

Advanced
 Virtual

Integrated
eXecutive

AVIX

AVIX-RT Tutorial Series
Tutorial 1

Why use a Real Time

Operating System

AVIX Real Time Operating System

Why use a Real Time Operating System AVIX-RT

AVIX AVIX-RT Tutorial Series

 - I -

Why use a Real Time Operating System AVIX-RT

AVIX AVIX-RT Tutorial Series

 - II -

© 2006-2010 by AVIX-RT

All rights reserved. This document is the sole property of AVIX-RT. The content of this
document is considered correct at the time of printing/release and is subject to
change without notice.

Use of this document is restricted to personal or educational use and may not be used
by any corporate or commercial training institution without express written
permission of AVIX-RT.

No liability is accepted for use of products or concepts described in this document. All
product names, brandings and trade marks mentioned or referred in this document
remain the property of their respective owners.

AVIX-RT
Maïsveld 84
5236 VC ‘s-Hertogenbosch
The Netherlands

phone +31(0)6 15 28 51 77
e-mail info@avix-rt.com
www www.avix-rt.com

mailto:info@avix-rt.com

Why use a Real Time Operating System AVIX-RT

AVIX AVIX-RT Tutorial Series

 - III -

Table of Contents

1 Introduction .. 1

2 The software structure of an embedded system .. 2

3 The effect of an RTOS on the software structure ... 4

4 Conclusion .. 5

Why use a Real Time Operating System AVIX-RT

AVIX AVIX-RT Tutorial Series

 1

1 Introduction
Embedded system developers must find solutions for many problems like ‘how to implement
correct system timing’, ‘how to deal with external events, often through the help of interrupts’, ‘how
to test using complex test scenarios’ and so on.

Even the smallest embedded systems are becoming more complex because of the use of
complicated communication interfaces like USB or TCP/IP. The ‘lifetime’ of embedded systems can
be quite long, often many years. During this lifetime the embedded system is enhanced with new
functionality, again and again challenging the developer’s skills to keep the system working.

Many embedded systems are developed without applying an RTOS (Real Time Operating
System). Different reasons exist for doing so. ‘An RTOS is complex’, ‘An RTOS introduces too
much overhead, both in timing and memory consumption’, ‘An RTOS is expensive’ and many
more.

Whether or not these reasons are valid, they bypass many of the advantages an RTOS can offer.
Instead of using the features an RTOS offers to ease systems development, all relevant aspects
are custom developed, over and over again.

This article is the first in a series of articles with the goal of explaining how an RTOS can be
beneficial to embedded systems development. A number of aspects relevant for embedded
systems development will be presented where a comparison will be made as how these aspects
influence development both with and without applying an RTOS.

This first article focuses on the effect an RTOS can have on the structure of the software and
thereby have a positive influence on testability, reusability, extendibility and modularity of the
system.

Subsequent articles will cover how an RTOS can help with:

 Timing aspects to let the system fulfil its timing requirements

 Interrupt management to deal with external events

 Communication between the system modules

 Resource management to deal with memory and processing power

Why use a Real Time Operating System AVIX-RT

AVIX AVIX-RT Tutorial Series

 2

2 The software structure of an embedded system
This chapter presents a basic embedded system not using an RTOS. The system evolves through
three subsequent generations where in every generation, functionality is added.

Like every software system, an embedded system needs a certain structure in order to streamline
development and keep the system as a whole comprehensible. Quite often functional aspects
present in the system drive the division of the systems software in separate modules.

Generation one: The first generation of the
embedded system has basic functionality. An
analogue value is converted and some
processing is done to the values read from the
ADC. This is done at a frequency of 1000Hz.
The resulting design is shown in Figure 1. It
contains three software modules, one for
converting the analogue values, one to do the
processing on these values and a third to
activate the other two. The result is
manageable and easy to construct.

Generation two: Systems tend to evolve.
Functionality is added, increasing their
complexity. So is the case with this system. A
second generation is created with more
elaborate processing. As it appears, processing
time becomes so long that the cycle of one
millisecond with which the analogue values
must be read can no longer be met. On
average, processing is still below one
millisecond but sometimes processing takes
longer. To solve this problem, the Signal
Processing module is split in three parts. The
processing time of each of these parts does not
exceed one millisecond. A state machine is
added to the Signal Processing module,
responsible for successive activation of each of
the three sub modules when the Signal
Processing module is activated. To guarantee
no samples are lost, a second extension is required in the form of a buffer. Here the analogue
values are stored until they are processed. The resulting system is shown in Figure 2. Both the
state machine and the buffer mechanism have nothing to do with the main goal of the system
which actually is unchanged.

Figure 1: Basic system generation 1

Figure 2: Basic system generation 2

Why use a Real Time Operating System AVIX-RT

AVIX AVIX-RT Tutorial Series

 3

Generation three: A new requirement leads to a third version of the system It is extended with an
LCD display. A new software module is added, responsible for controlling this display.

