
AN-796
APPLICATION NOTE

One Technology Way • P.O. Box 9106 • Norwood, MA 02062-9106 • Tel: 781/329-4700 • Fax: 781/461-3113 • www.analog.com

Using the ADV202 in a Multichip Application
by Christine Bako

INTRODUCTION
This application note provides instructions on how to
interface two ADV202s when used in HDTV, 1080i mode.

SMPTE274M 1080i video at 60 fields/sec translates to a
total data rate of 1.485 Gbps.

This translates to an input data rate of active video of
approximately 124 Mbytes/sec for 10-bit data. The ADV202
limits data input rates to 65 MSPS in irreversible mode or
32 MSPS in reversible mode using the VDATA interface.
This requires at least two ADV202s to manage the data
input rates for 1080i.

Using two ADV202s in HDTV mode, the ADV202 expects
Y and CbCr to be on separate buses: ADV202_1 is
processing the 1080i luma data and the ADV202_2 is
processing the chroma data.

Both data streams have to contain EAV/SAV codes
in order to synchronize the two outputs in this mode
of application. Multichip applications can be used in
decode in a master/slave or slave/slave configuration
(see Figure 1 and Figure 2). In encode the ADV202 is
always slave.

Limiting an HDTV application (1080i) to two ADV202s
requires the following:

Maximum data input rate: 65 MSPS per ADV202
(ADV202-150).
Interface: VDATA bus (for uncompressed video data
input or output)
Compression mode: irreversible

If a higher performance is required, for example 1080i
lossless compression, it is recommended to use three
or more ADV202s. The principles described in this
application note also apply to an application that is using
three or more ADV202s.

This document applies to applications where the video
outputs of the ADV202s are directly connected to a device
that requires synchronization on the chroma and luma
data inputs (see Recommended Interface section) of a
receiving device, such as an encoder or serializer. In cases
where the ADV202 video outputs are sent to a buffer or
FPGA, synchronization is not important.

REV. 0

http://www.analog.com

–2–

AN-796

–3–

AN-796

RECOMMENDED INTERFACE
Decode Master/Slave Configuration

DATA[31:0] HDATA[31:0]

ADDR[3:0] ADDR[3:0]

CS CS

RD RD

WR WE

ACK ACK

IRQ

CS

RD

WR

ACK

IRQ

DREQ

DACK

IRQ

DREQ DREQ FIELD
VSYNC
HSYNC

DACK DACK

G I/O SCOMM[5]

VCLK 1080i
VIDEO OUT

MCLK

VDATA[11:2]

32-BIT
HOST CPU

ADV730xA

10-BIT SD/HD
VIDEO

ENCODER

ADV202_1
MASTER

SCOMM[5]

HDATA[31:0]

ADDR[3:0]

CS

RD

WE

ACK

IRQ
FIELD

VSYNC

HSYNC

DREQ

DACK

VCLK

MCLK

VDATA[11:2]

ADV202_2
SLAVE

CLKIN

Y[9:0]

C[9:0]
CbCr

CbCr

Y Y

74.25MHz
OSC

Figure 1. ADV202 in Multichip Application in Decode Master/Slave Configuration

Decode Slave/Slave Configuration

DATA[31:0] HDATA[31:0]

ADDR[3:0] ADDR[3:0]

CS CS

RD RD

WR WE

ACK ACK

IRQ

CS

RD

WR

ACK

IRQ

DREQ

DACK

IRQ

DREQ DREQ FIELD
VSYNC
HSYNC

DACK DACK

G I/O SCOMM[5]

VCLK 1080i
VIDEO OUT

MCLK

VDATA[11:2]

32-BIT
HOST CPU

ADV730xA

10-BIT SD/HD
VIDEO

ENCODER

ADV202_1
SLAVE

SCOMM[5]

HDATA[31:0]

ADDR[3:0]

CS

RD

WE

ACK

IRQ
FIELD

VSYNC

HSYNC

DREQ

DACK

VCLK

MCLK

VDATA[11:2]

ADV202_2
SLAVE

CLKIN

Y[9:0]

C[9:0]

