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Considerations for Selecting a DSP Processor
(ADSP2100 Family vs. TMS320C25)

by Bob Fine

INTRODUCTION

Digital signal processing systems demand high performance.
But high performance cannot be measured by a processor’s
multiplication/accumulation speed alone. What distinguishes
DSPs from other types of microprocessor and microcontrolier
architectures is how well they perform in each of the following
areas.

1. Fast and flexible arithmetic

A DSP processor must provide single-cycle
computation for multiplication, multiplication with
accumulation, arbitrary amounts of shifting, and
standard arithmetic and logical operations. In addition,
the arithmetic units should allow for any sequence of
computation so that a given DSP algorithm can be
executed without being reformulated.

2. Extended dynamic range on multiplication/
accumulation

Extended sums-of-products are common in DSP
algorithms. Protection against overflow in successive
accumulations ensures that no loss of data or range
occurs.

3. Single-cycle fetch of two operands (from either on- or off-
chip)

Again, in extended sums-of-products calculations, two
operands are always needed to feed the calculation. A
processor must be able to sustain two operand data
throughput.

4, Hardware circular buffering (both on- and off-chip)

A large class of DSP algorithms including most filters
require circular buffers. Hardware to handle address
pointer wraparound reduces overhead (increasing
performance) and simplifies implementation.

5. Zero overhead looping and branching

DSP algorithms are naturally repetitive and can easily
be expressed as loops. Program sequencing that
supports looped code with zero overhead provides the
best performance and the easiest programming
implementation. Likewise, overhead penalties for
conditional program flow are unacceptable in signal
processing applications.

Not all processors currently used for DSP and DSP-like
functions meet these architectural and performance
requirements equally well. This article examines these
considerations for selecting a DSP processor, comparing two
leading 16-bit fixed-point processors, the ADSP-2100A from
Analog Devices and the TMS320C25 from Texas Instruments.

The three sections that follow discuss the five points above.
The arithmetic section discusses items one and two, the
addressing capabilities sections discusses items three and
four and the program sequencing section discusses item five.

Program examples and benchmarks can be found at the end
of this article.

ARITHMETIC CAPABILITIES

The basis of a successful DSP implementation is the ability to
perform fast math. Arithmetic capabilities are the foundation
of DSP performance.

General Purpose Math

One indicator of good arithmetic architecture is the ability to
perform a wide range of arithmetic computation. These
computations should be handled in a flexible manner so that
the algorithm can be implemented without rearranging the
order of the arithmetic operations or operands. If the arithmetic
architecture is fixed, too special-purpdse or limited and the
algorithm must be rearranged, this poses extra work for the
DSP designer or programmer and delays getting a system
running. Algorithm development frequently turns out to be



much of the work of implementing a DSP system. If an
algorithm can be used “as is” with no extra work, the design can
be finished sooner and with less chance of error.

Arithmetic Architecture

Figure 1 shows a block diagram of the arithmetic section of the
ADSP-2100A while Figure 2 shows that of the TMS320C25.
Both of these devices utilize a modified Harvard architecture
which can feed data operands from both program memory and
data memory to the arithmetic section. The ADSP-2100A
extends its Harvard architecture off chip while the TMS320C25
does not. Also, both of these devices work with 16-bit numbers.

The ADSP-2100A has three independent computational units:
an ALU, multiplier/accumulator (MAC), and a barrel shifter.
They are connected (via the R bus) so that the output of any
unit may be used as the input for itself or any other unit on the
next cycle. In addition, the ALU and MAC are directly
connected to both the program and data memory buses.
Operands for ALU and MAC operations can come from both
memories or any combination of off-chip memory and other
data registers in the processor.

The TMS320C25 contains amultiplier, an ALU, a 16-bit scaling
shifter and additional shifters at the outputs of both the
accumulator and multiplier. The multiplier has an input register
and an output register. The multiplier has direct connection to
both the program and data bus while the ALU connects only to
the data bus (through the shifter) and to the output of the

multiplier. Results are always sent to either the data bus or the
accumulator registers. In some cases, the result must first be
stored back in data memory before it can be used as an input
to another calculation.

ADSP-2100A ALU

The ALU has two X and two Y input registers: AX0, AX1 , and
AYO, AY1. ALU operations are performed on any X-Y
assortment of these input registers. They may be loaded from
any combination of program and data memory or other data
registers in the processor. The result of the operation appears
in the ALU result (AR) or ALU feedback (AF) register. AR and
AF can also be used as the X and Y operands (respectively) in
any calculation. In addition, the result registers of the MAC and
barrel shifter can also be used directly as X inputs to the ALU
(and vice versa).

