles all USB
hardware interrupts. The mass storage application
tasks are handled by ProcessIO(). ProcessIO()
forms the core of the handling of mass storage
communications on Endpoint 1. Figure 9 shows the
flowchart of the ProcessIO().

When Endpoint 1 is initialized, the MSD_State is set to
MSD_WAIT. The firmware basically waits for a CBW to
be received on Endpoint 1. Upon receiving a valid and
meaningful CBW (as defined in the USB Mass Storage
Class Bulk-Only Transport specification, see
“References”), the CSW data is prepared. Basically,
the dCBWTag is copied to dCSWTag in order to
associate the CSW with the corresponding CBW and
the dCSWSignature field is set to “53425355h” (little-
endian). The Direction bit is read to find the direction
of data transfer (i.e., from host to device or vice versa)
and sets MSD_State to MSD_DATA_OUT or
MSD_DATA_IN, respectively (see Figure 10). Further,
the first byte of CBWCB is the operation code of the
received command. This is used to decode the
command and take the appropriate action
(MSDCommandHandler). It may happen that the
command does not require any data transfer. The
Direction bit is ‘0’ in this case and the MSD_State
is set to MSD_DATA_OUT. If there is no data transfer
required for a given command, the command is
executed and the status is sent using sendCSW(). The
values of the dDataResidue and bCSWStatus fields
are set based on the result of the command execution.

Figure 11 shows the flowchart of the MSDDataIn()
function. This function is used to send the data
prepared while processing the command in
MSDCommandHandler(), from the device to the host,
using MSD_BD_IN. After command execution,
dCSWDataResidue reflects the number of bytes of
data obtained as a result of the command execution
that are to be sent to the host. In case of an error
(bCSWStatus! = 0x00), zero padded data of the size
expected by the host (dCBWDataTransferLength) is
sent. If there is no error, the size of data to be sent
(dCSWDataResidue), as a result of command execu-
tion, may not be the same as the size expected by the
host (dCBWDataTransferLength). In this case, the
dCSWDataResidue field in the CSW will reflect the dif-
ference. If the data to be sent is greater than
MSD_IN_EP_SIZE (64 bytes, size of the Endpoint 1 IN

buffer), then MSD_IN_EP_SIZE bytes of data are sent;
otherwise, the remaining dCSWDataResidue bytes of
data are sent using the MSD_BD_IN buffer.

Note that the only command where data needs to be
read from the host is the WRITE (10) command. In the
MSD_WAIT state, the MSD_BD_OUT points to the
msd_cbw structure in order to read the next command
block. But when a WRITE (10) command is received,
the device changes to MSD_DATA_OUT. In this state,
the device must read more data from the host and write
it to the SD card. This is done using the 512-byte
msd_buffer. So, in the MSD_DATA_OUT state, the
MSD_BD_OUT (Endpoint 1 OUT) buffer points to
msd_buffer. In order to read the entire 512-byte data
block, after every read, the MSD_BD_OUT points to a
location in the msd_buffer incremented by
MSD_OUT_EP_SIZE (size of the Endpoint 1 OUT
buffer). Once the msd_buffer is filled (8 reads of
64 bytes), the block of data is written to a specific loca-
tion in the SD card using the SECTORwrite(...)
function (defined in sdcard.c). This process is
repeated if multiple blocks of data are to be written to
the SD card. The LBA field of the WRITE (10) CBWCB
gives the information about the starting LBA and the
TRANSFER LENGTH field indicates the number of
contiguous LBAs to be written.

EXAMPLE 3: STRUCTURE FOR COMMAND
BLOCK WRAPPER

Out endpoint size is configured as 64 bytes. The
msd_buffer is a 512-byte buffer declared in the USB
dual port RAM area. The block size of the SD card is
512 bytes. The msd_buffer is used to read 512 bytes
from the host using multiple 64-byte reads from
MSD_BD_OUT. Once 512 bytes of data are read from the
host (msd_buffer is filled), the entire block of data is
written to the SD card using the function,
SECTORWrite(). For WRITE (10) commands where
the TRANSFER LENGTH > 1, multiple blocks of 512 bytes
of data are written to consecutive sectors, starting with
the Logical Block Address field in the command
block. The translation between LBA and the physical
address is as follows: since each sector has
29 = 512 bytes, the physical address is obtained by left
shifting the LBA by 9 positions. Similarly, for READ (10),
a block of 512 bytes of data is read from the SD card
using the function, SECTORread(), and then transmit-
ted to the host in 64-byte packets using the MSD_BD_IN

typedef struct _USB_MSD_CBW
{

dword dCBWSignature;
dword dCBWTag;
dword dCBWDataTransferLength;
byte bCBWFlags;
byte bCBWLUN;
byte bCBWCBLength;
byte CBWCB[16];

} USB_MSD_CBW;
DS01003A-page 14 © 2005 Microchip Technology Inc.