HOUSE
SYNC

CbCr

Y Y

74.25MHz
OSC

Figure 2. ADV202 in Multichip Application in Decode Slave/Slave Configuration

REV. 0 REV. 0

–2–

AN-796

–3–

AN-796

Encode Configuration

DATA[31:0] HDATA[31:0]

ADDR[3:0] ADDR[3:0]

CS CS

RD RD

WR WE

ACK ACK

IRQ

CS

RD

WR

ACK

IRQ

DREQ

DACK

IRQ

DREQ DREQ FIELD
VSYNC
HSYNC

DACK DACK

G I/O SCOMM[5]

VCLK

MCLK

VDATA[11:2]

32-BIT
HOST CPU 10-BIT HD

YCbCr
4:2:2 SOURCE

ADV202_1
SLAVE

SCOMM[5]

HDATA[31:0]

ADDR[3:0]

CS

RD

WE

ACK

IRQ
FIELD

VSYNC

HSYNC

DREQ

DACK

VCLK

MCLK

VDATA[11:2]

ADV202_2
SLAVE

LLC

Y[9:0]

C[9:0]

CbCr

Y Y

74.25MHz

Figure 3. ADV202 in Multichip Application in Encode

Transfer Rates on HDATA Bus
The highest data rate is achieved over the HDATA bus
using the external DMA DREQ/DACK mode in burst
transfer configuration.

Maximum Transfer Rate for 32-Bit Data
A 1080i application requires a VCLK of 74.25 MHz.
According to the ADV202 data sheet, JCLK must be at
least 2  VCLK since the maximum burst frequency is
recommended to be 0.35  JCLK, which is approximately
50 MHz. This is the maximum frequency of read/write
pulses.

The CODE FIFO in which the compressed data is to be
stored is programmed to a size of no less than 256 32-bit
words. For 32-bit wide data, the maximum number of
accesses is limited to 256; 512 for 16-bit data.

Therefore, the maximum throughput rate for 32-bit data
on the HDATA bus is

 4 bytes  50 MHz = 200 MBytes/sec

Assuming a burst length of 128 accesses, if the CODE
FIFO does not contain 128 words for the last portion of
the compressed field, the FIFO is packed with zeroes to
ensure that the field ends on a burst boundary.

The maximum transfer rate for 16-bit data on the HDATA
bus is

 2 bytes  50 MHz = 100 MBytes/sec

Assuming a burst length of 256 accesses, if the CODE
FIFO does not contain 256 words for the last portion of the
compressed field, the FIFO is packed with zeros to ensure
that the field ends on a burst boundary. It is important
that the data throughput rate of the interface used in the

application (for example, a PCI interface to transfer/store
compressed data on a PC system) supports these maximum
data rates.

Video Input—Encode Mode
YCbCr data must be in 4:2:2 format and must be
accompanied by EAV/SAV timing codes.

The following is an outline on how to program two
ADV202s in multichip sync mode using a 32-bit host
interface where the 32-bit bus is shared between two
ADV202s.

For more information, refer to the current ADV202 data
sheet and the Tech Note titled, “Getting Started with the
ADV202.”

Programming the ADV202_1
 1. Write 0x0008h to the PLL_HI register, 0x0084 to the

PLL_LO register (for VCLK = 74.25 MHz).

 2. Wait for 20 s to allow the PLL to settle.

 3. Write 0x008A to the BOOT register. This boot
mode is used for applications where the firmware
has to be loaded into the part.

 4. Write 0x000A to BUSMODE. This sets the host
control data width to 32 bits and the DMA data
width to 32 bits.

 5. Write 0x000A to MMODE. This sets the indirect
data access width and indirect address step size
to 32 bits.

 6. Set the start of the program memory in writing
0x00050000 to IADDR.

 7. Load the program into the memory by writing every
32-bit value of the firmware to IDATA.

REV. 0 REV. 0

–4–

AN-796

–5–

AN-796

 8. Initiate a reboot by writing 0x008D to the BOOT
register. This initiates program execution.

 9. Write 0x000A to BUSMODE.

 10. Write 0x000A to MMODE.

Pre-Initialization Routine for ADV202_1
 1. Write 0x00057F00 to IADDR. This sets the start

address for the encode parameters which will be
loaded into the ADV202.