ALU instructions are coded in a register transfer, algebraic
syntax. An example of addition is shown below. This example
is amultifunction instruction. The first “clause” of the instruction
(up to the first comma) is the addition operation. The second
clause loads the X input register from data memory (DM”) and
the third clause loads the Y input from program memory. An
addition (or any other ALU operation) can be executed on a
sustained, single-cycle basis. (These operand fetching
clauses of the instruction may be omitted, if they are not
needed.)

AR = AX0 + AY1l, AX0=DM(IO,MO), AY1=PM(I4,M4)
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Figure 1. ADSP-2100A Arithmetic Section
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Figure 2. TMS320C25 Arithmetic Section

All ALU operations complete in a single 80ns cycle. (All
references to cycles for the ADSP-2100A assume a 12.5MHz
device.) The ADSP-2100A runs at full speed even with off-chip
memory access.

TMS320C25 ALU

ALU operations require that one operand must come from the
accumulator while the other comes from either the multiplier
output or from the data bus through a shifter. To add two
numbers, the accumulator must be loaded with the first data
value. After the accumulator is loaded, a second number can
be added to the accumulator. The instructions for the ALU are
specified with a mnemonic. The two instructions required to
add two numbers are shown below.

ZALH
ADDH

<Data memory address>
<Data memory address>

For the result to be used as an input value for anything other
than another ALU operation, the data must first be stored back
into data memory from the accumulator. Not all ALU
operations can be performed in a single 80ns cycle; an add as
shown above can be accomplished every two cycles. (All
references to TMS320C25 cycles assume a 50MHz device
with an 80ns cycle time.) Not all ALU instructions can be used
with the repeat feature. There is a speed penalty for use of off-

chip datamemory; depending upon the memory configuration,
some ALU operations can take as many as four cycles.

ADSP-2100AMAC

As shown in Figure 1, the ADSP-2100A multiplier/accumulator
(MAC) sits next to the ALU. Like the ALU it has two X and two
Y inputregisters, MX0, MX1and MYO, MY1. The unit performs
both multiplications and MACs independent of the ALU. This
is a key difference from the architecture of the TMS320C25.

MAC operations are performed on any X-Y assortment of input
registers. They may be loaded from any combination of
program and data memory or other data registers in the
processor. The result of the operation appears in the MAC
result register (MR) or the MAC feedback register (MF). Like
the ALU, the feedback and result registers can also serve as
the X and Y operands for any multiplication or MAC operation.
In addition, the result registers of the barrel shifter and ALU can
also be used directly as X inputs to the MAC (and vice versa).

Theinstructions forthe MAC are specified in aregister transfer,
algebraic syntax. An example is shown below. The first line
shows multiplication of two signed operands and the second
example shows multiplication with accumulation of one signed
and one unsigned operand. (Signed and unsigned operands
can be mixed in any combination.)

The second example is a multifunction instruction. The first
“clause” of the instruction (up to the first comma) is the MAC
operation. The second clause loads the X input register from
datamemory (“DM”) and the third clause loads the Y input from
program memory. Any MAC operation can be executed on a
sustained, single-cycle basis. (These operand fetching
clauses of the instruction may be omitted, if they are not
needed, as in the first example.)

MR=MX0#*MYO (SS)
MR=MR+MX1*MY1 (SU), MX1=DM(IO,MO), MY1=PM(I4,M4)

The MR (MAC result) register is actually a 40-bit accumulator.
For 16-bit calculations it is divided into two 16-bit pieces (MRO
and MR1) and an 8-bit overflow register (MR2). DSP
applications frequently deal with numbers over a large
dynamic range. The eight “overflow” bits of MR2 allow for 256
MAC overflows before a loss of data can occur.

All multiplication and MAC operations execute in a single 80ns
cycle. Two new operands can be loaded into the input registers
in parallel with the computation so that a new MAC operation
with new operands can be started every cycle. The ADSP-
2100A runs at full speed even with off-chip memory access.

TMS320C25 MAC Operation

There is no dedicated multiplier/accumulator hardware in the
TMS320C25. The TMS320C25 requires the use of both the
multiplier and the ALU to perform a complete multiplication/
accumulation operation. A multiplication is performed by
loading the T register with the first operand. Once this data is



loaded, a value from the data bus can be multiplied with the
value in the T register. The instructions for the multiplier are
specified witha mnemonic. The instructions for a multiplication
are shown below.