AN1003
buffer. Note that after each read or write from the
MSD_BD_OUT or MSD_BD_IN, mUSBDriverService()
is called to clear the TRNIF bit.
The macro, mUSBBufferReady(MSD_BD_IN) or
mUSBBufferReady(MSD_BD_OUT), is called to write or
read the data from the corresponding Buffer Descriptor
(BD) register. This call should be made after
arming the corresponding BD registers. The
mUSBBufferReady(...) macros toggle the Data
Toggle Sync (DTS) bit and give the buffer ownership to
SIE.

The firmware only supports the fixed format response
to the INQUIRY command. According to the specifica-
tions, a media access delay must not be incurred in
responding to the INQUIRY command. The INQUIRY
data format and the values stored in ROM for this appli-
cation are shown in Appendix H: “SCSI Command
Set”. The standard INQUIRY data is at least 36 bytes,
but can be up to 96 bytes, excluding the vendor-
specific parameters as described in the SPC-3
specification.

An 8-byte response indicating the total number of LBAs
and the block length in bytes is expected for the READ
CAPACITY command. To obtain this information, we
read the Card Specific Data (CSD) from the SD card by
calling the CSDread(...) function (defined in
sdcard.c). The CSDread function issues the SPI
command, CSD_READ, to the SD card and reads the
response in the global variable, gblCSDReg. The card
capacity (not including the security protected area) can
be computed from the C_SIZE, C_SIZE_MULT and
READ_BL_LEN fields from the CSD register.

Memory capacity = BLOCKNR * BLOCK_LEN,
where BLOCKNR = (C_SIZE + 1) * MULT and
MULT = 2C_SIZE_MULT + 2.

The block length (BLOCK_LEN) can be computed
using:

• READ_BL_LEN = WRITE_BL_LEN
• BLOCK_LEN = 2READ_BL_LEN

FIGURE 9: ProcessIO() FLOWCHART

Note 1: The MSD_DATA_OUT state is required only for the WRITE (10) command. Due to limited buffer space, all the data
is read from MSD_BD_OUT and written to the SD card in MSDWriteHandler(). This part of the code is reached when
all of the data has been read.

Yes
Is

MSD_State ==
MSD_DATA_IN?

Is
MSD_State ==
MSD_WAIT?

Is
MSD_State ==
MSD_DATA_OUT?

Yes

No

No

Yes

Start

Return

All data sent?

All data read?(1) Send Status
sendCSW()

No

Yes

Yes

CBW received?
(MSD_BD_OUT.Stat
.UOWN == _UCPU)

Yes

No

To
Command
Transport

Send Status
sendCSW()

Send Data
MSDDataIn()
© 2005 Microchip Technology Inc. DS01003A-page 15

AN1003
FIGURE 10: COMMAND TRANSPORT FLOWCHART

Copy the CBW to

Prepare CSW
dCSWTag,

dCSWSignature

Decode and Process the

MSDCommandHandler()

USBBufferReady(MSD_BD_OUT)

USBDriverService()

Command

Is CBW valid?

Is CBW

Is Direction bit = 1?

Set MSD_State = MSD_DATA_IN

Return

Yes

Yes

No

No

No

Yes

Set MSD_State = MSD_DATA_OUT

gblCBW

meaningful?

Received CBWCB
DS01003A-page 16 © 2005 Microchip Technology Inc.

AN1003
FIGURE 11: MSDDataIn() (BULK-IN TRANSPORT) FLOWCHART

dCSWDataResidue- = MSD_IN_EP_SIZE
dCBWDataTransferLength- = MSD_IN_EP_SIZE

MSDDataIn()

Is
dCSWStatus = 0x00

MSD_IN_EP_SIZE?

MSD_IN_EP_SIZE

Bytes of Data Written

Is
dCSWStatus! = 0x0?