 2. Write 0x02010503 to IDATA. These are the
actual encode parameters.

In this example

02 = 1080i luminance
01 = 10-bit precision
05 = 5 levels of wavelet transforms
03 = Y, C unipolar

 3. Write 0x03000000 to IDATA. Encode parameters
continued.

03 = code block size 128  32
00 = irreversible 9  7 using fixed table
00 = skip no fields
00 = no attribute data output

 4. Encoder parameters continued.

Write 0x01019500 to IDATA
01 = target size per video field/frame
019500 = target size value (103,680 bytes/field or
10:1 compression rate for luma).

 5. Encoder parameters continued.

Write 0x00000000 to IDATA
00 = LRCP progression style
00 = use EAV/SAV codes, all syncs negative
polarity
00 = Qfactor is 1x
01 = code to .j2c

 6. Write 0x00000000 to IDATA for all remaining
parameter locations.

Initialization Routine for ADV202_1
 1. Write to 0x0C00 to EIRQIE to unmask SWIRQ0

and SWIRQ1 (address 0x5h). Unmasking SWIRQ1
enables the multichip sync feature.

 2. Wait for IRQ to be asserted (going low, SWIRQ0
is set at address 0x6h, Bit 10).

 3. Read application ID to ensure the program has
correctly initialized. Here: 0xFF82

Post-Initialization Routine to Configure the DMA
Channels for ADV202_1

 1. Write 0xFFFF1408 to IADDR.

 2. Write 0x00120000 to IDATA. This configures DMA
channel 0 to eight bursts of 32-bit words, assigned
to the Compressed/Code block data FIFO.

 3. Write 0xFFFF1408 to IADDR.

 4. Write 0x00130000 to IDATA.

Programming the ADV202_2
 1. Write 0x0008h to the PLL_HI register, 0x0084 to the

PLL_LO register.

 2. Wait for 20 s to allow the PLL to settle.

 3. Write 0x008A to the BOOT register. This boot
mode is used for applications where the firmware
has to be loaded into the part.

 4. Write 0x000A to BUSMODE. This sets the host
control data width to 32 bits and the DMA data
width to 32 bits.

 5. Write 0x000A to MMODE. This sets the indirect
data access width and indirect address step size
to 32 bits.

 6. Set the start of the program memory in writing
0x00050000 to IADDR.

 7. Load the program into the memory by writing every
32-bit value of the firmware to IDATA.

 8. Initiate a reboot by writing 0x008D to the BOOT
register.

 9. Write 0x000A to BUSMODE.

 10. Write 0x000A to MMODE.

Pre-Initialization Routine of the ADV202_2
 1. Write 0x00057F00 to IADDR. This sets the start

address for the encode parameters which will be
loaded into the ADV202.

 2. Write 0x03010503 to IDATA. These are the actual
encode parameters.

In this example
03 = 1080i chrominance
01 = 10-bit precision
05 = 5 levels of wavelet transforms
03 = Y, C unipolar

 3. Write 0x03000000 to IDATA. Encode parameters
continued.

03 = code block size 128  32
00 = irreversible 9  7 using fixed table
00 = skip no fields
00 = no attribute data output

 4. Write 0x01008700 to IDATA. Encoder parameters
continued.

01 = target size per video field/frame
008700 = target size value (34,560 bytes/field or
30:1 compression rate for chroma)

 5. Write 0x00000001 to IDATA. Encoder parameters
continued.

00 = LRCP progression style
00 = use EAV/SAV codes, all syncs negative
polarity
00 = Qfactor is 1x
01 = code to .j2c

 6. Write 0x00000000 to IDATA for all remaining
parameter locations.

REV. 0 REV. 0

–4–

AN-796

–5–

AN-796

Initialization Routine for the ADV202_2
 1. Write to 0x0C00 to EIRQIE to unmask SWIRQ0

and SWIRQ1. Unmasking SWIRQ1 enables the
multichip sync feature.

 2. Wait for IRQ to be asserted (going low, SWIRQ0
is set at address 0x6h, Bit 10).

 3. Read application ID to ensure the program
has correctly initialized. Here: 0xFF82

Post-Initialization Routine to Configure the DMA
Channels for the ADV202_2

 1. Write 0xFFFF1408 to IADDR.

 2. Write 0x00120000 to IDATA. This configures
DMA Channel 0 to eight bursts of 32-bit words,
assigned to the compressed/code block data FIFO.