LT <data memory address>
MPY <data memory address>

A product is obtained every two cycles.

A full multiplication/accumulation requires the use of the ALU
as well as the multiplier. The instruction required to perform a
MAC operation is shown below. This instruction requires two
words of program memory storage.

MAC <prog. mem. address> <data mem. address>

With both operands in on-chip memory, the MAC instruction
takes three 80ns cycles in non-repeat mode. In repeat mode,
it will require 2 + n cycles, where n is the number of repeats.

The TMS320C25 provides one bit of extension in the
accumulator (a 33-bit accumulator compared to the 40-bit
accumulator of the ADSP-2100A). After more than one
overflow, the calculation is corrupted.

ADSP-2100A Shifter

The barrel shifterin the ADSP-2100A has an input register, SI,
and accepts as inputs any result registers in the processor
(e.g. MR1, AR) including its own result register, SR. Like the
MAC result register set, the 32-bit SR is divided into two 16-bit
registers, SRO and SR1. The shifter also has an exponent
register, SE, which is set automatically by the exponent adjust
instructions and used for normalization instructions.

The shifter can place a 16-bit input value anywhere within a 32-
bit field in a single cycle. The input can be shifted any number
of bits from off-scale left to off-scale right. Other functions such
as exponent detection, normalization, denormalization, block
floating point exponent maintenance, and pattern merging can
also be performed with this shifter. All shifter operations are
performed in a single cycle. Numbers can be normalized,
regardless of the number of bits to be shifted, in a single cycle.

TMS320C25 Shifter

The TMS320C25 scaling shifter shifts to the left from 0 to 16
bits. Two other shifters can shift data coming from the multiplier
left 1 bit or 4 bits, or right 6 bits, or can shift data coming from
the accumulator left from 0 to 7 bits. These two shifters add the
advantage of being able to scale data during the data move
instead ‘of requiring an additional shifter operation.

DSP Requirement ADSP-2100A TMS320C25
Single-cycle ALU operations no
Single-cycle multiplication no
Single-cycle MAC operations v

Single-cycle shifting 0-32 bits 0-16 bits left or
left or right
0-7 bits left or
1 or 4 bits left or
6 bits right
Accumulator overflow protection 1 bit
Signed, unsigned or mixed-mode no mixed
multiplications mode

*Approaches single-cycle efficiency when using repeat mode

Table 1. Arithmetic Capabilities



Arithmetic Summary
Table 1, on the facing page, summarizes the comparison of
arithmetic capabilities of these processors.

The side-by-side architecture of the ADSP-2100A results in
easier implementation of many DSP algorithms as compared
to the fixed sequence, end-to-end architecture of the
TMS320C25. Due to the dependency of the ALU on the
multiplier for multiplication/accumulations in the TMS320C25,
MAC operations can not be easily intermingled with ALU
operations. This may require changing the order of
calculations in an algorithm so that the interdependency of
ALU and muitiplier does not cause a problem. The local
storage registers found in the ADSP-2100A make data
movement for calculations easy. If data is to be used many
times, it canreside in aregisterto eliminate the need of fetching
it from memory each time. With local registers and the open
architecture, it is easy to perform arithmetic operations in any
order and to guarantee that input operands and results remain
intact until explicitly overwritten or moved.

DATA ADDRESSING

A digital signal processor’s ability to perform fast arithmetic is
wasted if the required data cannot be fetched at an equal and
sustained speed. Addressing hardware must support the dual

operand fetches required to fully utilize the Harvard
architecture found in most DSPs. Circular buffers are
frequently found in DSP algorithms; hardware support of
address pointer wraparound is another feature distinguishing
a signal processor from other types of high-performance
processors.

Figure 3 shows the address generation circuitry of the ADSP-
2100A while Figure 4, on the next page, shows that of the
TMS320C25.

ADSP-2100A Addressing

There are two independent address generators in the ADSP-
2100A. One typically supplies addresses for program memory
data fetches while the other handles data memory, making
efficient use of the modified Harvard architecture. Each
‘address generator has four | registers which store pointers
(addresses), four M registers for address modifiers, and four L
registers storing buffer lengths for modulo addressing of
circular buffers.