Zero Padded Data
Output

dataLen =
min(bCBWDataTransferLength, MSD_IN_EP_SIZE)

Bytes of Data Written to Transmit Register and Sent

dCSWDataResidue- = dataLen
dCBWDataTransferLength- = dataLen

Remaining Data
(dCSWDataResidue)

Written to Transmit

dCSWDataResidue =

dCBWDataTransferLength = 0

Return

YesNo

Yes

No

Register and Sent
(sendData())

to Transmit Register

|dCBWDataTransferLength – dCSWDataResidue|

and remaining transmit data
length is larger than
© 2005 Microchip Technology Inc. DS01003A-page 17

AN1003
TOOLS, TESTING AND
CUSTOMIZATION

The firmware was developed using these Microchip
development tools (see “References”):

• MPLAB® IDE, V7.11
• Microchip C18 C Compiler, V2.40

The following third party tools (see “References”)
were used for USB packet level troubleshooting and
analysis of sector level reading and writing on the SD
card:

• SnoopyPro 0.22 (USB Sniffer)

• Directory Snoop™, V5.01 (Sector Level
Media Analyzer)

The firmware has been tested with SD cards of varying
sizes from different manufacturers. Table 3 summarizes
the test results. The initialization, read, write, delete,
format and rename operations were successfully tested
for all SD cards listed. The firmware was also tested for
64 MB MMC. The 16 MB SD/MMC card is not supported
as it utilizes the FAT12 file system that is not supported
by the Windows drivers. The code has been tested on
OHCI, UHCI and EHCI USB root hubs. Auto-triggering
and accessing files from the SD card through PC appli-
cations has been tested. The enumerated disk drive can
be formatted (using the Windows Explorer application)
as a FAT16, FAT32 or NTFS volume. Like any remov-
able disk drive application, the USB Mass Storage
Device allows users to create, edit, save, delete, rename
and read files or folders on the SD card.

TABLE 3: MSD SD CARD TEST RESULTS

The firmware can be modified to interface with other
portable media cards with an SPI interface. For exam-
ple, compact Flash, mini-SD card, XD picture card,
memory stick pro and so on. This enhanced application
can be developed as a multi-card reader device. Many
digital devices, such as Digital Cameras, MP3 Players
and PDAs, have an SD card interface for bulk storage.
This application is useful for developers of SD card
media interfaces for other portable devices as well.
Alternatively, this can be developed as a stand-alone
data logger application by including FAT libraries.
Another possible modification is to replace the SD card
with Flash memory to develop a Flash thumb drive.

SUMMARY

This application note has demonstrated enumerating a
PIC18F4550 as a Mass Storage Device using an SD
card in Single-Bit mode on an SPI bus. In addition, it
has demonstrated how to use bulk endpoints, MSD
buffers, the Bulk-Only Transport protocol and SCSI
commands for data transfer.

The application described is embedded FAT-free; how-
ever, code implementation is modular and allows for
seamless integration of any embedded FAT file system
for stand-alone applications.

Manufacturer Card Capacity Test Result

EP Memory 512 MB Passed

Lexar 256 MB Passed

Lexar 512 MB Passed

Lexar 1.0 GB Passed

SanDisk 128 MB Passed

SanDisk 512 MB Passed

SanDisk 1.0 GB Passed

SimpleTech 256 MB Passed

SimpleTech 1 GB Passed

Viking 256 MB Passed

Viking 512 MB Passed
DS01003A-page 18 © 2005 Microchip Technology Inc.

AN1003
REFERENCES

• Directory Snoop™, V5.01,
http://www.briggsoft.com/dsnoop.htm

• FAT File System Specification – available by license,
http://www.microsoft.com/mscorp/ip/tech/fat.asp

• “PIC18F2455/2550/4455/4550 Data Sheet”
(DS39632), http://www.microchip.com

• “PICDEM™ FS USB Demonstration Board User’s
Guide” (DS51526),
http://www.microchip.com

• MC74VHCT125A Data Sheet,
http://www.onsemi.com

• Microchip MPLAB® C18 C Compiler – student
edition is available by license free of charge from
the Microchip web site,
http://www.microchip.com/C18

• MMC Specifications – some are available by
license and others are available for purchase,
http://www.mmca.org/compliance

• Microchip MPLAB® IDE – available by license free
of charge from the Microchip web site,
http://www.microchip.com/mplabide

• SCSI Primary Commands-2 (SPC-2),
Revision i23, 18 July 2003,
http://www.t10.org/ftp/t10/drafts/spc2/spc2i23.pdf

• SCSI Primary Commands-3 (SPC-3),
Revision 21d, 14 February 2005,
http://www.t10.org/ftp/t10/drafts/spc3/spc3r23.pdf

• SCSI Block Commands-2 (SBC-2), Revision 16,
13 November 2004,
http://www.t10.org/ftp/t10/drafts/sbc2/sbc2r16.pdf

• SD Card Specification – available by license,
http://www.sdcard.org

• SnoopyPro 0.22,
http://sourceforge.net/projects/usbsnoop/

• “USB Complete: Everything You Need to Develop
Custom USB Peripherals” by Jan Axelson,
ISBN 0-9650819-5-8

• Universal Serial Bus Specification Revision 2.0,
http://www.usb.org/developers/docs/

• Universal Serial Bus Mass Storage Class
Bulk-Only Transport, Revision 1.0,
http://www.usb.org/developers/devclass_docs/
usbmassbulk_10.pdf
© 2005 Microchip Technology Inc. DS01003A-page 19

AN1003
APPENDIX A: FREQUENTLY ASKED QUESTIONS

In this appendix, answers are provided to some of the frequently asked questions about the Mass Storage Device as
well as this implementation.