 3. Write 0xFFFF1408 to IADDR.

 4. Write 0x00130000 to IDATA.

Start Program for ADV202_1
Write 0x0400 to EIRQFLG (address 0x6h) on the ADV202_1
to clear the software interrupt (SWIRQ0) and start the
program.

Start Program for ADV202_2
Write 0x0400 to EIRQFLG (address 0x6h) on the ADV202_2
to clear the software interrupt (SWIRQ0) and start the
program.

Data Transfer
On DREQ0 going active the ADV202 is ready to transmit
data from the CODE FIFO.

The host should then initiate a data transfer according to
the timing specifications as described in the ADV202 data
sheet [Rev 0, Page 13, External DMA Mode—FIFO Read,
Burst Mode].

Encode Mode—Timing

[1] SWIRQ0 ASSERTED BY ADV202_1 ONCE PROGRAM AND PARAMETERS ARE LOADED.
ADV202_1 READY TO START PROGRAM ONCE SWIR0 IS CLEARED AGAIN.
SEE (3). 2—INITIALIZATION ROUTINE

[2] ADV202_1: SWIRQ1 IS SET BY FIRMWARE ONCE ADV202 IS
READY TO RECEIVE DATA IN MULTICHIP MODE.

[3] HOST ASSERTS SCOMM5.

[4] HOST TO SERVICE FIRST DREQ RECEIVED.

[5] HOST TO SERVICE
CONSECUTIVE DREQ

ADV202_1_IRQ

ADV202_2_IRQ

SCOMM_5

ADV202_1_DREQ0

ADV202_1_DACK0

ADV202_1_RD

ADV202_2_DREQ0

ADV202_2_DACK0

ADV202_2_RD

HDATA [31:0]

ADV202_1_VDATA

ADV202_2_VDATA

SWIRQ0 SWIRQ1

SWIRQ0

ADV202_1 ADV202_2

SWIRQ1

Figure 4. Encode Mode Timing Diagram
REV. 0 REV. 0

–6–

AN-796

–7–

AN-796

In encode mode the data path is VDATA bus—wavelet
transform engine/entropy codecs—internal memory—
CODE FIFO—HDATA bus. For more detail, see the AN-790
application note.

SWIRQ0 is asserted by each ADV202 as soon as the
ADV202 is ready to start the program [1] and must be
cleared to start the program in writing 0x0400 to address
0x6h. SWIRQ1 is asserted shortly after this [2], indicating
that the ADV202 is ready to receive data in multichip
mode. The host should poll this bit at address 0x6h.
When both SWIRQ1s are set and then cleared, the host
should assert SCOMM[5] and keep this pin asserted. On
asserting SCOMM[5] the ADV202s will start clocking in
video input data [3].

The timing diagram shows the ADV202s configured in
DREQ/DACK DMA burst mode, two ADV202s sharing the
32-bit HDATA bus. Each ADV202s DMA Channel 0 is set
to eight accesses (8  32-bit words) and DREQ is
configured to remain asserted until RD and DACK are
asserted (EDMOD registers).

It can be assumed that both ADV202s will be ready to
output compressed data from the CODE FIFO at close to
the same time. The host should service the first DREQ0
received and assign the data from each ADV202 to a
separate memory location. While DREQ0 from ADV202_1
is serviced, ADV202_2 should already have DREQ0
asserted. DREQ0 from the ADV202_2 will remain asserted
until the host asserts DACK and RD to the ADV202_2.

The maximum number of accesses in DREQ/DACK DMA
burst mode using 32-bit accesses is stated to be 256 (see
User’s Guide, EDMOD registers). In 1080i mode and
sharing the 32-bit HDATA bus between two ADV202s,
it is recommended to set the number of accesses
to 8  32-bit accesses. This should allow constant
data flow from the CODE FIFOs in cases where high
compression ratios are used.