The address generator can bit-reverse an address as it is sent
out to the address bus for zero-overhead bit-reversing for the
FFT. The I, M, and L registers can be also used for general
purpose data storage.

DMD BUS
; MUX
14 14 |y 14 |y 14
/ y, y y
A A A
L I M
REGISTERS M?_g‘éll-gs REGISTERS REGISTERS
4x14 4x14 4x14
4 4 |
14 )l ADD
A
BIT
REVERSE DAG1 ONLY
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Figure 3. ADSP-2100A Address Generation Logic
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Figure 4. TMS320C25 Address Generation Logic

ADSP-2100A Indirect Addressing

With indirect addressing, the address in an | register drives
either the data or program memory address bus. While the
memory is being accessed, the address is simultaneously
updated with the contents of any of the modify (M) registers,
as shown in Figure 5. The specific pairing of | and M registers
is up to the programmer. For example, 10 and M3 could be
specified in the instruction as in

AX0O =DM(IO0,M3) {load AX0 from Data Memory}
The ability to mix | registers and M registers is especially useful
for two-dimensional addressing or for supporting pointer

increment and decrement without constantly reloading a new
modify value. This instruction syntax shows explicitly what
registers are used to generate the address and where the data
is going; nothing has to be inferred.

Loading the length of a circular buffer into the L register
activates the modulus logic, guaranteeing that the address is
kept inside the buffer in a modulo fashion. This is maintained
automatically by the address generator hardware and does not
have to be calculated explicitly by the programmer. Circular
buffers, such as for the delay lines of digital filters, are both
transparent and require zero-overhead.

|-

Data Memory Modify Register

Data Memory Address Register
Program Memory Modify Register
Program Memory Address Register ~

Figure 5. Indirect Addressing In ADSP-2100A
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ADSP-2100A Direct Addressing

Due to the 24-bit width of the ADSP-2100A instruction, a full
14-bit address can be specified within a (single-word)
instruction for single-cycle access to any data. Figure 6
ilustrates this. Below is an example of an instruction using
direct addressing to read from data memory.

MXO==DM(some_label)

TMS302C25 Addressing

The auxiliary register file of the TMS320C25 is used for storage
of addresses and a single modifier. Only one address can be
supplied at a time with the auxiliary register file so that two data
fetches cannot be achieved.

TMS320C25 Indirect Addressing

The auxiliary register file is connected to an arithmetic unit
which will auto-index the contents of the auxiliary register or
modify a register by the contents of auxiliary register number
0. The TMS8320C25 has a single modify register. This limits the
addressing capabilities for indirect addressing. No support is
provided for circular modulo addressing; it must be calculated
by the programmer as part of the computational load of the
program. This diminishes the performance of DSP algorithms
using circular buffers.

Also, the only way to read coefficients from program memory
using indirect addressing is to use table reads.

TMS320C25 Direct Addressing

The TMS320C25 can directly access data within a 128-word
block (compared to a 16K word block with the ADSP-2100A).
A data page register is used in conjunction with the direct
address to access a larger data space. To access data within
a different block requires software overhead to update the 9-
bit data page register. The update of the page register poses

24 17

the requirement on the programmer to detect when the page
boundary has been exceeded and when it is necessary to
update the page register.

TMS320C25 Addressing Instructions

The instruction mnemonics of the TMS320C25 involve several
addressing modes. Since the number of registers are limited,
there is not a set of specific instructions to load registers from
memory as with the ADSP-2100A. Indirect and direct
addressing is specified within arithmetic instructions and,
depending upon the memory configuration, can impose
several overhead cycles (overhead can be as high as eight
cycles with external memory). Some general syntax examples
are shown below.

ADDH {*|*+|*—|*0+|*0~| *BRO+| *BRO-} [,<next ARP>]
MPY  {*[*+|*—]|*0+]|*0-|*BRO+| *BRO-} [,<next ARP>]

Specific examples of these are shown below:

ADDH *
MPY *0+

The first example uses the contents of an auxiliary register as
the address and the second uses the contents of an auxiliary
register as the address and adds the contents of auxiliary
register 0 as a modifier. This instruction syntax can be hard to
decipher because it does not directly name which auxiliary
register is being used. Thatinformation is stored in the auxiliary
register pointer (ARP).

The address generator can bit-reverse an address as it is sent
out to the address bus for zero-overhead bit-reversing for the
FFT. Auxiliary registers can also be used for general purpose
data storage and the Auxiliary ALU can be used for limited
math.