Q: When I plug in the SD card, all of the LEDs turn on. What does this mean?

A: This an indication that there was an error in the SD card initialization. Try removing the external power to the board
and USB cable, removing and reinserting the SD card, reconnecting the USB cable and external power (if applicable).
If this does not solve the problem, verify whether the SD card you are using has been tested with MSD (see Table 3
for the list of cards tested).

Q: Which endpoints are used in the MSD application?
A: Endpoint 0 is the mandatory endpoint that must be implemented in all USB devices for control transfers. This appli-

cation uses Endpoint 1 IN and OUT as Bulk transport endpoints for a bidirectional communication between the host
and the device.

Q: What is the size of the msd_buffer and how does MSD handle large data transfers?

A: The size of the msd_buffer is 512 bytes. Data is written to and read from the SD card in blocks which are
512 bytes for the SD card. Large data transfers imply multiple block read/write operations. However, the multi-read
and multi-write SD card commands are not implemented – instead, multiple single block read/write commands are
issued to achieve large transfers.

Q: What is the size of the code in terms of single-word instructions?
A: The size of Chapter 9 code is approximately 3K and Mass Storage Device code is approximately another 1K.

Q: Why is LED D2 not blinking?
A: After initial enumeration and reading the directory from the SD card, the host repeatedly sends the TEST UNIT

READY command to continue checking the status of the device. The D2 LED toggles when a TEST UNIT READY
command returns a success. So if the D2 LED is not toggling, there was an error. Check whether the SD card was
properly inserted in the card reader interface before connecting the USB cable.

Q: What is the communication protocol between the SD card and the PICDEM™ FS USB Demonstration Board?

A: The SD card is operated in Single-Bit mode using the SPI bus protocol.

Q: What is the data transfer speed?
A: The maximum data transfer speed observed during MSD testing was 944 kbps. The data transfer speed of the

PICDEM™ FS USB bus is 12 Mbps. The system bottleneck is the SPI bus (with the SD card operated in Single-Bit
SPI Bus mode). We believe that reading 64 bytes from the endpoints into the msd_buffer and writing 512 bytes
into the SD card also slows the overall data transfer speed.

Q: Is it possible to integrate the FAT file system into this implementation?
A: Yes. The FAT file system is required if files need to be created on the SD card without using a PC (i.e., data logging

applications). However, it is possible to reuse the functions associated with the SCSI command interface and the
SD card communication interface in the firmware.

Q: Why does it show “Microchp” in Device Manager > Disk drives? Is this a typographical error?
A: Microchp is an 8-byte Vendor ID sent from the device to the host in response to the INQUIRY command. Since

the Vendor ID field can be only 8 bytes, Microchp is a shortened version of Microchip.

Q: Why doesn’t MSD work with Windows 98?
A: The MSD demonstration uses the native Windows driver, usbstor.sys. The Windows 98 operating system does

not provide native support for usbstor.sys. Please refer to the Microsoft® web site for details:
http://www.microsoft.com/whdc/device/storage/usbfaq.mspx

Q: Why does MSD implement the SCSI command set and not the RBC?

A: Currently, Windows 2000 and Windows XP do not provide support to handle devices that implement Reduced Block
Commands (RBC, subclass 0x01) protocol. Please refer to the Microsoft web site for further details:
http://www.microsoft.com/whdc/device/storage/usbfaq.mspx
DS01003A-page 20 © 2005 Microchip Technology Inc.

