
REV. 0

AN-686
APPLICATION NOTE

One Technology Way • P.O. Box 9106 • Norwood, MA 02062-9106 • Tel: 781/329-4700 • Fax: 781/326-8703 • www.analog.com

Implementing an I2C® Reset

By Jim Greene

The I2C bus is a high integrity, robust serial bus used for
control purposes in many systems. The primary compo-
nents that make up a system are at least one master and
one slave. Under normal conditions, everything works
fi ne; however, it is the abnormal conditions that gener-
ate problems. Two questions present themselves when a
problem arises: Is the problem device or system related,
or some combination of both? What, if anything, can be
done about it?

Hard device failures are relatively easy to isolate. Perhaps
a function does not work, proper power cycling does not
resolve the issue, pins are stuck high or low, and so on.
System related problems sometimes disguise themselves
as device failures, or worse, are intermittent. It is the latter
area that this application note examines because it repre-
sents the majority of bus fault conditions.

Perhaps a brief description of the I2C bus is in order. The
I2C (inter integrated circuit) bus was developed and pat-
ented by Philips. It allows devices to communicate over
an open-drain (or open-collector) 2-wire serial bus. Inter-
facing is simple; serial data (SDA) and serial clock (SCL)
are the only signals that traverse the circuit board. Due to
the low speed (literally dc to 400 kB/s) problems associ-
ated with routing, transmission line effects and matching
are nonexistent. The limiting factor is bus capacitance,
which is limited to 400 pF.

The following terms are used to describe the I2C bus:

Master—the device that initiates a message, and defi nes
the direction of the I2C bus. The master is also responsible
for the generation of the clock (SCL). (9 clocks per byte: 8
for data and 1 for the acknowledge.)

Slave—a device with an address that is addressed by a
master.

Start—a bus condition in which the SCL line is high and
the SDA line transitions from a high to a low. It is the
fi rst operation on the bus and is always followed by an
address. The least signifi cant bit determines the direc-
tion of the bus. A high tells the slave that the bus will
read, while an LSB = 0 identifi es a write to the specifi ed
address.

Stop—the condition opposite Start, under which the SCL
line is high while the SDA line goes from a low to a high

state. It is the only method of ending a transmission after
the reception of a byte.

Byte Width—all bytes are 8 bits wide, with no exceptions.

Message Length—technically there is no maximum length
for a message; a minimum message consists of 2 bytes
(an address and a data byte).

Wait State—this condition is rarely used, but is worth
understanding. Once the SCL line is low, a device may
continue to hold it low to identify a wait state. The wait
state permits slow devices to not lose synchronization
with the transmitting device. An example is writing many
bytes to an E2PROM; another is a processor holding off
data from a slave to handle an interrupt.

Acknowledge—The “ACK” is the condition under which
the master generates a 9th clock pulse on the SCL line
(for each byte) while the receiving device pulls the SDA
line low in order to signify that the last byte was received.
A “NAK” is only generated by the master; it signals the
slave that no additional data need be sent. A NAK is used
prior to a STOP to prevent the slave from driving the bus
with additional data when the master is about to termi-
nate the communication.

Frequently the master, which is usually a microcontroller
or a gate array, will be interrupted in the middle of its
communication with an I2C slave and, upon return, fi nd
a stuck bus. Initially this looks like a device problem, but
it is not. The slave is still waiting to send the remainder
of the data requested by the master. The problem is that
the master has forgotten where it was when it was inter-
rupted or reset. An extraneous reset on the processor will
generally create this condition, especially if the processor
cannot save its status. At this point, the slave will have
put the next bit out on the SDA line (because the SCL line
may have dropped to a low on reset) and awaits the next
clock on SCL. Of course the processor does not send it,
and as a result this slave just waits and waits. If the bit
the slave puts on the SDA line is a 0, the newly awakened
processor sees what appears to be a hung bus. The bus
is in a nonoperational mode; however, it is not due to the
slave. It is the processor’s fault for not fi nishing the mes-
sage it started. Generating graceful resets is not within
the scope of this application note.

http://www.analog.com

REV. 0

E
04

53
6–

0–
12

/0
3(

0)

AN-686

–2–

© 2003 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners.

