

AN-308 APPLICATION NOTE

ONE TECHNOLOGY WAY ● P.O. BOX 9106 ● NORWOOD, MASSACHUSETTS 02062-9106 ● 617/329-4700

Commutating Amp Multiplies Precisely

by Moshe Gerstenhaber and Frank J. Ciarlone

By using a pulse-width-height modulation technique, the circuit in Fig 1 implements a 0.015%-accurate multiplier. The circuit's output equals $V_{\rm X}V_{\rm Y}/10$. An AD581 voltage reference, an AD630 commutating amplifier, and an integrator comprising an AD707 op amp, 2000-pF capacitor, and 150-k Ω resistor first generate a precision triangle wave. For a given state of the AD630's output—+ $V_{\rm REF}$ at TP₁, for example—the integrator ramps until its output reaches -11V. Then, TP₁ changes state and the integrator begins ramping toward +11V. The triangle wave's period is 4.4RC or 1.32 msec, where R and C are the values of the integrator components.

The circuit uses a second AD630 driven by the variable V_X to compare the triangle waveform at TP_2 to the signal at V_Y . The duty cycle, $T_1 + T_2$, at the output

of this second commutating amplifier is as follows:

$$T_1 = 2RC(11 - V_Y)/10$$
, and $T_2 = 2RC(11 + V_Y)/10$.

During T_1 , the voltage at TP_4 equals $-1.1V_x$. During the remaining period, T_2 , the pulse height will equal $+1.1V_x$. V_{OUT} is the average, obtained by lowpass filtering, of this T_1 and T_2 combined waveform and equals

$$V_{0} = \frac{-1.1 \ V_{X}T_{1} + 1.1V_{X}T_{2}}{T_{1} + T_{2}} = \frac{V_{X}V_{Y}}{10} .$$

You can use a higher bandwidth filter and a higher carrier frequency to build a faster multiplier.

Fig 1—Two commutating amplifiers join a reference, an integrator, and a 4-pole filter to implement a 0.015%-accurate multiplier.