Video Output—Decode Mode
The compressed video data is loaded over the HDATA
bus to the ADV202s. The following is an outline on how
to program two ADV202s in multichip sync mode using
a 32-bit host interface. This procedure is identical for a
master/slave or slave/slave application unless otherwise
stated. For more information, refer to the current ADV202
data sheet and the Tech Note titled, “Getting Started with
the ADV202.”

Programming the ADV202_1
 1. Write 0x0008h to the PLL_HI register, 0x0084 to

the PLL_LO register.

 2. Wait for 20 s to allow the PLL to settle.

 3. Write 0x008A to the BOOT register. This boot
mode is used for applications where the firmware
has to be loaded into the part.

 4. Write 0x000A to BUSMODE to enable. This sets
the host control data width to 32 bits and the DMA
data width to 32 bits.

 5. Write 0x000A to MMODE. This sets the indirect
data access width and indirect address step size
to 32 bits.

 6. Set the start of the program memory in writing
0x00050000 to IADDR.

 7. Load the program into the memory by writing
every 32-bit value of the firmware to IDATA.

 8. Initiate a reboot by writing 0x008D to
the BOOT register. This initiates program
execution.

 9. Write 0x000A to BUSMODE.

 10. Write 0x000A to MMODE.

Pre-Initialization Routine for ADV202_1
 1. Write 0x00057F00 to IADDR. This sets the start

address for the decode parameters which will be
loaded into the ADV202.

 2. Write 0x0201XX03 to IDATA. These are actual
decode parameters.

In this example
02 = 1080i luminance
01 = 10-bit precision
XX = this information is derived from the code
stream
03 = Y, C unipolar
These values must reflect the values that were
used in encode mode.

 3. Write 0xXXXXXXXX to IDATA. Decode parameters
continued. This information is derived from the code
stream.

 4. Decoder parameters continued.
Write 0xXX0000XX to IDATA for a slave/slave
configuration.
XX = this information is derived from the code
stream
00 = decode slave mode
00 = decode resolution settings
XX = this information is derived from the code
stream

Write 0xXX0010XX to IDATA for a master/
slave configuration
XX = this information is derived from the code
stream
10 = decode master mode
00 = reserved
XX = this information is derived from the code
stream

Initialization Routine for ADV202_1
 1. Write 0x0C00 to EIRQIE to unmask SWIRQ0 and

SWIRQ1. Unmasking SWIRQ1 enables the multichip
sync feature.

 2. Wait for IRQ to be asserted (going low).

 3. Read application ID to ensure the program
has correctly initialized. Here: 0xFFA2.

REV. 0 REV. 0

–6–

AN-796

–7–

AN-796

Post-Initialization Routine to Configure the DMA
Channels for ADV202_1

 1. Write 0xFFFF1408 to IADDR.

 2. Write 0x00120000 to IDATA. This configures
DMA Channel 0 to eight bursts of 32-bit words,
assigned to the compressed/code block data FIFO.

 3. Write 0xFFFF1408 to IADDR.

 4. Write 0x00130000 to IDATA.

Programming the ADV202_2
 1. Write 0x0008h to the PLL_HI register, 0x0084 to the

PLL_LO register.

 2. Wait for 20 s to allow the PLL to settle.

 3. Write 0x008A to the BOOT register. This boot
mode is used for applications where the firmware
has to be loaded into the part.

 4. Write 0x000A to BUSMODE. This sets the host
control data width to 32 bits and the DMA data
width to 32 bits.

 5. Write 0x000A to MMODE. This sets the indirect
data access width and indirect address step size
to 32 bits.

 6. Set the start of the program memory in writing
0x00050000 to IADDR.

 7. Load the program into the memory by writing
every 32-bit value of the firmware to IDATA.

 8. Initiate a reboot by writing 0x008D to the BOOT
register.

 9. Write 0x000A to BUSMODE.

 10. Write 0x000A to MMODE.

Pre-Initialization Routine of the ADV202_2
 1. Write 0x00057F00 to IADDR. This sets the start

address for the decode parameters which will be
loaded into the ADV202.