<l4-bit address>

Address Field within Instruction

Figure 6. ADSP-2100A Direct Addressing S



ADDRESS GENERATION SUMMARY

Sustaining high rates of arithmetic operations demands
maximum performance from the data addressing part of a
processor's architecture. Table 2 below summarizes the
differences between the two processors in terms of their data
addressing capabilities.

PROGRAM SEQUENCING

Efficient architectures for signal processing require fast
arithmetic capabilities and matching speed in data addressing
and fetching capabilities. To fully deliver the performance
required for real-world signal processing, a DSP machine must
execute its program with little or no overhead spent on
maintaining the proper flow of control.

Efficiency in program sequencing has many different aspects;
they cannot all be covered in this article. The comparison
focusses primarily on two features

. the execution of loops and

. how branching and branching on conditions are
handled.

Loops are fundamental to the way DSP algorithms
are expressed in their natural mathematical form. Operations
such as sums-of-products are repetitive. If the program can be
efficiently expressed in a looped form then coding is quite
straightforward and changing the program (for example, to
increase the number of taps in a filter) requires very little work.

Branching is fundamental to program structure. Branching on
conditions (and executing arithmetic on conditions) is a natural
way to construct any program which must respond to its
environment. '

Program Sequencer Architecture

Figure 7 shows the architecture of the program sequencer of
the ADSP-2100A and Figure 8, on page 10, shows that of the
TMS320C25.

ADSP-2100A Program Sequencer

The program sequencer of the ADSP-2100A contains logic
that selects a program memory address source and routes the
address to the program memory address bus (PMA). This
address selection occurs automatically in response to the

DSP Requirement ADSP-2100A TMS320C25
Single-cycle fetch of two operands v no
from off-chip
Single-cycle fetch of two operands v v*
from on-chip
Generate new program memory and 4 v
data memory addresses each cycle
Modify two addresses by two v no
different modify values on every
cycle
Bit-reverse data memory 4 v
addresses for FFT
Automatic pointer wraparound v no
for circular buffers

*MAC & MACD instructions only

** Direct addressing mode only and only with MAC and MACD instructions

Table 2. Data Addressing Capabilities
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Figure 7. ADSP-2100A Program Sequencer Architecture
current instruction. The address placed on the address bus . the interrupt logic, to automatically vector to the
can come from interrupt routine upon assertion of any external
interrupt.
. the program counter (for sequential addressing),
Allinstructions execute in a single cycle; this applies equally to
. a 14-bit address in the instruction word itself, for direct jumps, calls andinterrupts. Noinstruction pipelining is required
jumps and subroutine calls, in the ADSP-2100A so that program flow is simple to
understand.
. the PC stack, for returns from subroutines and

interrupts, and
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Figure 8. TMS320C25 Program Sequencer Architecture

When an interrupt occurs the complete status of the processor
(stack status, mode status, arithmetic status and interrupt
mask) is automatically pushed onto the status stack as part of
the interrupt vector process.

ADSP-2100A Looping Capabilities

The ADSP-2100A program sequencer supports zero-
overhead “DO UNTIL” loops. Using the count stack, loop stack
and loop comparator, the processor can determine whether a
loop should terminate and the address of the next instruction
(either the top of the loop or the instruction after the loop) with
no overhead cycle.

A DO UNTIL loop may be as large as program memory size
permits. A loop may terminate when a 16-bit counter expires
or any when any arithmetic condition occurs. The example
below shows a three instruction loop that is to be repeated 100
times.

CNTR = 100
DO Label UNTIL CE
First instruction of loop
Second instruction of loop
Label: Last instruction of loop

First instruction outside loop

—10-

The firstinstruction loads the counter with 100. The DO UNTIL
instruction contains the address of the last instruction in the
loop (in this case the address represented by the identifier,
Label) and also contains the termination condition (in this case
the count expiring, CE). The execution of the DO UNTIL
instruction causes the address of the firstinstruction of the loop
to be pushed on the PC stack and the address of the last
instruction of the loop to be pushed on the loop stack (See
Figure 7).

As instruction addresses are output to the program memory
address bus and the instruction is fetched, the loop comparator
checks to see if the instruction is the last instruction of the loop.
Ifitis, the program sequencer checks the status and condition
logic to see if the termination condition is satisfied. The
program sequencer then either takes the address from the PC
stack (to go back to the top of the loop) or simply increments
the PC (to go to the first instruction outside the loop).