AN1003
APPENDIX B: SOURCE CODE

The complete source code, including any demo appli-
cations and necessary support files, is available for
download as a single archive file from the Microchip
corporate web site, at:

www.microchip.com

Software License Agreement

The software supplied herewith by Microchip Technology Incorporated (the “Company”) is intended and supplied to you, the
Company’s customer, for use solely and exclusively with products manufactured by the Company.
The software is owned by the Company and/or its supplier, and is protected under applicable copyright laws. All rights are reserved.
Any use in violation of the foregoing restrictions may subject the user to criminal sanctions under applicable laws, as well as to civil
liability for the breach of the terms and conditions of this license.
THIS SOFTWARE IS PROVIDED IN AN “AS IS” CONDITION. NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATU-
TORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
© 2005 Microchip Technology Inc. DS01003A-page 21

AN1003
APPENDIX C: USB DESCRIPTOR FORMATS

TABLE C-1: DEVICE DESCRIPTOR

TABLE C-2: CONFIGURATION DESCRIPTOR

TABLE C-3: INTERFACE DESCRIPTOR

Device Descriptor

Field Value Description

bDescriptorType 01h Device descriptor type.

bDeviceClass 00h Class specified in the interface
descriptor.

bDeviceSubClass 00h Subclass specified in the interface
descriptor.

bDeviceProtocol 00h Protocol specified in the interface
descriptor.

bMaxPacketSize 10h Endpoint 0 size.

idVendor 04D8h Vendor ID assigned by USB-IF.

bNumConfiguration 01h Number of possible configurations.

Field Value Description

bDescriptorType 02h Configuration descriptor type.

bNumInterfaces 01h Number of interfaces supported by
this configuration.

bConfigurationValue 01h Index value of this configuration.

bmAttributes C0h Configuration Characteristics:

Bit Description

7 Reserved (set to ‘1’)
6 Self-powered
5 Remote wake-up
4-0 Reserved

MaxPower 32h Maximum power consumption of the
USB device from the bus, expressed
in 2 mA units (i.e., 50 = 100 mA).

Field Value Description

bDescriptorType 04h Interface descriptor type.

bInterfaceNumber 00h Number of interface. Zero-based
value identifying the index in the array
of concurrent interfaces supported by
this configuration.

bNumEndpoints 02h Number of endpoints used by this
interface (excluding Endpoint 0). This
value shall be at least 2.

bInterfaceClass 08h Mass Storage Class.

bInterfaceSubClass 06h Subclass code (assigned by USB-IF).
Indicates which industry standard
command block definition to use.

bInterfaceProtocol 50h Bulk-Only Transport.
DS01003A-page 22 © 2005 Microchip Technology Inc.

AN1003
APPENDIX D: USB DESCRIPTOR STRUCTURES

~\system\usb\usbdefs\usbdefs_std_dsc.h

DEVICE DESCRIPTOR

typedef struct _USB_DEV_DSC
{
 byte bLength; byte bDscType;
 word bcdUSB; byte bDevCls;
 byte bDevSubCls; byte bDevProtocol;
 byte bMaxPktSize0; word idVendor;
 word idProduct; word bcdDevice;
 byte iMFR; byte iProduct;
 byte iSerialNum; byte bNumCfg;
} USB_DEV_DSC;

CONFIGURATION DESCRIPTOR

typedef struct _USB_CFG_DSC
{
 byte bLength; byte bDscType;
 word wTotalLength; byte bNumIntf;
 byte bCfgValue; byte iCfg;
 byte bmAttributes; byte bMaxPower;
} USB_CFG_DSC;

INTERFACE DESCRIPTOR

typedef struct _USB_INTF_DSC
{
 byte bLength; byte bDscType;
 byte bIntfNum; byte bAltSetting;
 byte bNumEPs; byte bIntfCls;
 byte bIntfSubCls; byte bIntfProtocol;
 byte iIntf;
} USB_INTF_DSC;

ENDPOINT DESCRIPTOR

typedef struct _USB_EP_DSC
{
 byte bLength; byte bDscType;
 byte bEPAdr; byte bmAttributes;
 word wMaxPktSize; byte bInterval;
} USB_EP_DSC;
© 2005 Microchip Technology Inc. DS01003A-page 23

AN1003
APPENDIX E: STANDARD USB DEVICE REQUESTS

TABLE E-1: STANDARD REQUESTS FOR CONTROL TRANSFERS

bmRequestType bRequest Description

00000000b
00000001b
00000010b

CLEAR_FEATURE The host requests to disable a feature on a
device, interface or endpoint.

10000000b GET_CONFIGURATION The host requests the value of the current
device configuration.

10000000b GET_DESCRIPTOR The host requests a specific descriptor.

10000001b GET_INTERFACE

10000000b
10000001b
10000010b

GET_STATUS Index value of the configuration.

00000000b SET_ADDRESS The host specifies an address to use in future
communications with the device.

00000000b SET_CONFIGURATION

00000000b SET_DESCRIPTOR The host adds a descriptor or updates an
existing descriptor.

00000000b
00000001b
00000010b

SET_FEATURE The host requests to enable a feature on a
device, interface or endpoint.