Problem with LCDs is they
need a minimum time for
every character to be
written. This implies that
the displayed data cannot
be written at once. This
would again violate the
‘one millisecond’ re-
quirement with which the
analogue values must be
read. Therefore the LCD
module is developed with
a local state machine
taking care of writing one
character at a time. To
store all characters until
they are processed, a
second buffer is added.
Adding the LCD display
does introduce a new problem. One of the three sub modules of the Signal Processing module
takes a maximum of 0.9 milliseconds. Adding the LCD processing time to this figure, again the total
system timing requirement is no longer met. To solve this, the Signal Processing module is revised
and split even further to contain a total of four sub modules now. The resulting system is shown in
Figure 3.

The shaded area in Figure 3 contains the modules added in order for the system as a whole to
meet its timing requirements. As shown this makes up quite a substantial part of the system.

Still no RTOS is used or needed but what is happening here? Which problems are introduced?

 More effort is needed to create all additional software

 Correct timing is accomplished in a trial and error fashion

 The modules are not autonomous. Adding a module (LCD) breaks the timing of other
modules

 It is virtually impossible to reuse modules for other systems due to the strict timing
relationships that exist between them

 The development process as a whole is cumbersome. During testing and bug fixing,
processing times change, and again potentially break the systems timing

 Even the simplest change, like a new version of the compiler, might break the system due to
different code sequences being generated with different timing.

Without doubt the system will work correctly. The question one may ask however is whether this
approach, and the negative side effects introduced by it is acceptable and, even more important,
how this all can be prevented.

One of the possible answers to this question is by applying an RTOS.

Figure 3: Basic system generation 3

Why use a Real Time Operating System AVIX-RT

AVIX AVIX-RT Tutorial Series

 4

3 The effect of an RTOS on the software structure
If the system uses an RTOS, all
supporting functionality, not directly
related to the systems functional
behaviour, would not have to be custom
created. Instead it would be provided by
the RTOS. The individual modules
could be created as if they were stand
alone autonomous modules and the
relation between them is taken care of
by features and mechanisms offered by
the RTOS. The resulting structure of the sample system when applying an RTOS is shown in
Figure 4

The timing requirement of the overall system remains the same. Modules taking too much
processing time still need to be split in multiple parts in order for another module to be given
precedence. With an RTOS however, it is the RTOS that stops one module in favour of another
(pre-emption), should the second have to be given precedence. The largest positive effect on the
systems structure is that each individual module is written as an autonomous piece of software. No
custom state machines are needed to ‘split’ a modules processing in multiple parts. This enhances
the readability, testability and not in the last place reusability of the individual software module. It
will lead to faster development, less errors and fewer dependencies between the different modules.

Also the buffering mentioned in the ‘non-RTOS’ scenario is still needed. Buffering mechanisms are
now however offered by the RTOS and can just be used out of the box instead of being custom
developed.

Not detailed in the previous scenario is how the modules communicate with each other. Here too
functionality is offered by the RTOS that otherwise would have to be custom developed. Finally the
RTOS will have a positive influence on the available processing power of the system by not using
polling and active wait mechanisms. These last two aspects are detailed in forthcoming articles.

Figure 4: Basic system using an RTOS

Why use a Real Time Operating System AVIX-RT

AVIX AVIX-RT Tutorial Series

 5

4 Conclusion
I have suggested that developing an embedded system without an RTOS requires effort to be
spent on software components not directly related to the functional behaviour of the system. Not
only does this imply that development takes longer. Also the interdependencies between the
individual modules make the system as a whole more complex and have a negative influence of
future expandability of the system and reusability of the individual components. Even for the basic
system illustrated here, using an RTOS has a positive influence on the software structure thereby
streamlining development and maintenance. Also by delegating system timing to the RTOS, correct
system behaviour is much less dependant on all kinds of variations like:

 Adding/changing code

 Using a microcontroller with a different speed

 Changing compiler optimization levels

 Etc.

The system as a whole becomes more robust, easier to develop and easier to test. Of course,
when using an RTOS, there is no such thing as a free lunch. Using an RTOS requires some
familiarisation to learn how to deploy the RTOS and its mechanisms, such that the highest possible
benefit is gained. As stated in the introduction, a number of topics related to this will be the subject
of forthcoming articles appearing as part of this tutorial series.

About the author:
Leon van Snippenberg is founder and owner of AVIX-RT
(www.avix-rt.com). AVIX-RT is a company developing and
marketing an RTOS specifically developed for Microchip 16 and
32 bit microcontrollers belonging to the PIC24F, PIC24H, PIC30F,
PIC33F and PIC32 families.

	Introduction
	The software structure of an embedded system
	The effect of an RTOS on the software structure
	Conclusion