The looping mechanism of the ADSP-2100A is automatic and
transparent to the user. As long as the DO UNTIL instruction
is specified, all stack and counter maintenance and program
flow is handled by the sequencer logic with no overhead. This
means that in one cycle the last instruction of the loop is being
executed and in the very next cycle, the first instruction of the
loop is executed or the first instruction outside the loop is
executed depending upon whether the loop terminated or not.



ADSP-2100A Program Sequencer Instructions

There are many conditional instructions for the ADSP-2100A.
Most arithmetic instructions as well as jumps, subroutine calls,
returns from interrupts and returns from subroutines may all be
conditional. The program sequencer decides on the fly
whether the condition is true and what action to take, requiring
zero overhead cycles. The coding of conditional jumps,
subroutine calls and returns is straightforward. Some
examples of the syntax are shown below.

IF condition JUMP label
IF condition JUMP I4

IF condition CALL label
IF condition CALL I4

IF conditionRTS

In the above examples, 14 references an address generator
register for indirect branching. Condition refers to any of a set
of sixteen arithmetic conditions in the processor and /abel
refers to any address or label in the program memory space.

TMS320C25 Program Sequencer

The program sequencer logic of the TMS320C25 controls
instruction execution and consists of a program counter and
related hardware. Instruction execution for the TMS320C25
utilizes a three-level pipeline consisting of a prefetch, decode,
and execution stage. A prefetch counter (PFC) contains the
address of the next instruction to be prefetched. The
prefetched instruction is loaded into the instruction register
(IR), unless the instruction register still contains an instruction
currently executing. In this case the prefetched instruction is
temporarily stored in the queue instruction register (QIR). The
instruction pipeline (which can be either two levels or three
levels depending upon the memory configuration) in
conjunction with multi-cycle instruction execution can make
program flow complex and difficult to understand. Calculating
a benchmark for a particular algorithm can also become
difficult for the same reason.

The program counter can supply an address for sequential
addressing. The single 8-deep PC stack is used for storage of
return addresses as well as for providing the ability to push and
pop data for the accumulator. An interrupt fiag register (IFR) is
used for the vectoring to an interrupt routine. Unlike the ADSP-
2100A, status is not automatically saved on the TMS320C25
for interrupts so that the programmer must perform any save
and restore functions explicitly. Logic is included to repeat an
instruction as many as 256 times.

—11-=

Branch instructions which contain a direct address require
multiple program memory locations because both the
instruction bits and the address can not fit in the 16-bit
instruction width.

Instruction Pipelining in the TMS320C25

Anytime the flow of the program deviates from sequential
instruction fetches, the instruction pipeline must be emptied
and then refilled based on the destination address of the
branch, call or interrupt vector. These types of operations
require at least three cycles to execute when fetching the
instruction from external memory or from internal program
ROM. This type of instruction pipelining is not found in the
ADSP-2100A (the fast instruction execution speed is achieved
by other design techniques) and no extra overhead is
encountered in the ADSP-2100A for jumps, subroutines or
interrupts regardless of whether they are conditional or not.

TMS320C25 Program Sequencer Instructions

Arithmetic instructions cannot be conditional. Only branch
instructions are conditional. Branch instructions with direct
addresses require two program memory words.

BACC

BANZ address
BGEZ address
BIOZ address

The TMS320C25 must use an explicit instruction to check a
loop count and perform conditional branches. This requires
one cycle of overhead for each iteration. A repeat instruction
is also provided. It allows a single instruction to be repeated up
to 256 times. The syntax is shown below.

RPT data memory address
RPT {*|*+|*-|*0+|*0-| *BRO+ | *BRO-} [, <next ARP>]

PROGRAM SEQUENCER SUMMARY

Efficient looping capabilities are very important for DSP
algorithms due to their repetitive nature. If zero-overhead
looping capabilities are not found in a DSP processor, as with
the TMS320C25, straight line coding may be required to avoid
the overhead incurred with looping. This type of coding avoids
overhead cycles but makes inefficient use of program memory
space. In fact, the TMS320C25 can require hundreds of times
more program memory than the ADSP-2100A for algorithms
such as the FFT because of this characteristic of its
architecture.