00000001b SET_INTERFACE For devices with a configuration that supports
multiple, mutually exclusive settings for the
interface, the host requests the device to use
specific settings.

10000010b SYNC_FRAME The device sets and reports an endpoint’s
synchronization frame.
DS01003A-page 24 © 2005 Microchip Technology Inc.

AN1003
APPENDIX F: BULK ENDPOINT DESCRIPTORS

TABLE F-1: BULK-IN ENDPOINT DESCRIPTOR

TABLE F-2: BULK-OUT ENDPOINT DESCRIPTOR

Bulk-In Endpoint Descriptor

Field Value Description

bDescriptorType 05h Endpoint descriptor type.

bEndpointAddress 81h The address of this endpoint on the
USB device. The address is encoded
as follows:

Bit Description

3-0 The endpoint number
6-4 Reserved, set to ‘0’
7 1 = In

bmAttributes 02h This is a Bulk endpoint.

bMaxPacketSize 40h Maximum packet size. Shall be 8, 16,
32 or 64 bytes (64 bytes in our case).

bInterval 00h Does not apply to Bulk endpoints.

Bulk-Out Endpoint Descriptor

Field Value Description

bDescriptorType 05h Endpoint descriptor type.

bEndpointAddress 01h The address of this endpoint on the
USB device. The address is encoded
as follows:

Bit Description

3-0 The endpoint number
6-4 Reserved, set to ‘0’
7 0 = Out

bmAttributes 02h This is a Bulk endpoint.

bMaxPacketSize 40h Maximum packet size. Shall be 8, 16,
32 or 64 bytes (64 bytes in our case).

bInterval 00h Does not apply to Bulk endpoints.
© 2005 Microchip Technology Inc. DS01003A-page 25

AN1003
APPENDIX G: CBW AND CSW

TABLE G-1: COMMAND BLOCK WRAPPER (CBW)

TABLE G-2: COMMAND STATUS WRAPPER (CSW)

Command Block Wrapper (CBW)

Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0-3 dCBWSignature

4-7 dCBWTag

8-11 dCBWDataTransferLength

12 bmCBWFlags

13 Reserved (0) bCBWLUN

14 Reserved (0) BCBMCBLength

15-30 CBWCB

Command Status Wrapper (CSW)

Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0-3 dCBWSignature

4-7 dCSWTag

8-11 dCSWDataResidue

12 bCSWStatus
DS01003A-page 26 © 2005 Microchip Technology Inc.

AN1003
APPENDIX H: SCSI COMMAND SET

TABLE H-1: SCSI COMMAND SET

Command Name Operation Code Description

INQUIRY 12h Gets device Information.

READ CAPACITY 25h Requests for capacity and medium format
parameters.

READ FORMATTED CAPACITY 23h Reports current media capacity and formatting
capacities supported by media.

READ (10) 28h Transfers binary data from the media to the
host.

WRITE (10) 2Ah Transfers binary data from the host to the
media.

MODE SENSE (6) 1Ah Requests device to report parameters.

REQUEST SENSE (6) 03h Transfers status sense data to the host.

PREVENT ALLOW MEDIUM REMOVAL 1Eh Prevents or allows the removal of media from
a removable media device.

TEST UNIT READY 00h Requests to check if logical unit is ready.

VERIFY (10) 2Fh Requests to verify a specified LBA on medium.

START/STOP 1Bh Requests a removable media device to load or
unload its media.
© 2005 Microchip Technology Inc. DS01003A-page 27

AN1003
APPENDIX I: SCSI COMMAND AND DATA FORMAT

TABLE I-1: MODE PARAMETER HEADER (6)

TABLE I-2: FIXED FORMAT SENSE DATA

TABLE I-3: STANDARD INQUIRY DATA FORMAT

Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 MODE DATA LENGTH

1 MEDIUM TYPE

2 DEVICE SPECIFIC PARAMETER

3 BLOCK DESCRIPTOR LENGTH

Fixed Format Sense Data

Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 RESPONSE CODE (70h or 71h)