 2. Write 0x0301XX03 to IDATA. These are actual
decode parameters.

In this example
03 = 1080i chrominance
01 = 10-bit precision
XX = this information is derived from the code
stream
03 = Y, C unipolar

 3. Write 0xXXXXXXXX to IDATA. Decode parameters
continued. This information is derived from the code
stream.

 4. Decoder parameters continued.
Write 0xXX0000XX to IDATA for a slave/slave
configuration
XX = this information is derived from the code
stream
00 = decode slave mode
00 = decode resolution settings
XX = this information is derived from the code
stream

Write 0xXX0010XX to IDATA for a master/
slave configuration
XX = this information is derived from the code
stream
10 = decode master mode
00 = reserved
XX = this information is derived from the code
stream

Initialization Routine for the ADV202_2
 1. Write to 0x0C00 to EIRQIE to unmask SWIRQ0

and SWIRQ1. Unmasking SWIRQ1 enables the
multichip sync feature.

 2. Wait for IRQ to be asserted (going low).

 3. Read application ID to ensure the program
has correctly initialized. Here: 0xFFA2

Post-Initialization Routine to Configure the DMA
Channels for the ADV202_2

 1. Write 0xFFFF1408 to IADDR.

 2. Write 0x00120000 to IDATA. This configures
DMA Channel 0 to eight bursts of 32-bit words,
assigned to the compressed/code block data FIFO.

 3. Write 0xFFFF1408 to IADDR.

 4. Write 0x00130000 to IDATA.

Start Program for ADV202_1
Write 0x0400 to EIRQFLG (address 0x6h) on the ADV202_1
to clear the software interrupt (SWIRQ0) and start the
program.

Start Program for ADV202_2
Write 0x0400 to EIRQFLG (address 0x6h) on the ADV202_2
to clear the software interrupt (SWIRQ0) and start
the program.

Data Transfer
On DREQ0 going active the ADV202 is ready to receive
data. The host should then initiate a data transfer
according to the timing specifications as described
in the ADV202 data sheet [Rev 0, Page 12, External DMA
Mode—FIFO Write, Burst Mode].

REV. 0 REV. 0

–8–

AN-796

–9–

AN-796

Decode Mode—Timing

������

������

������

������

�������

���������DREQ0

���������DACK0

���������WR

���������DREQ0

���������DACK0

���������WR

������������

��������������

�������� �������� �������� �������� �������� �������� ��������

��������������

���������������������������
��������������������������
�����������������������
�������������

�������������������������������������
������������������������������������
��������������

������������������DREQ0�
����������������������
�����������������������
��������������

�����������������������
����������������������
���������������������������
��������������������������������
�����������������������������
���������������������������������

������������

������������

Figure 5. ADV202 Timing Diagram-Decode Mode

In decode mode the data path is HDATA bus—CODE FIFO
—wavelet transform engine/entropy codecs—internal
memory—pixel interface VDATA bus. See the AN-790
application note.

SWIRQ0 is asserted by the ADV202 as soon as the ADV202
is ready to start the program [1] and must be cleared to
start the program in writing 0x0400 to address 0x6h. Both
ADV202s will assert DREQ0 at close to the same time.
The host should service the first DREQ0 received [2], and
alternate servicing DREQ0 from the second ADV202.

The timing diagram shows an example where the
ADV202s are configured in DREQ/DACK D12MA
burst mode using a shared 32-bit HDATA bus. DREQ
is configured to stay asserted until DACK and WR are
asserted.

As the CODE FIFOs are filled up and code stream data is
passed on to the entropy codecs and wavelet transform
engines back to the pixel interface, the ADV202 is ready to
output uncompressed video data over the VDATA bus.

At this point SWIRQ1 is asserted [3]. The host should poll
this bit at address 0x6h. When both SWIRQ1s are set and
then cleared, the host should assert SCOMM[5] and keep
this pin asserted [4]. On asserting SCOMM[5] the ADV202s
will start to output video on the two VDATA busses [4].

It can be assumed that both ADV202s will be ready to
request data at close to the same time. The host should
service the first DREQ0 received and write the data to the
ADV202 from the external location that has been assigned
to this ADV202 previously in encode mode. After
servicing DREQ0 from ADV202_1, ADV202_2 should
already have DREQ asserted. DREQ0 from the ADV202_2
will remain asserted until the host asserts DACK0 and
WR to the ADV202_2. The host should write the data
from the external location that has been assigned to
ADV202_2 to the HDATA bus.