DSP Requirement ADSP-2100A TMS320C25
Zero-overhead looping v v
(1 instruction inside loop)

Zero-overhead looping 4 no
(2 or more instructions inside loop)

Conditional arithmetic v no
instructions

Zero-overhead branching 4 no*
Speed achieved with pipelining not required 4
Automatic status saving v no
during interrupt vector

L

*Affects the pipeline; the exact number of cycles of overhead is a function of memory configuration and branch destination

Table 3. Program Sequencing Capabilities

A FOOTNOTE:

The ADSP-2100A Compared to the TMS320C30

The TMS320C30 architecture has some of the same
characteristics as the TMS320C25. Two modify registers, IR0
and IR1, were added in recognition of the need for more than
a single modify register. Some DSP algorithms, especially
applications such as video signal processing, will still require
additional modify registers, as in the ADSP-21 00A.

The TMS320C30 contains one block size register for circular
buffers. If the DSP application deals with more than one
channel of filtering, for example, several circular buffers may
need to be maintained simultaneously. With the TMS320C30
the block size register and an auxiliary register must be
reloaded and the old value must be saved in memory or the
register file. This requires extra overhead that will not occur in
the ADSP-2100A with the use of the eight length registers.

—{o—

The TMS320C30 also has an instruction pipeline similar to the
TMS320C25. Pipeline conflicts as well as overhead cycles in
the program flow will result because of the instruction pipeline.
The ADSP-2100A instructions executeina single cycle with no
extraoverhead regardless of whether that instruction is ajump,
subroutine call, or conditional instruction.

The looping capability of the TMS320C30 is improved over that
of the TMS320C25. It still cannot execute some constructs
supported by the ADSP-2100A such as terminating a loop
upon an arithmetic condition as well as the expiration of a
count.

The ADSP-2100A has a true off-chip Harvard architecture with
two separate external memory maps. Even though the
TMS320C30 has two external memory ports, they reside in the
same single memory map.



SUMMARY

The DSP processors available on the market today vary
drastically in their ability to meet these requirements. In fact,
some DSP-oriented processors, like the TMS320C25, are
better high speed microcontrollers than they are DSP
processors. Analyzing the requirements of your DSP system
and matching them to the capabilities of a DSP architecture will
assure efficient operation.

Digital signal processing is a specialized branching of
processor design and application. The fundamental
requirements of DSP are summarized in Table 4 below.

Due to space limits, this article does not cover many topics in
detail. Consult the ADSP-2100 User’s Manual and the ADSP-
2100 Cross-Software Manualfor a greater depth of information
on this processor. '

DSP Requirements ADSP-2100A TMS320C25
Fast arithmetic v v
Extended dynamic range v no

on multiplication / accumulation

Single-cycle fetch of two operands 4 no
(from either on- or off-chip)

Hardware circular buffering v no
(both on- and off-chip)

Zero overhead looping & branching v no

Table 4. Overall DSP Requirements
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APPENDIX A: PERFORMANCE BENCHMARKS

Since evaluating every detailed feature of many DSP
processors can be time consuming and tedious,
performance benchmarks can be frequently used to tell the
whole story. If the arithmetic, address generation, and

program sequencing architecture is superior it will be
reflected in the benchmarks. A list of benchmarks are
shown below for the ADSP-2100A and the TMS320C25.
TMS320C25 benchmarks could not be located for all the
algorithms shown.

- Algorithm ADSP-2100A TMS320C25

8-pole canonic IIR Filter (5X) 12 3.28 us 3.52 us

Matrix multiply 3x3 times 3x1 ' 1.6 us 1.8 us

1024 point FFT .8 4.23 ms /3161 words 9.08 ms / 23636 words
1024 point FFT 4 297 ms -

1024 point FFT 5 - 7.1msS®

ADPCM Full Duplex 7 68 us -

Tenth order LPC Analysis 8 0.36 ms -

DTMF?® 12 channels -

1 These benchmarks are directly from the September 29, 1988 issue of EDN.

2 This is an eight filter made by cascading 2-pole canonic biquad sections using the 5-multiply technique.
3 This performs a complex, 1024-point, radix-2 FFT. Results include bit-reversal.