What should you do? The slave must be permitted to fi n-
ish sending this last byte or be reset externally.

Solution 1: Clocking Through the Problem

The fi rst solution (letting the slave fi nish) requires
no additional hardware because it is implemented in
software. Note that while this method is very effective,
it may not be possible to clear a hung bus on every
manufacturer’s device all the time. (The design of the
I2C state machine will determine the effectiveness of the
clocking approach.)

The method is quite simple. It is the master’s job to recover
the bus and restore control to the main program. When
the master detects the SDA line stuck in the low state, it
merely needs to send some additional clocks and gener-
ate a STOP condition. How many clocks will be needed?
The number will vary with the number of bits that remain
to be sent by the slave. The maximum would be 9. This
number is derived from the worst-case scenario, the case
where the processor was reset just after sending an ACK
to the slave. Now the slave is ready to send 8 data bits and
receive 1 ACK (or NAK in the case of a bus recovery).

The procedure is as follows:

1) Master tries to assert a Logic 1 on the SDA line

2) Master still sees a Logic 0 and then generates a clock
pulse on SCL (1-0-1 transition)

3) Master examines SDA. If SDA = 0, go to Step 2; if
SDA = 1, go to Step 4

4) Generate a STOP condition

Note that this process may need to be repeated because
the cleared SDA line may have been cleared for the next
bit, which was a 1. There may be some concern about the
effect this additional clocking and STOPping has on other
peripherals. There is no adverse effect; other slaves are
not paying attention due to the fact that they have not
been addressed. Only the slave that had the interrupted
message will respond to the clocks.

This procedure is useful in the system code to help re-
store the bus in the event that an SDA = 0 bus fault is
encountered, regardless of the reason.

Solution 2: Adding a Reset Pin to an I2C Slave

Another method will reset the I2C slave. One function
never seen on an I2C slave is a reset pin. To remedy this
type of problem, a reset function is added via additional
hardware: an analog switch. The analog switch needs
several attributes to perform the reset function properly.
The ADG749 fi lls the requirements:

• Small package: the SC70 requires less than 5 square
mm of board space

• SPDT switch with break-before-make action

• Very low on resistance: 3.5 � at 5 V and 4.5 � at 3 V

• Excellent on resistance fl atness (allows repeatable
resets in digital devices)

• At 1 �A of supply current, the power budget is not
affected

The diagram below shows how the ADG749 can provide a
reset to an I2C slave device. When a reset to the slave must
occur, the processor sends a logic low to the control pin
on the analog switch now labeled RESET (see diagram).
The low going reset pulse must be of suffi cient width to
permit the switch to discharge the decoupling capacitors
and internal circuitry. The ADG749 is capable of generat-
ing a reset to many I2C devices with their associated
decoupling capacitors. Testing has shown that a 15 �s
reset pulse will switch the VDD line of 2 slaves and 1 �F of
capacitance to within 0.1 V of ground in <10 �s. The turn
on time is equally impressive at <5 �s, which means that
the I2C state machine will reset itself on power up.

With an operational voltage range of 1.8 V to 5.5 V, the
ADG749 permits literally any I2C device to be reset by the
processor. Analog Devices has other analog switches if
level translation functions are required.

NOTE: SWITCH SHOWN WITH RESET = LOGIC 1

ADG749

VDD

GND
S1

D

S2I2C DEVICE
VDD

GND

RESET

Figure 1. Simple Interface Resets I 2C Bus

Purchase of licensed I2C components of Analog Devices or one of its sublicensed Associated Companies conveys a license for the purchaser under the Philips I2C
Patent Rights to use these components in an I2C system, provided that the system conforms to the I2C Standard Specifi cation as defi ned by Philips.

	Solution 1: Clocking Through the Problem
	Solution 2: Adding a Reset Pin to an I2C Slave