It is recommended to set the number of accesses to eight
accesses of 32-bit words to guarantee continuous video
data output and to avoid possible CODE FIFO overflows.

REV. 0 REV. 0

–8–

AN-796

–9–

AN-796

Multichip Sync
Synchronization at the inputs (encode mode) is necessary
in order to make sure that each ADV202 starts encoding
the same field at the same time.

Synchronization at the outputs (decode mode) is only
necessary if the separate outputs are sent directly to
an HD video encoder/serializer, i.e., to a part which
expects all data to be aligned at the input. If another
configuration is used, for example sending the Y and
CbCr streams to a buffer or FPGA first, synchronization
at the ADV202 outputs is not necessary.

There are several factors which determine synchroniza-
tion at the outputs in an application using two or more
ADV202s.

Both ADV202s must output the field after decompression
at the same time. This is not guaranteed since each
ADV202 takes different times processing each field, and
each ADV202 has to start decode on the same field on the
first valid sample. Both parts are set into high speed video
mode via the firmware, including all indirect register
settings from address 0xFFFF0400 to 0xFFFF044C.

In a decode master/slave configuration it is expected
that the master H, V, F outputs are connected to the slave
H, V, F inputs and that each SCOMM[5] pin is connected
to the same GPIO output on the host.

In a decode slave/slave configuration the common HVF
for both ADV202s is generated by some external house
sync and each SCOMM[5] pin is connected to the same
GPIO output on the host. The EAV/SAV timing codes are
generated according to the HVF inputs.

In an encode configuration the timing information
is derived from the EAV/SAV codes contained in the
input data.

SWIRQ1, Software Interrupt 1 in the EIRQIE register must
be unmasked on both devices to enable multichip sync
in decode or encode mode. The host has to poll both
ADV202s for the SWIRQ1 flag to be set in the EIRQFLG
register. Only when both SWIRQ1s are active, the host
should assert SCOMM[5]. In multichip sync mode,
SCOMM[5] has the functionality to initiate output on the
VDATA bus when the part is configured in decode mode
or initiate data to be clocked in over the VDATA bus in
encode mode.

For a decode master/slave configuration the following
also has to be considered:

Every slave ADV202 has a fixed timing delay from
HSYNC/active input to video data out. By design this is
seven CLK cycles on the ADV202. The necessary register
to compensate for this delay is set via the firmware on
the master ADV202.

The value of this register is programmed into the
0xFFF0440 register of the master device by the firmware
when the part is configured in multisync mode (for
example, when SWIRQ1 is enabled).

For more information about the ADV202, visit our
product page at www.analog.com.

REV. 0 REV. 0

–10– –11–

–10– –11–

A
N

05
55

8–
0–

6/
05

(0
)

–12–
© 2005 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners.

	INTRODUCTION
	RECOMMENDED INTERFACE
	Decode Master/Slave Configuration
	Decode Slave/Slave Configuration
	Encode Configuration

	Transfer Rates on HDATA Bus
	Maximum Transfer Rate for 32-Bit Data
	Programming the ADV202_1
	Pre-Initialization Routine for ADV202_1
	Initialization Routine for ADV202_1
	Post-Initialization Routine to Configure the DMA Channels for ADV202_1
	Programming the ADV202_2
	Pre-Initialization Routine of the ADV202_2
	Initialization Routine for the ADV202_2
	Post-Initialization Routine to Configure the DMA Channels for the ADV202_2
	Start Program for ADV202_1
	Start Program for ADV202_2
	Data Transfer
	Encode Mode—Timing
	Video Output—Decode Mode
	Programming the ADV202_1
	Pre-Initialization Routine for ADV202_1
	Initialization Routine for ADV202_1
	Post-Initialization Routine to Configure the DMA Channels for ADV202_1
	Programming the ADV202_2
	Pre-Initialization Routine of the ADV202_2
	Initialization Routine for the ADV202_2
	Post-Initialization Routine to Configure the DMA Channels for the ADV202_2
	Start Program for ADV202_1
	Data Transfer
	Decode Mode—Timing
	Multichip Sync