4 This is a complex, 1024-point, radix-4 FFT, including digit-reversal, fully optimized.

5 Source: Texas Instruments Seminar Materials (1988). This is for a 1024-complex, radix-4, straight line coded FFT

-6 This is based on a 100ns cycle time part, scaled for an 80ns part, the time should be 5.6ms

7 Based on CCITT G.721

8 Using a 240-point rectangular window

9 Includes digit validation, speech rejection and software p-law expansion

Table 5. Benchmark Comparison
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APPENDIX B: PROGRAM EXAMPLE

To illustrate some of the issues discussed above, a code
example is shown below for the ADSP-2100A and the
TMS320C25. To avoid long listings and confusion, a short
program which performs a matrix multiply of a 3 x 3 matrix with
a 3 x 1 matrix is shown. Both processors perform identical
tasks so that no interpretation of the type of algorithm is
required. Both code examples do not show any initialization of
pointers or the set up of any modes. The examples only focus
on the core operation for simplicity.

Because these examples are short, the performance
advantage of the ADSP-2100A is not as apparent as ina more
realistic example. Nevertheless, the ease of coding and
benefits of the looped structure can be seen. Consult the
benchmark tables for more definitive performance
comparisons.

These program examples are taken from the EDN benchmark
study of DSP processors that appeared in EDN magazine
September 29, 1988. A diskette containing this code is
available from the publisher of EDN.

ADSP 2100A Code Example Description

The code above uses the looping capabilities of the ADSP-
2100A and can be expanded for larger matrices by simply
changing the number of loops (the value loaded into the

counter). The I registers of the address generator are initialized
to point to the first element of the input arrays and the output
array. Circular buffering is used so that the address will
circulate through the array. This allows automatic circulation
through the 3 x 1 matrix for each row calculation. Data can
reside anywhere in data memory without restrictions and can
take up the full 16K data space if necessary.

The routine starts by fetching the first element of the the two
matrices from the data memories. One value is fetched from
program memory data space while the other is fetched from
data memory. The counter is then loaded with the number of
rows of the matrix. The DO UNTIL loop is set up and the
computations can begin.

Matrix elements are multiplied while the next elements are
fetched. Both values are treated as signed numbers with the
specification (SS). The products are accumulated with the
MAC instructions and the final sum of products is rounded so
that it can be sent as a 16-bit result to data memory.

The program memory requirements are not large because of
the looping capabilities. The program size does not change for
larger arrays, only the loop counter value changes. Also, for
multidimensional arrays, the loops can be nested with column
loops inside of row loops for very compact code. Total
execution time for this example program is 1.6ps.

ADSP-2100A Matrix Multiply Code Example

MR=MX0*MYO0 (SS) , MX0=DM (I0,M0), MYO=PM (14, M4) ;
MR=MR+MX0*MYO0 (SS) , MX0=DM(I0,M0), MYO=PM(I4,M4) ;
MR=MR+MX0*MYO (RND) , MX0=DM(I0,MO0), MY0O=PM (I4,M4) ;

start: MX0=DM(I0,M0), MYO=PM(I4,M4);
CNTR=3;
DQ row loop UNTIL CE;
row_loop: DM(I1,M0)=MR1;
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TMS320C25 Code Example Description

The code for the TMS320C25 is straight line since no looping
capability is available. Direct addressing is used so that the
data must be restricted to a 128 word block. If the matrix is to
be expanded, the program must be rewritten because it is not
general purpose. Indirect addressing is not used because
there is no support for circular buffering and there is no looping
capability that allows for more iterations to be specified.

The routine starts by loading the T register with the first matrix
element. Next, data of the second matrix is fetched and the two
values are multiplied. A new value is loaded into the T register
and the first product is saved in the accumulator. Another
multiply is performed. The T register is loaded with another
value as the previous products are accumulated. Notice that
the fetching of operands and accumulate, and the multiply are

specified and performed in different cycles as opposed to the
ADSP-2100A which allows for everything to be specified and
performed in a single cycle. The data result is then written to
data memory.

As the matrix gets larger, the code space requirement also
gets larger. The lack of looping capability results in the
inefficient use of program memory space. If looping is desired,
it would need to be done explicitly with extra instructions.
These extra instructions would introduce overhead and would
hurt the benchmark performance. Almost all benchmarks for
the TMS320C25 need to be done with straight line code for
good performance. This program executes in 1.8us. This
approach, of course, can use quite a bit of program memory
space.

TMS320C25 Matrix Multiply Code Example

LT al

MPY bl
LTP a2
MPY b2
LTA a3
MPY b3
LTA a4
SACHRI1,S
MPY bl
LTP a5
MPY b2
LTA a6
MPY b3
LTA a7
SACHRZ2,S
MPY bl
LTP a8
MPY b2 -
LTA a9
MPY b3
APAC
SACHR3, S
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