1 Obsolete

2 FILEMARK EOM ILI Reserved SENSE KEY

3-6 INFORMATION

7 ADDITIONAL SENSE LENGTH (n-7)

8-11 COMMAND SPECIFIC INFORMATION

12 ADDITIONAL SENSE CODE

13 ADDITIONAL SENSE CODE QUALIFIER

14 FIELD REPLACEMENT UNIT CODE

15-17 SENSE KEY SPECIFIC

18-n Additional Sense Bytes

Standard Inquiry Data Format

Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 PERIPHERAL QUALIFIER PERIPHERAL DEVICE TYPE

1 RMB Reserved

2 Version

3 Obsolete NORMACA HISUP RESPONSE DATA FORMAT

4 ADDITIONAL LENGTH (n-4)

5 SCCS ACC TPGS 3PC Reserved PRTOECT

6 BQUE ENCSERV VS MULTIP MCHNGR Obsolete ADDR16

7 Obsolete WUSB16 SYNC LINKED Obsolete CMDQUE VS

8-15 (MSB)
T10 VENDOR IDENTIFICATION

(LSB)

16-31 (MSB)
PRODUCT IDENTIFICATION

(LSB)

32-35 (MSB)
PRODUCT REVISION LEVEL

(LSB)
DS01003A-page 28 © 2005 Microchip Technology Inc.

AN1003
TABLE I-4: READ (10) COMMAND

Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 Operation Code (28h)

1 RDPROTECT DPO FUA Reserved FUA_NV Obsolete

2 (MSB)
Logical Block Address

5 (LSB)

6 Reserved Group Number

7 (MSB)
TRANSFER LENGTH

8 (LSB)

9 CONTROL
© 2005 Microchip Technology Inc. DS01003A-page 29

AN1003
APPENDIX J: SCHEMATIC

FIGURE J-1: PICtail™ BOARD FOR SD™ AND MMC CARDS SCHEMATIC

11
12 1310

8
912

345
6

1
0

8
9

11
12 13

45
612

3

18
0Ω

.0
1

μF

FP
S

00
9-

22
03

-1
0

D
M

1A
A

-S
F-

P
E

J(
21

)

C
ar

d

de
ct

de
ct

W
rit

e

18
0Ω

10
 μ

F
.1

 μ
F

1
μF

VI
N

G
N

D

S
H

D
NVO

U
T

N
C

TC
11

86

PI
C

ta
il™

 C
O

N
N

PICtail™
DS01003A-page 30 © 2005 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR WAR-
RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED,
WRITTEN OR ORAL, STATUTORY OR OTHERWISE,
RELATED TO THE INFORMATION, INCLUDING BUT NOT
LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE,
MERCHANTABILITY OR FITNESS FOR PURPOSE.
Microchip disclaims all liability arising from this information and
its use. Use of Microchip’s products as critical components in
life support systems is not authorized except with express
written approval by Microchip. No licenses are conveyed,
implicitly or otherwise, under any Microchip intellectual property
rights.
© 2005 Microchip Technology Inc.
Trademarks

The Microchip name and logo, the Microchip logo, Accuron,
dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART,
PRO MATE, PowerSmart, rfPIC, and SmartShunt are
registered trademarks of Microchip Technology Incorporated
in the U.S.A. and other countries.

AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB,
PICMASTER, SEEVAL, SmartSensor and The Embedded
Control Solutions Company are registered trademarks of
Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, dsPICDEM,
dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR,
FanSense, FlexROM, fuzzyLAB, In-Circuit Serial
Programming, ICSP, ICEPIC, Linear Active Thermistor,
MPASM, MPLIB, MPLINK, MPSIM, PICkit, PICDEM,
PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo,
PowerMate, PowerTool, rfLAB, rfPICDEM, Select Mode,
Smart Serial, SmartTel, Total Endurance and WiperLock are
trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2005, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

 Printed on recycled paper.
DS01003A-page 31

Microchip received ISO/TS-16949:2002 quality system certification for
its worldwide headquarters, design and wafer fabrication facilities in
Chandler and Tempe, Arizona and Mountain View, California in
October 2003. The Company’s quality system processes and
procedures are for its PICmicro® 8-bit MCUs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

DS01003A-page 32 © 2005 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com

Atlanta
Alpharetta, GA
Tel: 770-640-0034
Fax: 770-640-0307

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260

Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

San Jose
Mountain View, CA
Tel: 650-215-1444
Fax: 650-961-0286

Toronto
Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8676-6200
Fax: 86-28-8676-6599

China - Fuzhou
Tel: 86-591-8750-3506
Fax: 86-591-8750-3521

China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431

China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760

China - Shunde
Tel: 86-757-2839-5507
Fax: 86-757-2839-5571

China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118

China - Xian
Tel: 86-29-8833-7250
Fax: 86-29-8833-7256

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-2229-0061
Fax: 91-80-2229-0062

India - New Delhi
Tel: 91-11-5160-8631
Fax: 91-11-5160-8632

India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513

Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122

Korea - Gumi
Tel: 82-54-473-4301
Fax: 82-54-473-4302

Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934

Malaysia - Penang
Tel: 604-646-8870
Fax: 604-646-5086

Philippines - Manila
Tel: 632-634-9065
Fax: 632-634-9069

Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-572-9526
Fax: 886-3-572-6459

Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803

Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE
Austria - Weis
Tel: 43-7242-2244-399
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Spain - Madrid
Tel: 34-91-352-30-52
Fax: 34-91-352-11-47

UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820

WORLDWIDE SALES AND SERVICE

08/24/05

	Introduction
	FIGURE 1: MSD Hardware Configuration
	USB
	Enumeration
	FIGURE 2: Standard USB Descriptors
	Enumeration Process

	Control Transfer
	Mass Storage Class
	Bulk-Only Transport (BOT)
	FIGURE 3: Command/Data/Status Flow in Bulk-Only Transport

	Secure Digital (SD) Card

	Communication Overview
	Hardware
	FIGURE 4: PC, MSD Communication Block Diagram

	SCSI Commands
	Unsupported Commands

	Mass Storage Device (MSD) Firmware
	Using the PICtail™ Board for SD™ and MMC Cards
	FIGURE 5: Device Manager

	Directory Structure
	Function Description
	FIGURE 6: MSD Directory Structure
	TABLE 1: msd.c Functions
	TABLE 2: sdcard.c Functions

	Memory Organization
	EXAMPLE 1: Buffers for MSD (usbmmap.c)
	FIGURE 7: Complete Memory Organization (Including Endpoint Buffers)
	EXAMPLE 2: Modified Linker Script

	Firmware Description
	FIGURE 8: Relationship Between USB Framework Demonstration Files and the MSD Application
	EXAMPLE 3: Structure for Command Block Wrapper
	FIGURE 9: ProcessIO() Flowchart
	FIGURE 10: Command Transport Flowchart
	FIGURE 11: MSDDataIn() (Bulk-In Transport) Flowchart

	Tools, Testing and Customization
	TABLE 3: MSD SD Card Test Results

	Summary
	References
	Appendix A: Frequently Asked Questions
	Appendix B: Source Code
	Appendix C: USB Descriptor Formats
	TABLE C-1: Device Descriptor
	TABLE C-2: Configuration Descriptor
	TABLE C-3: Interface Descriptor

	Appendix D: USB Descriptor Structures
	Device Descriptor
	Configuration Descriptor
	Interface Descriptor
	Endpoint Descriptor

	Appendix E: Standard USB Device Requests
	TABLE E-1: Standard Requests for Control Transfers

	Appendix F: Bulk Endpoint Descriptors
	TABLE F-1: Bulk-In Endpoint Descriptor
	TABLE F-2: Bulk-Out Endpoint Descriptor

	Appendix G: CBW and CSW
	TABLE G-1: Command Block Wrapper (CBW)
	TABLE G-2: Command Status Wrapper (CSW)

	Appendix H: SCSI Command Set
	TABLE H-1: SCSI Command Set

	Appendix I: SCSI Command and Data Format
	TABLE I-1: Mode Parameter Header (6)
	TABLE I-2: Fixed Format Sense Data
	TABLE I-3: Standard Inquiry Data Format
	TABLE I-4: READ (10) Command

	Appendix J: Schematic
	FIGURE J-1: PICtail™ Board for SD™ and MMC Cards Schematic

	Worldwide Sales and Service

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.2
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /Arnprior
 /Batang
 /Baveuse
 /Berylium
 /Berylium-BoldItalic
 /BlueHighway
 /BlueHighway-Bold
 /BlueHighwayCondensed
 /BlueHighwayDType
 /BlueHighwayLinocut
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BurnstownDam
 /CarbonBlock
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /CreditValley
 /CreditValley-Bold
 /CreditValley-BoldItalic
 /CreditValley-Italic
 /EarwigFactory
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HurryUp
 /Impact
 /INCONTROL
 /Kartika
 /Kredit
 /Latha
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /Map-Symbols
 /MICROCHIP
 /MicrosoftSansSerif
 /MinyaNouvelle
 /MinyaNouvelleBold
 /MinyaNouvelleBoldItalic
 /MinyaNouvelleItalic
 /MonotypeCorsiva
 /MonotypeSorts
 /MS-Mincho
 /MT-Extra
 /MVBoli
 /Neuropol
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /PlanetBenson2
 /Pupcat
 /Raavi
 /Shruti
 /SimSun
 /Stereofidelic
 /SybilGreen
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Teen
 /Teen-Bold
 /Teen-BoldItalic
 /Teen-Italic
 /TeenLight
 /TeenLight-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /VelvendaCooler
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Waker
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

